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Synopsis 

• We implant polycrystalline diamond substrates with ions of C±, N+, and 0+. Samples were implanted with a
beam energy of 16.5 MeV using a 6 MV Tandem Van de Graaff Pelletron Accelerator with fluences ranging
from 4(1014) to 4(1016) cm-2.

• The change in mass amongst implant ions offers an avenue to exploit the effect of perturbing mass
differences in the defect-scattering term of popular phonon scattering models.

• Time-domain thermoreflectance is used to measure an increase in thermal boundary conductance as well
as orders of magnitude reduction in thermal conductivity

• The damage in the samples is characterized through x-ray diffraction as well as scanning transmission
electron spectroscopy, which is contrasted against damage predicted with TRIM simulations

• A Klemens model for phonon defect scattering is applied to the thermal conductivity, providing insight into
the magnitude of the scattering coefficient for each ion

Application of Diamond 
Thermal Conductivity

Material K m-1 K-1)

Electrical Resistivity

p (0 cm)

Elastic Modulus

E (GPa)

Diamond 2000 1013 - 1018 1050 -1210

Silicon

A1203

SiC

140

35

330 - 400

0.1-60*

>1018

102 — 106*

140- 180

330 - 400

400

• Precision machining
• Metal processing

• Optics
• Superlative transmission UV-RF

• Elimination of thermal lensing

• Sensors
• Chemically inert

• Low leakage current

• Minimal temperature
dependence

• Electronics*
• Thermal management

• AIGaN/GaN-on-diamond

• Radiation detection

Sample Preparation and Characterization 

Irradiation Details
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Energy (eV)

Dose (cm-2)

Accelerator

Purpose

Sonication

02 plasma (min)

Al deposition

C+, N+, 0+

16.5(106)

4(1 014), 4(1 015) , 4(1 016)

6MV Tandem Van de Graaff-Pelletron

mass impurity scattering 
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• STEM and XRD confirm polycrystallinity of the samples
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• High defect concentration produces a change in color, yielding
varying shades of green
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Time-Domain Thermoreflectance (TDTR) 
Non-contact, optical pump-probe technique used to measure material thermal properties
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Pump and probe pulses arrive at different times:
• Pump pulse heats the sample
• Probe pulse measures the change in temp at different times

after the heating event.
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Thermal Measurements 
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• Overall increase in thermal boundary conductance observed as a result of
irradiation. Similar results have been demonstrated in single crystal silicon

• Decreases in thermal conductivity span two orders of magnitude >2,000 —>
—20 W m-1 K-1
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Damage Characterization 
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• TRIM software used to predict damage profiles for each ion
implanted at an energy of 16.5 MeV

• STEM employed to measure the actual projected range at the
highest dose

• Lack of diffraction with SAD confirms amorphicity in the regions of
highest damage; diamonds maintain polycrystalline structure
outside of these bands

• Broadening of the (111) peak in 20:w indicates variation in
interplanar spacing, suggestive of strain

Thermal Conductivity

• To gain insight into phonon scattering, Thermal conductivity modeled from a
semiclassical kinetic theory approach

• Phonon dispersion taken from literature1
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• An additional impurity scattering term is used to model the reduction in thermal
conductivity as a function of irradiation dose by fitting for A, the magnitude of the
defect scattering term
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• Good agreement is found between the Klemens model for phonon defect
scattering and experimental data

• The magnitude of the scattering coefficients are compared for all ions, and are
found to trend with increasing implant mass

Percent difference

(Aii,Nc)

Percent difference

(Mi,Mc)

N' 6.00 15.34

0" 8.47 28.48
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