Unclassified Unlimited Release

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2018-9353C

The Conjunction Problem: A Study of SSA Architectures to Monitor Orbital Maneuvers and Conjunctions

Celeste A. Drewien, Mark R. Ackermann, Leone Young

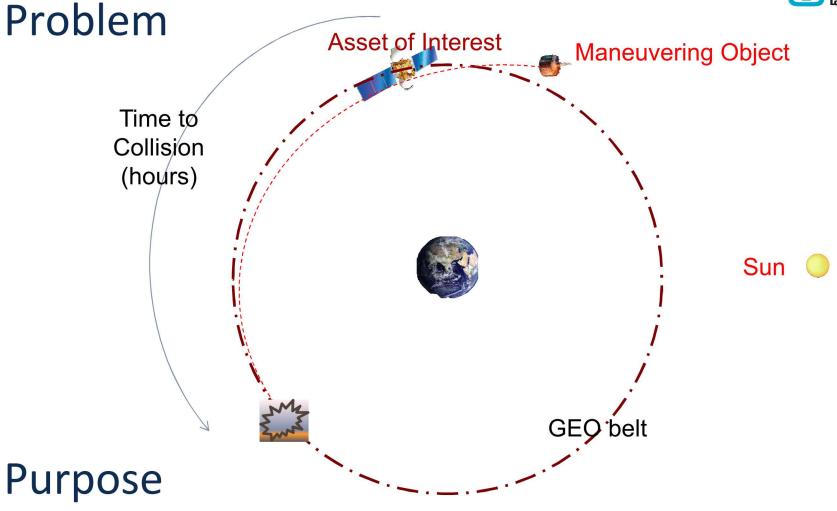
Sandia National Labs

Colonel Rex R. Kiziah

USAF Academy

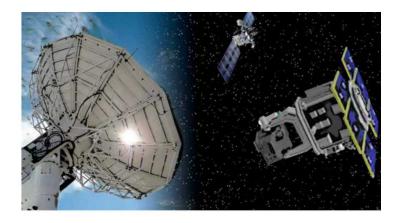
John McGraw and Peter Zimmer

J.T. McGraw & Associates


September 10, 2018

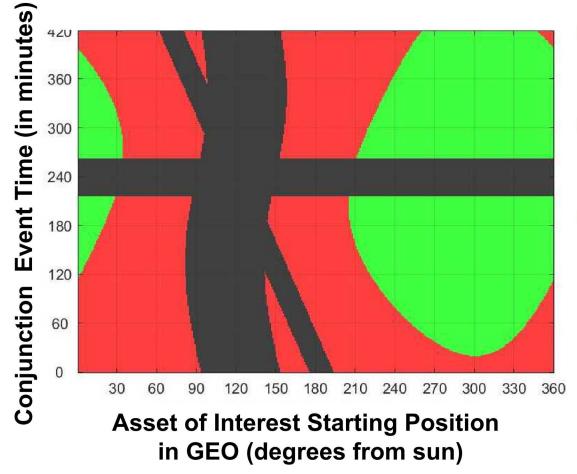
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Explore space situational awareness (SSA) architectures for detection of space object maneuvers and conjunction events


Model Parameters

Sensor onboard Asset of Interest	Satellite location: GEO belt zero inclination	On-board sensor parameters Staring sensorAperture size: 0.025-0.1mIntegration time: 1-5 s
Ground-based optical telescope network	Network size and locations • 3 GEODSS + SST OR • 13 site: proposed	Ground sensor parameters Integration time: 1-5 sAll 1 m diameter (including SST, for convenience)
Notional co-orbital sensor constellation	Satellite constellation size	 Space sensor parameters VMF Tracking Aperture size: 0.3-0.5m Integration time: 1-5 s
Other space-based sensor constellation	Satellite constellation and orbit • 3-6 Notional Near GEO • 1-2 LEO sensors (SBSS-like, or ORS-5-like)	Space sensor parameters VMF tracking Aperture size: 0.3-0.5m Integration time: 1-5 s

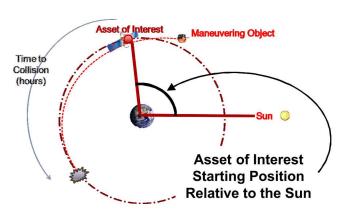
Other Parameters, Assumptions and Constraints Mational Laboratories


- Maneuvering Object
 - Diameter (0.25, 0.5, 1.0 m)
 - Diffuse aluminum sphere
 - 18% reflective
 - Starting position
 - Within the vicinity of the Asset of Interest
 - Forward movement only

- Conjunction Event
 - Only considered co-orbital in plane
 - Time to Conjunction (7 and 15 hours)
- Other Factors
 - Day of year, time of day
 - Terrestrial weather not included.
 - Cost to be considered in future study
- Sensitivity Calculations Based on
 - Electro-optical sensor parameters
 - Optical telescope parameters
 - Relative motion of sensor and object
 - Velocity-matched filter processing

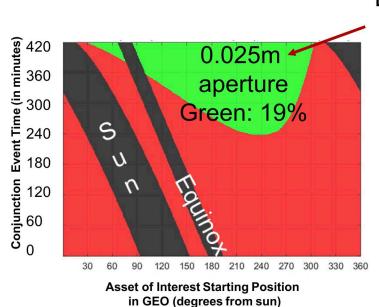
Understanding the Plots: Look for the Green

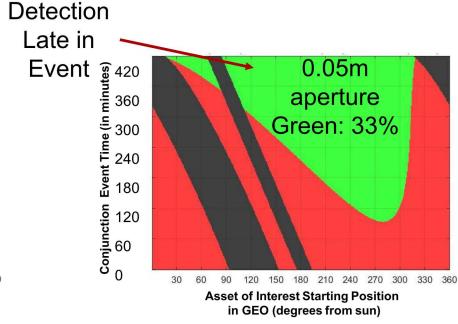
GREEN


Detection above threshold

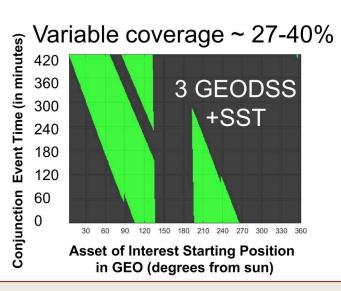
RED

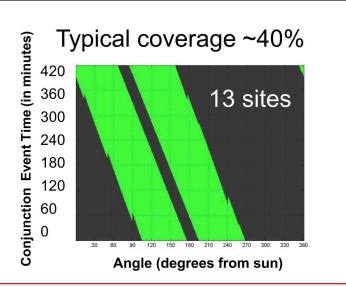
Sub-threshold - no Detection


BLACK


- Blocked by earth
- Within solar exclusion region
- Object in shadow (near equinox)

Findings: Sensors Onboard Asset of Interest

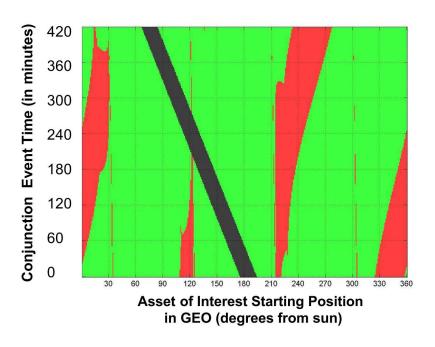


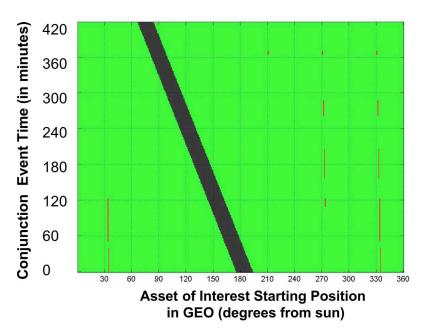

Sensor onboard
Asset of Interest
can provide
limited detection
late in the
conjunction event

%Coverage	Maneuvering Object Diameter (m)			
Aperture	0.25	0.50	1.00	
Diameter (m)	0.25	0.50	1.00	
0.025	16.5%	49.9%	69.1%	
0.05	29.6%	61.8%	73.9%	
0.1	49.9%	69.1%	78.0%	

Findings: Ground-Based Telescope Networks

Ground-based telescopes limited to <45% coverage of potential conjunction events

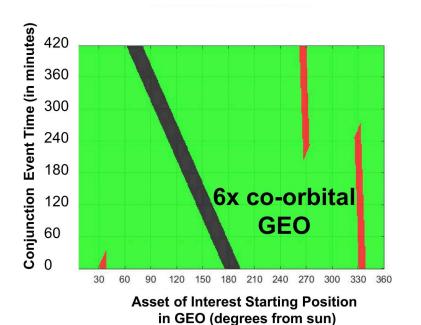

Performance against 0.25 m diameter object

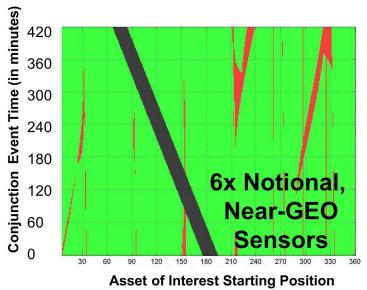

Aperture Size	Integration Time	Percent	
(m)	(s)	Coverage	Network
1.0	5s	40%	13 sites
1.0	1s	21%	13 sites

Larger apertures and longer integration times improve coverage especially against smallest (0.25 m) object size

Findings: Notional GEO Constellation Size Matters

4x co-orbital GEO satellites 78% Green


6x co-orbital GEO satellites 94% Green


0.5m aperture
3s integration time
0.25m maneuvering object

High detection capability achieved with dedicated constellations of sensors with velocity matched filters (synthetic tracking)

Findings: Notional Near-GEO Sensor Constellations

Asset of Interest Starting Position in GEO (degrees from sun)

High spatial-temporal coverage of 0.25 m maneuvering object conjunction event can be achieved with a constellation of sensors

Satellites in Constellation	Sensor Aperture (m)	Integration Time (s)	Coverage
4	0.3	5	58.3%
4	0.5	5	83.6%
6	0.3	5	82.7%
6	0.5	5	93.6%
6	0.5	2	87.2%

Summary of Findings

- Small-aperture sensors on Asset of Interest
 - Not sufficient by themselves
 - Cannot monitor entire maneuver/conjunction event
 - Mostly useful late in conjunction event
- Ground-based telescope networks
 - Not sufficient by themselves daylight/solar outage limits coverage
 - Can provide best combination of sensitivity and search rate
 - 1m diameter or larger apertures required to detect 0.25m objects
 - Relatively low-cost, easily maintained back-up for space-based sensors
- Near-GEO sensor constellation
 - 6 satellite constellations are sufficient by themselves
 - 0.5m aperture required for highest sensitivity
 - Dedicated co-orbital GEO or Near-GEO sensors work best

Conclusions and Recommendations

- Methodology for modeling SSA architecture for orbital maneuvers and conjunctions events demonstrated
- Academic study useful for exploring sensor trade space—findings help to
 - Limit consideration of low performing options
 - Encourage further study of high performing options
- Potential follow-on studies:
 - Analyze more combinations of event times and maneuvering object size
 - Study effect of search rate on architecture and detection/tracking
 - Include cost analyses as part of architecture trade space