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Synopsis

« We implant polycrystalline diamond substrates with ions of C*, N*, and O*. Samples were implanted with a
beam energy of 16.5 MeV using a 6 MV Tandem Van de Graaff Pelletron Accelerator with fluences ranging

from 4(10'4) to 4(10'%) cm.

 The change in mass amongst implant ions offers an avenue to exploit the effect of perturbing mass
differences in the defect-scattering term of popular phonon scattering models.

« Time-domain thermoreflectance is used to measure an increase in thermal boundary conductance as well

as orders of magnitude reduction in thermal conductivity

 The damage in the samples is characterized through x-ray diffraction as well as scanning transmission
electron spectroscopy, which is contrasted against damage predicted with TRIM simulations

A Klemens model for phonon defect scattering is applied to the thermal conductivity, providing insight into

the magnitude of the scattering coefficient for each ion
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Application of Diamond

Thermal Conductivity Electrical Resistivity Elastic Modulus

Material K (W m1 K1) p (Q cm) E (GPa)
Diamond 2000 1013 - 1078 1050 -1210
Silicon 140 0.1-60* 140- 180
ALO, 35 >1018 330 - 400
SiC 330 - 400 102 — 106* 400
 Precision machining e Sensors

* Metal processing

* Optics
» Superlative transmission UV-RF
 Elimination of thermal lensing

» Chemically inert
* Low leakage current

* Minimal temperature
dependence
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Irradiation Detalls

~

lon C+, N+, O+
Energy (eV) 16.5(106)
Dose (cm-2) 4(1014), 4(107%) , 4(1076)

Accelerator 6MV Tandem Van de Graaff-Pelletron

Purpose mass impurity scattering
TDTR Preparation
Sonication Isopropanol, acetone, methanol
O, plasma (min) 30
Al deposition 80 nm (e-beam evaporator)
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« STEM and XRD confirm polycrystallinity of the samples

« High defect concentration produces a change in color, yielding
varying shades of green
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Time-Domain Thermoreflectance (TDTR)
Non-contact, optical pump-probe technique used to measure material thermal properties
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Pump-probe time delay (ps)
Giri et al., JAP, 117, 105105 (2015)
Pump and probe pulses arrive at different times:
NArDiamon = Pump pulse heats the sample
KDiamond = Probe pulse measures the change in temp at different times
after the heating event.
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Damage Characterization
| | | | | «  An additional impurity scattering term is used to model the reduction in thermal
. (a) conductivity as a function of irradiation dose by fitting for A’, the magnitude of the
m defect scattering term ooo0n
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N+ 6.205 6.7 . Good agreement is found between the Klemens model for phonon defect
' ' scattering and experimental data
C* 7.65 8.5 . The magnitude of the scattering coefficients are compared for all ions, and are
10 found to trend with increasing implant mass
Depth (um)
; Percent difference Percent difference
: : : (A',A'c) (Mi,Mc)
 TRIM software used to predict damage profiles for each ion T 5 00 rad
implanted at an energy of 16.5 MeV \ | |
: O 8.47 28.48
« STEM employed to measure the actual projected range at the \_ Yy
highest dose s N
« Lack of diffraction with SAD confirms amorphicity in the regions of A k I d t
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