
Improving Uintah’s Scalability Through the Use of Portable
Kokkos-Based Data Parallel Tasks

John K. Holmen
Scienti�c Computing and Imaging Institute

University of Utah
Salt Lake City, Utah 84112

jholmen@sci.utah.edu

Alan Humphrey
Scienti�c Computing and Imaging Institute

University of Utah
Salt Lake City, Utah 84112
ahumphrey@sci.utah.edu

Daniel Sunderland
Sandia National Laboratories

PO Box 5800 / MS 1418
Albuquerque, New Mexico 87175

dsunder@sandia.gov

Martin Berzins
Scienti�c Computing and Imaging Institute

University of Utah
Salt Lake City, Utah 84112

mb@sci.utah.edu

ABSTRACT
�e University of Utah’s Carbon Capture Multidisciplinary Simu-
lation Center (CCMSC) is using the Uintah Computational Frame-
work to predict performance of a 1000 MWe ultra-supercritical
clean coal boiler. �e center aims to utilize the Intel Xeon Phi-based
DOE systems, �eta and Aurora, through the Aurora Early Science
Program by using the Kokkos C++ library to enable node-level
performance portability. �is paper describes infrastructure ad-
vancements and portability improvements made possible by the
integration of Kokkos within Uintah. �is integration marks a step
towards consolidating Uintah’s MPI+P�reads and MPI+CUDA hy-
brid parallelism approaches into a single MPI+Kokkos approach.
Scalability results are presented that compare serial and data paral-
lel task execution models for a challenging radiative heat transfer
calculation, central to the center’s predictive boiler simulations.
�ese results demonstrate both good strong-scaling characteristics
to 256 Knights Landing (KNL) processors on the NSF Stampede
system, and show the KNL-based calculation to compete with prior
GPU-based results for the same calculation.

KEYWORDS
Hybrid Parallelism, Kokkos, Knights Landing, Many-Core, MIC,
Parallel, Portability, Radiation Modeling, Reverse Monte-Carlo Ray
Tracing, Scalability, Stampede, Uintah, Xeon Phi

1 INTRODUCTION
�is study is motivated by the University of Utah’s participation in
the DOE/NNSA’s Predictive Science Academic Alliance Program
(PSAAP) II initiative. For this project, the University of Utah’s
Carbon Capture Multidisciplinary Simulation Center (CCMSC) has
been using large-scale simulation to predict performance of a next-
generation, 1000 MWe ultra-supercritical clean coal boiler. �ese
predictions support the design and evaluation of an existing boiler,
which has been developed by Alstom (GE) Power.

CCMSC predictive boiler simulations have been made possible
through the use of the Uintah Computational Framework [4] and
large high-performance computing (HPC) systems such as the NSF
Stampede system and the DOE Mira and Titan systems. Looking
ahead, the next phase of simulations will utilize the DOE �eta

[10] and Aurora [9] systems through participation in the Aurora
Early Science Program. �eta is a 9.65 peta�op many-core system
featuring 3,624 nodes based on Intel’s second-generation Xeon Phi
processor, Knights Landing. Aurora is a next-generation many-
core system set to feature upwards of 50,000 nodes based on Intel’s
forthcoming third-generation Xeon Phi processor, Knights Hill.

�e Intel Xeon Phi is a many-core device based on Intel’s Many
Integrated Core (MIC) Architecture [21, 32]. �is architecture de-
livers high degrees of parallelism by presently o�ering up to 72 out-
of-order cores featuring 4-way hyper-threading and 512-bit SIMD
instructions. �e latest generation Xeon Phi processor, Knights
Landing, is binary compatible with past generations of Intel proces-
sors. �ough easy to start using, the Xeon Phi poses new challenges
for Uintah by requiring greater a�ention to data movement, thread-
scalability, and vectorization to achieve performance. Early studies
exploring Uintah’s performance on �rst-generation Xeon Phi co-
processors, Knights Corner, have helped demonstrate some of these
challenges [14, 27, 28].

For GPU-based systems, NVIDIA CUDA-based data parallel tasks
have been introduced within Uintah [17, 18]. However, Uintah’s
existing serial tasks are still being used for MIC-based HPC systems.
�is poses challenges due to the large core/thread counts o�ered
by the Xeon Phi. �ough suitable for CPU-based HPC systems,
Uintah’s parallel execution of serial tasks within an MPI process is
not viable for large-scale simulations on MIC-based HPC systems.

�is challenge is addressed by using the Kokkos C++ library [8]
within Uintah’s infrastructure. Within an MPI process, the under-
lying Kokkos back-ends allow data parallel tasks to run on CPU-,
GPU-, and MIC-based architectures. For MIC-based systems, this
has helped overcome a scalability barrier pertaining to strict do-
main decomposition requirements. �is has allowed us to achieve
good strong-scaling characteristics to 256 Knights Landing proces-
sors with Uintah’s reverse Monte-Carlo ray tracing-based radiation
model, more on which will be discussed in Section 3.

�e remainder of this paper is structured as follows. Section 2
provides an overview of the Uintah Computational Framework. Sec-
tion 3 introduces Uintah’s reverse Monte-Carlo ray tracing-based
radiation model, RMCRT. Section 4 describes the integration of the
Kokkos C++ library within Uintah. Section 5 details the evolution
of Uintah’s MPI+X hybrid parallelism approach. Section 6 presents

strong-scaling results gathered on Knights Landing processors in
the NFS Stampede system. Section 7 outlines related work and
section 8 concludes this paper.

2 THE UINTAH COMPUTATIONAL
FRAMEWORK

�e open-source (MIT License) Uintah Computational Framework
consists of a set of simulation components and libraries enabling the
simulation and analysis of complex chemical and physical reactions.
�ese reactions are modeled by solving partial di�erential equations
on structured adaptive mesh re�nement grids. �is framework was
originally developed as part of the University of Utah’s Center
for the Simulation of Accidental Fires and Explosions (C-SAFE)
initiative in 1997. Since then, Uintah has been widely ported and
used to develop novel techniques for understanding a broad set of
�uid-structure interaction problems. [3]

�ough small-scale simulations are supported, Uintah empha-
sizes scalability across some of the largest HPC systems available
today. Recent studies have demonstrated good scaling characteris-
tics to 96K, 262K, and 512K CPU cores on the NSF Stampede, DOE
Titan, and DOE Mira systems, respectively [3, 16, 27]. For Intel
Xeon Phi-based systems, recent studies have demonstrated good
strong-scaling characteristics to 16 Knights Corner coprocessors on
the NSF Stampede system [28]. For the target application, recent
studies have demonstrated good strong-scaling characteristics to
262K CPU cores [16] and 16K GPUs [18] on the DOE Titan sys-
tem. �e work presented here extends this by demonstrating good
strong-scaling characteristics to 256 Knights Landing processors
on the NSF Stampede system.

Released in May of 2017, Uintah release 2.0.0 features four pri-
mary simulation components:

• ARCHES: �is component targets the simulation of tur-
bulent reacting �ows with participating media radiation,
more on which will be discussed in Section 3.

• ICE: �is component targets the simulation of both low-
speed and high-speed compressible �ows.

• MPM: �is component targets the simulation of multi-
material, particle-based structural mechanics.

• MPM-ICE: �is component corresponds to the combination
of the ICE and MPM components for the simulation of �uid-
structure interactions.

3 RADIATION MODELINGWITHIN UINTAH
�e CCMSC uses the ARCHES turbulent combustion simulation
component for its predictive boiler simulations. In these simula-
tions, radiation is the dominant mode of heat transfer and consumes
a majority of compute time per timestep. At large-scale, additional
simulation challenges are faced due to the global, all-to-all nature
of radiation [16].

ARCHES is a three-dimensional Large Eddy Simulation (LES)
code described further in [34]. �is code leverages a low-Mach
number (M <0.3), variable density formulation to model heat, mass,
and momentum transport in reacting �ows. ARCHES was initially
developed using the parallel discrete ordinates method [23] and
P1 approximation [24] to solve the radiative transport equation.

�ough scalable, this approach resulted in solution of the associ-
ated sparse linear systems being the main computational cost for
reacting �ow simulations.

To reduce this cost, a�ention has been given to potentially more
e�cient reverse Monte-Carlo ray tracing (RMCRT) methods [19,
35]. �is has led to the development of a stand-alone RMCRT-
based radiation model suitable for use within Uintah’s simulation
components [17]. With Monte-Carlo ray tracing methods (forward
or backward), two approaches are considered to parallelize the
computation for structured grids: (1) parallelize by patch-based
domain decomposition with local information only and pass ray
information at patch boundaries via MPI, and (2) parallelize by
patch-based domain decomposition with global information and
reconstruct the domain for the quantities of interest on each node
by passing domain information via MPI [16]. For the CCMSC’s
predictive boiler simulations, the �rst approach becomes intractable
due to the ray counts used. �ese ray counts are orders of magnitude
larger than the ray counts used to produce results presented within
this paper, which were between 209.5 million and 13.5 billion rays.

In the second approach, the primary di�culty is e�ciently con-
structing the global information for millions of cells in a spatially
decomposed (patch-based) domain. With this approach, an all-to-
all communication phase is incurred for the radiative properties
across the computational domain. Uintah has adopted the second
RMCRT parallelization approach, providing global reconstruction
of the radiative properties on each node to enable local ray trac-
ing. �is model has since been (1) extended to support adaptive
mesh re�nement (AMR) to achieve scalability by reducing com-
munication volume and computational complexity [16], (2) further
adapted to run on GPUs at large-scale using this novel AMR ap-
proach [18], and (3) used to explore performance on the Knights
Corner coprocessor [14]. Uintah o�ers multiple RMCRT-based ra-
diation modeling approaches, ranging from a single-level approach
to the AMR approach used in [16] and [18].

RMCRT uses random walks to model radiative heat transfer by
tracing rays in reverse, towards their origin. During traversal, the
amount of incoming radiative intensity absorbed by the emi�er is
computed to aid in solving the radiative transport equation. Figure
1 depicts how a ray is traced backwards from S to the emi�er, E,
for single-level RMCRT in a structured grid. Figure 2 depicts how
ray traversal might be accomplished when using a 3-level mesh
coarsening scheme.

RMCRT lends itself to scalable parallelism by allowing multiple
rays to be traced simultaneously at any given cell and/or timestep.
Additionally, RMCRT eliminates the need to trace rays that may
never reach an origin. However, RMCRT does not eliminate the
global, all-to-all nature of radiation. Within Uintah, RMCRT has
been parallelized by spatially decomposing the computational do-
main into patches and tracing rays within a given patch to termi-
nation.

As new architectures are introduced within HPC systems, it is
important for these RMCRT-based radiation modeling approaches
to be portable. Uintah presently maintains separate CPU- and GPU-
based implementations. However, this is cumbersome as it requires
radiation model changes to be updated across two implementa-
tions. �e introduction of a Kokkos-based implementation marks

2

Figure 1: Two-dimensional outline of reverse Monte-Carlo
ray tracing for the single-level approach. [17].

Figure 2: Two-dimensional outline of reverse Monte-Carlo
ray tracing for a 3-levelmesh re�nement approach, illustrat-
ing how rays from a �ne-level patch (right) may be traced
across a coarsened domain (le�) [16].

a step towards consolidating RMCRT-based radiation modeling
approaches to a single implementation.

�e results presented within this paper utilized the following
implementations of RMCRT:

• Single-Level RMCRT:CPU
• Single-Level RMCRT:Kokkos
• 2-Level RMCRT:CPU
• 2-Level RMCRT:GPU
• 2-Level RMCRT:Kokkos

4 INCREMENTAL INTEGRATION OF KOKKOS
�e Kokkos C++ library [8] is being used to avoid possible code
bifurcation when extending Uintah to accelerators and many-core
devices. Kokkos reduces the gap between development time and
our ability to run on newly introduced systems by enabling per-
formance portability. Here, performance portability refers to the
maximization of portability across diverse architectures while striv-
ing to achieve performance comparable to hand-tuned code. For
these advantages, Kokkos is believed to play a critical role in prepar-
ing Uintah for future HPC systems.

Developed by Sandia National Laboratories, Kokkos allows de-
velopers to write portable, thread-scalable code optimized for CPU-,
GPU-, or MIC-based architectures. �is library provides devel-
opers with data structures and architecture-aware parallel algo-
rithms (e.g. parallel for, parallel reduce, and parallel scan). When
using these tools, Kokkos selects the memory layout and iteration
scheme to utilize for a target architecture at compile time. �is is en-
abled through various back-ends, which currently support NVIDIA
CUDA, OpenMP, and P�reads programming models. Detailed
usage information and demonstrations of performance portability
can be found within [7].

As a large existing code base, Uintah must be extended incre-
mentally. An overview of how this may be accomplished has been
provided in [36]. To begin our integration, the �rst step was to
incorporate support for Kokkos parallel loops within Uintah’s in-
frastructure. �is starting point was chosen to allow application
developers to refactor code while simultaneously incorporating
Kokkos further within Uintah’s infrastructure. Results from early
refactoring e�orts [30, 36] have been encouraging, motivating our
wider-spread integration of Kokkos. Next steps presently underway
include the integration of Kokkos parallel loops within ARCHES, ad-
dition of support for Kokkos data structures, and further re�nement
of Uintah’s hybrid parallelism approach.

5 EVOLUTION OF UINTAH’S HYBRID
PARALLELISM APPROACH

Introduced within [26], the multi-threaded MPI scheduler marks
Uintah’s adoption of hybrid parallelism. Here, hybrid parallelism
refers to the MPI+X programming model, where MPI is used for
distributed memory parallelism and X (e.g. OpenMP, P�reads,
etc) is used for shared memory parallelism. �e work in [26] used
MPI+P�reads to overcome scalability barriers imposed by mem-
ory footprint limitations on the NSF Kraken system and the DOE
Jaguar system. In a similar sense, MIC-speci�c scalability barriers
have necessitated the improvement of Uintah’s hybrid parallelism
approach.

Figure 3 presents an overview of Uintah’s multi-threaded MPI
scheduler. Within an MPI process, this scheduler uses several
P�reads-based worker threads to execute tasks in parallel. For
GPU-based architectures, worker threads execute NVIDIA CUDA-
based data parallel tasks. For CPU-based architectures, worker
threads execute serial tasks. For MIC-based architectures, worker
threads can be used to execute Uintah’s existing serial tasks. How-
ever, this is not conducive to scalability on many-core systems as
will be demonstrated in Section 6.

With past CPU-based simulations, the largest core/thread counts
that we have encountered within a node were 16 cores featuring 4
hardware threads on the DOE Mira system. �e NSF Stampede sys-
tem exceeds this by o�ering 68 cores featuring 4 hardware threads
on a Knights Landing node. �ough serial tasks have suited CPU-
based architectures well, they are undesirable for many-core sys-
tems given this increase in core/thread counts. �is holds due to the
associated domain decomposition requirements. To utilize more
worker threads within an MPI process, the computational domain
must be subdivided to create an additional patches for each new
worker thread.

3

N
et

w
or

kCPU
Data

Warehouse

GPU
Data

Warehouse

CPU Task Queues

Task
Graph

GPU Task Queues

H2D
Streams

D2H
Streams

CPU Core
Running Serial Task

CPU Core
Running Serial Task

GPU
Running Data Parallel Task

PUT

GET

PUT

GET

PUT

GET

CPU Core
Running Serial Task

GPU
Running Data Parallel Task

PUT

GET

PUT

GET

GPU Ready Tasks

GPU
Kernels

CPU
Threads

Shared Scheduler Objects (Host Memory)

Co
m

pl
et

ed

Ta
sk

s

CPU Ready Tasks

MPI Data Ready

GPU-Enabled Tasks

Internal Ready Tasks

MPI Send

MPI Recv

MPI Send

MPI Recv

MPI Send

MPI Recv

Figure 3: Uintah’s multi-threaded MPI scheduler.

KNL Cores
Running Data Parallel Task

16 GB
MCDRAM

O
pe

nM
P

Th
re

ad
s

PUT

GET

Figure 4: AKokkos-based data parallel task, illustrating how
a Knights Landing processor may be used at the node-level.

To address this scalability barrier in a portable manner, Uin-
tah’s dynamic MPI scheduler [29] has been extended to support
MPI+Kokkos. �e work in [29] introduced an MPI-only scheduler
supporting asynchronous, out-of-order task execution to be�er
overlap communication and computation. �is extension has en-
abled the serial execution of Kokkos-based data parallel tasks within
an MPI process. Figure 4 demonstrates how a Kokkos-based data
parallel task may be used when running on a Knights Landing node.

�e serial execution of Kokkos-based data parallel tasks elimi-
nates the need to create an additional patch for each thread used
within an MPI process. �is o�ers greater control over patch sizes
when balancing local and global communication at scale. Addition-
ally, these tasks o�er a potential to improve node-level performance
through be�er utilization of a microarchitecture. For the Knights
Landing processor, data parallel tasks allow per-patch work to be
computed cooperatively using, for example, all hardware threads
within a pair of cores, which share an L2 cache.

�e preliminary RMCRT:Kokkos implementations utilized within
this paper encapsulated the existing RMCRT:CPU tasks within a
C++ functor to enable the use of Kokkos parallel algorithms. Once

encapsulated, Uintah utilizes the OpenMP Kokkos back-end to en-
able data parallel tasks. As opposed to Uintah’s worker thread sched-
uler, per-thread work is now scheduled dynamically by OpenMP.

6 STRONG-SCALING STUDIES
�e strong-scaling studies presented within this section solve the
Burns and Christon benchmark problem described in [5] and used
for recent CPU- and GPU-based studies in [16] and [18], respec-
tively. �is problem exercises the radiation physics needed for
predictive boiler simulations and the main features of Uintah’s
AMR support. Speci�cally, this problem calculates the radiative-
�ux divergence for each cell within the computational domain. An
accuracy analysis verifying Uintah’s RMCRT-based radiation model
against the Burns and Christon benchmark problem can be found
in [20]. More details on Uintah’s RMCRT-based radiation model
can be found in [16].

�e results presented within this section utilized the following
implementations of RMCRT:

• Single-Level RMCRT:CPU : �is is an existing implementa-
tion of single-level RMCRT wri�en to use serial tasks.

• Single-Level RMCRT:Kokkos: �is is a preliminary imple-
mentation of single-level RMCRT wri�en to use Kokkos-
based data parallel tasks.

• 2-Level RMCRT:CPU : �is is an existing implementation of
2-level RMCRT wri�en to use serial tasks.

• 2-Level RMCRT:GPU : �is is an existing implementation of
2-level RMCRT wri�en to use NVIDIA CUDA-based data
parallel tasks.

• 2-Level RMCRT:Kokkos: �is is a preliminary implementa-
tion of 2-level RMCRT wri�en to use Kokkos-based data
parallel tasks.

Aside from domain decomposition subtleties discussed later in
this section, experiments have been run as in [16] and [18] with
results averaged over 7 consecutive timesteps. �e absorption coef-
�cient was initialized per [5] with a uniform temperature �eld. For
single-level RMCRT simulations, 100 rays were used to compute the
radiative-�ux divergence for each cell. For 2-level RMCRT simula-
tions, 100 rays were used to compute the radiative-�ux divergence
for each cell on the �ne-level.

With the exception of GPU-based results in Figure 7, these results
have been gathered on the KNL Upgrade of the NSF Stampede
system [37]. �is portion of Stampede features the Intel Xeon Phi
7250 Knights Landing processor and o�ers a variety of memory
and cluster mode con�gurations. �ese studies were conducted on
Knights Landing processors con�gured for Cache-�adrant mode.
With this in mind, each problem size explored �ts within the 16 GB
memory footprint of MCDRAM.

�ese studies emphasize strong-scaling due to the �xed target
problem that the CCMSC aims to simulate at large-scale. As such,
weak-scaling is not addressed due to the nature of communication
growth for this problem, which has been characterized in [16].
Speci�cally, communication grows quadratically as O (n2) with
respect to the problem size, where n corresponds to the number of
communicating MPI processes.

Here, strong-scaling refers to the subdivision of a �xed size
problem to support increasing node counts. A �xed number of

4

 0.1

 1

 10

 100

 1000

1 2 4 8 16 32 64 128 256

Kokkos MPI Scheduler
1 MPI Process and 256 Threads per Knights Landing
1 Patch per MPI Process
100 Rays per Cell
Averaged over 7 Timesteps

M
e
a
n
 T

im
e
 P

e
r

T
im

e
st

e
p
 (

s)

Knights Landings

1-Level RMCRT - Strong Scaling
 Burns and Christon Benchmark

TACC-Stampede System

Ideal

5123

2563

1283

Figure 5: Strong-scaling results to 256 nodes for single-
level RMCRT:Kokkoswith data parallel tasks on Stampede’s
Knights Landing processors.

patches was maintained per node and their size reduced to create
additional patches for additional nodes. For simulations using serial
tasks, patches were sized to enforce 1 patch per hardware thread.
For simulations using data parallel tasks, patches were sized to
enforce 1 patch per MPI process unless noted otherwise. For 2-
level RMCRT simulations, coarse-level patch sizes were �xed and
�ne-level patch sizes were reduced as described above.

As a whole, simulations were launched using 1 MPI process
per Knights Landing node. Within an MPI process, threads were
launched in multiples of 64 to ease domain decomposition. For
simulations using serial tasks, P�reads were launched without
thread a�nity. For simulations using data parallel tasks, OpenMP
threads were launched via Kokkos with default a�nity se�ings.

Figure 5 depicts strong-scaling of single-level RMCRT:Kokkos.
�is implementation features serial execution of data parallel tasks
within an MPI process. �is �gure presents results for three prob-
lem sizes (1283, 2563, and 5123 cells). For each problem size, MPI
processes were launched with 256 threads to utilize 4 hardware
threads per core.

Figure 6 depicts strong-scaling of single-level RMCRT:CPU. �is
implementation features parallel execution of serial tasks within an
MPI process. �is �gure presents results for three thread counts (64,
128, and 256 threads per MPI process to utilize 1, 2, and 4 hardware
threads per core, respectively). For each thread count, a problem
size of 1283 cells was utilized. To enable comparisons, this plot also
features single-level RMCRT:Kokkos results from Figure 5 for the
corresponding problem size and node counts.

Figure 7 depicts strong-scaling for 2-level RMCRT:CPU. �is
implementation features parallel execution of serial tasks within
an MPI process. �is �gure presents results for three problem sizes
(1283, 2563, and 5123 cells on the �ne mesh with 323, 643, and 1283

cells on the coarse mesh, respectively). For each problem size, MPI
processes were launched with 256 threads to utilize 4 hardware
threads per core. To enable comparisons, this plot also features
prior 2-level RMCRT:GPU results gathered on the DOE NVIDIA
Tesla K20X-based Titan system for the corresponding problem sizes

 0.1

 1

 10

 100

 1000

1 2 4 8 16 32 64

RMCRT:CPU: Multi-Threaded MPI Scheduler
RMCRT:Kokkos: Kokkos MPI Scheduler
1 MPI Process and 64-256 Threads per Knights Landing
RMCRT:CPU: 1 Patch per H/W Thread
RMCRT:Kokkos: 1 Patch per MPI Process
1283 Cells
100 Rays per Cell
Averaged over 7 Timesteps

M
e
a
n
 T

im
e
 P

e
r

T
im

e
st

e
p
 (

s)

Knights Landings

1-Level RMCRT - Strong Scaling
 Burns and Christon Benchmark

TACC-Stampede System

Ideal

1 H/W Thread(s) per Core (RMCRT:CPU)

2 H/W Thread(s) per Core (RMCRT:CPU)

4 H/W Thread(s) per Core (RMCRT:CPU)

4 H/W Thread(s) per Core (RMCRT:Kokkos)

Figure 6: Strong-scaling results to 64 nodes for single-
level RMCRT:CPU with serial tasks and single-level RM-
CRT:Kokkos with data parallel tasks on Stampede’s Knights
Landing processors.

 0.1

 1

 10

 100

 1000

1 2 4 8 16 32 64 128 256

RMCRT:CPU: Multi-Threaded MPI Scheduler
RMCRT:GPU: Unified Scheduler
1 MPI Process per Node
100 Rays per Cell
Averaged over 7 Timesteps
Fine-Level Halo: [4,4,4]

M
e
a
n
 T

im
e
 P

e
r

T
im

e
st

e
p
 (

s)

Nodes

2-Level Adaptive RMCRT - Strong Scaling
 Burns and Christon Benchmark

OLCF-Titan System
TACC-Stampede System

Ideal

L-1: 5123, L-0: 1283 (Stampede:KNL)

L-1: 2563, L-0: 643 (Titan:GPU)

L-1: 2563, L-0: 643 (Stampede:KNL)

L-1: 1283, L-0: 323 (Titan:GPU)

L-1: 1283, L-0: 323 (Stampede:KNL)

Figure 7: Strong-scaling results to 256 nodes for 2-level RM-
CRT:CPU with serial tasks on Stampede’s Knights Landing
processors and 2-level RMCRT:GPUwith data parallel tasks
on Titan’s K20X GPUs.

and node counts. More details on 2-level RMCRT:GPU can be found
in [18].

Figure 8 depicts strong-scaling for 2-level RMCRT:Kokkos. �is
implementation features serial execution of data parallel tasks
within an MPI process. �is �gure presents results for two problem
sizes (1283 and 2563 cells on the �ne mesh with 323 and 1283 cells
on the coarse mesh, respectively). For each problem size, MPI pro-
cesses were launched with 256 threads to utilize 4 hardware threads
per core. To enable comparisons, this plot also features a portion
of 2-level RMCRT:CPU results from Figure 7 for the corresponding
problem sizes and node counts. For 2-level RMCRT:Kokkos, �ne-
level patches were sized to enforce 8 �ne-level patches per MPI
process.

5

 0.1

 1

 10

 100

 1000

1 2 4 8 16 32 64

RMCRT:CPU: Multi-Threaded MPI Scheduler
RMCRT:Kokkos: Kokkos MPI Scheduler
1 MPI Process and 256 Threads per Knights Landing
RMCRT:CPU: 1 Patch per H/W Thread
RMCRT:Kokkos: 8 Patches per MPI Process
100 Rays per Cell
Averaged over 7 Timesteps
Fine-Level Halo: [4,4,4]

M
e
a
n
 T

im
e
 P

e
r

T
im

e
st

e
p
 (

s)

Knights Landings

2-Level Adaptive RMCRT - Strong Scaling
 Burns and Christon Benchmark

TACC-Stampede System

Ideal

L-1: 2563, L-0: 643 (RMCRT:CPU)

L-1: 2563, L-0: 643 (RMCRT:Kokkos)

L-1: 1283, L-0: 323 (RMCRT:CPU)

L-1: 1283, L-0: 323 (RMCRT:Kokkos)

Figure 8: Strong-scaling results to 64 nodes for 2-level
RMCRT:Kokkos with data parallel tasks and 2-level RM-
CRT:CPU with serial tasks on Stampede’s Knights Landing
processors.

Results presented within Figure 6 demonstrate that as more
hardware threads were utilized per core, node-level performance
increased at the expense of reductions in strong-scaling e�ciency.
�is is a�ributed to the strict domain decomposition requirements
imposed by the serial task execution model. �ough it improved
node-level performance, the utilization of more threads per core
required immediate reductions in patch size to accommodate ad-
ditional threads within an MPI process. �is expedited the break-
down of scalability, which is a�ributed to per-patch computation
no longer su�cing to hide communication.

While this approach has suited CPU-based architectures well
[16, 26], these observations suggest that serial tasks are undesirable
for large-scale simulations on many-core systems. Supporting this
conclusion, single-level RMCRT:Kokkos results included within
Figure 6 suggest that we have overcome the scalability barrier posed
by strict domain decomposition requirements through the use of
data parallel tasks. �is has been achieved with an accompanying
improvement in node-level performance, which is believed to be
a�ributed to improvements in microarchitecture utilization enabled
via data parallel tasks.

Comparing results presented within Figure 5 to those within
Figure 7, single-level RMCRT:Kokkos exhibited strong-scaling char-
acteristics comparable to those of 2-level RMCRT:CPU. �is is en-
couraging as the AMR approach utilized within 2-level RMCRT:CPU
enabled strong-scaling characteristics to 262K CPU cores on the
DOE Titan system that were previously una�ainable via single-level
RMCRT:CPU [16]. Further, node-level performance on Stampede’s
Knights Landing processors outperformed that of Titan’s K20X
GPUs. �ough the K20X is dated, this is encouraging as Titan is
one of the largest systems that we currently utilize. For upcoming
�eta and Aurora simulations, this suggests a potential for improv-
ing boiler performance predictions through the use of �ner mesh
resolutions and/or more simulated time.

7 RELATEDWORK
Uintah is one of many computational frameworks supporting struc-
tured adaptive mesh re�nement-based applications. MPI+X is com-
monly used by these frameworks and other codes emphasizing
large-scale simulations. MPI+OpenMP is o�en used for CPU- and
MIC-based architectures. MPI+CUDA is o�en used for GPU-based
architectures. An evaluation of these and other MPI+X variants
can be found in [25]. Examples of similar frameworks with applica-
tions utilizing MPI+OpenMP include BoxLib [38] and Cactus [11].
A survey of representative frameworks, including Uintah, can be
found in [6].

Kokkos is one of several libraries aiming to address performance
portability with a�ention to memory access pa�erns. Examples of
similar libraries include HEMI [12] and RAJA [15], developed by
NVIDIA and Lawrence Livermore National Lab, respectively. At
Sandia National Labs, Kokkos has been integrated within Trilinos
[13] and used in codes such as Albany [33] and LAMMPS [31].
Uintah is an early adopter of the MPI+Kokkos hybrid parallelism
approach. An analysis of performance portability for Uintah and
similar asynchronous many-task runtime systems (Charm++ [22]
and Legion [1]) can be found in [2].

8 CONCLUSIONS AND FUTUREWORK
�is work has helped advance Uintah’s preparedness for large-
scale simulations on many-core systems. Perhaps more important,
it has improved our readiness for forthcoming simulations on the
DOE �eta and Aurora systems. Such readiness promotes more
productive use of our Aurora Early Science Program allocation
when predicting boiler performance for the PSAAP II project.

�ese advancements have been made possible by our integration
of Kokkos within Uintah. �ough already supported for GPU-
based architectures, Kokkos back-ends enable data parallel tasks for
CPU- and MIC-based architectures. �ese data parallel tasks have
helped overcome a MIC-speci�c scalability barrier pertaining to
strict domain decomposition requirements. �e resulting �exibility
in domain decomposition allows Uintah to accommodate larger
thread counts within an MPI process and o�ers greater control over
the balance between local and global communication. �is has been
accomplished by allowing MPI processes to utilize fewer, yet larger,
patches, improving our ability to hide communication.

�ese results o�er encouragement as we prepare to incorporate
support for parallel execution of Kokkos-based data parallel tasks
within an MPI process. By adopting the MPI+Kokkos hybrid par-
allelism approach, we aim to increase Uintah’s preparedness for
a wider-range of HPC systems (e.g. the upcoming DOE NVIDIA
Volta-based Summit system). �is continued integration of Kokkos
fosters be�er utilization of a node at the microarchitecture level
while avoiding possible code bifurcation.

ACKNOWLEDGMENTS
�is material is based upon work supported by the Department of
Energy, National Nuclear Security Administration, under Award
Number(s) DE-NA0002375. An award of computing time was pro-
vided by the NSF Extreme Science and Engineering Discovery
Environment (XSEDE) program. �is research used resources of
the Texas Advanced Computing Center, under Award Number(s)

6

MCA08X004 - “Resilience and Scalability of the Uintah So�ware”.
We would like to thank TACC for their support through the Stam-
pede Knights Landing Early Science Program, with special thanks
to the administrators for making this research possible. Addition-
ally, we would like to thank all of those involved with the CCMSC
and Uintah past and present.

REFERENCES
[1] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. 2012. Legion: Expressing

locality and independence with logical regions. In Proceedings of the international
conference on high performance computing, networking, storage and analysis. IEEE
Computer Society Press, 66.

[2] J. Benne�, R. Clay, G. Baker, M. Gamell, D. Hollman, S. Knight, H. Kolla, G.
Sjaardema, N. Sla�engren, K. Teranishi, J. Wilke, M. Be�encourt, S. Bova, K.
Franko, P. Lin, R. Grant, S. Hammond, S. Olivier, L. Kale, N. Jain, E. Mikida, A.
Aiken, M. Bauer, W. Lee, E. Slaughter, S. Treichler, M. Berzins, T. Harman, A.
Humphrey, J. Schmidt, D. Sunderland, P. McCormick, S. Gutierrez, M. Schulz,
A. Bhatele, D. Boehme, P. Bremer, and T. Gamblin. 2015. ASC ATDM level 2
milestone #5325: Asynchronous many-task runtime system analysis and assessment
for next generation platforms. Technical Report. Sandia National Laboratories.

[3] M. Berzins, J. Beckvermit, T. Harman, A. Bezdjian, A. Humphrey, Q. Meng, J.
Schmidt, , and C. Wight. 2016. Extending the Uintah Framework through the
Petascale Modeling of Detonation in Arrays of High Explosive Devices. SIAM
Journal on Scienti�c Computing 38, 5 (2016), 101–122.

[4] M. Berzins, J. Luitjens, Q. Meng, T. Harman, C.A. Wight, and J.R. Peterson. 2010.
Uintah: A Scalable Framework for Hazard Analysis. In Proceedings of the 2010
TeraGrid Conference. ACM, 3.

[5] S.P. Burns and M.A. Christon. 1997. Spatial domain-based parallelism in large-
scale, participating-media, radiative transport applications. Numerical Heat
Transfer 31, 4 (1997), 401–421.

[6] A. Dubey, A. Almgren, John Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella, D.
Graves, M. Lijewski, F. Lö�er, B. O�Shea, E. Schne�er, B. Van Straalen, and K.
Weide. 2014. A survey of high level frameworks in block-structured adaptive
mesh re�nement packages. J. Parallel and Distrib. Comput. (2014).

[7] H. C. Edwards, C. R. Tro�, and J. Amelang. 2015. Kokkos Tutorials. (2015).
h�ps://github.com/kokkos/kokkos-tutorials.

[8] H. C. Edwards, C. R. Tro�, and D. Sunderland. 2014. Kokkos: Enabling manycore
performance portability through polymorphic memory access pa�erns. J. Parallel
and Distrib. Comput. 74, 12 (2014), 3202 – 3216.

[9] Argonne Leadership Computing Facility. 2017. Aurora Web Page. (2017).
h�p://aurora.alcf.anl.gov/.

[10] Argonne Leadership Computing Facility. 2017. �eta Web Page. (2017).
h�ps://www.alcf.anl.gov/theta.

[11] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and J. Shalf.
2003. �e Cactus Framework and Toolkit: Design and Applications. Springer Berlin
Heidelberg, Berlin, Heidelberg, 197–227.

[12] M. Harris. 2017. Hemi: Simpler, More Portable CUDA C++. (2017).
h�p://harrism.github.io/hemi/.

[13] M. A. Heroux, R. A. Bartle�, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,
R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.
�ornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley.
2005. An Overview of the Trilinos Project. ACM Trans. Math. So�w. 31, 3 (Sept.
2005), 397–423.

[14] J. K. Holmen, A. Humphrey, and M. Berzins. 2015. Chapter 13 - Exploring Use of
the Reserved Core. In High Performance Parallelism Pearls Volume Two: Multicore
and Many-core Programming Approaches, J. Reinders and J. Je�ers (Eds.). Vol. 2.
Morgan Kaufmann, Boston, MA, USA, 229 – 242.

[15] R. D. Hornung and J. A. Keasler. 2014. �e RAJA portability layer: overview
and status. Technical Report. Lawrence Livermore National Laboratory (LLNL),
Livermore, CA.

[16] A. Humphrey, T. Harman, M. Berzins, and P. Smith. 2015. A Scalable Algorithm
for Radiative Heat Transfer Using Reverse Monte Carlo Ray Tracing. In High
Performance Computing, Julian M. Kunkel and �omas Ludwig (Eds.). Lecture
Notes in Computer Science, Vol. 9137. Springer International Publishing, 212–
230.

[17] A. Humphrey, Q. Meng, M. Berzins, and T. Harman. 2012. Radiation Modeling
Using the Uintah Heterogeneous CPU/GPU Runtime System. In Proceedings of
the �rst conference of the Extreme Science and Engineering Discovery Environment
(XSEDE’12). Association for Computing Machinery.

[18] A. Humphrey, D. Sunderland, T. Harman, and M. Berzins. 2016. Radiative Heat
Transfer Calculation on 16384 GPUs Using a Reverse Monte Carlo Ray Tracing
Approach with Adaptive Mesh Re�nement. In 2016 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). 1222–1231.

[19] I. Hunsaker. 2013. Parallel distributed, reciprocal Monte Carlo radiation in cou-
pled, large eddy combustion simulations. Ph.D. Dissertation. Dept. of Chemical

Engineering, University of Utah.
[20] I. Hunsaker, T. Harman, J. �ornock, and P.J. Smith. 2011. E�cient parallelization

of RMCRT for large scale LES combustion simulations. In 20th AIAA Computa-
tional Fluid Dynamics Conference. 3770.

[21] J. Je�ers and J. Reinders. 2013. Intel Xeon Phi Coprocessor High Performance
Programming. Morgan Kaufmann Publishers Inc., Boston, MA, USA.

[22] L. V. Kale and S. Krishnan. 1993. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In Proceedings of the Eighth Annual Conference
on Object-oriented Programming Systems, Languages, and Applications (OOPSLA
’93). ACM, New York, NY, USA, 91–108.

[23] G. Krishnamoorthy, R. Rawat, and P.J. Smith. 2004. Parallel computations of
radiative heat transfer using the discrete ordinates method. Numerical Heat
Transfer 47, 1 (2004), 19–38.

[24] G. Krishnamoorthy, R. Rawat, and P. J. Smith. 2006. Parallelization of the p-1
radiation model. Numerical Heat Transfer, Part B: Fundamentals 49, 1 (2006),
1–17.

[25] M. Martineau, S. McIntosh-Smith, M. Boulton, and W. Gaudin. 2016. An Eval-
uation of Emerging Many-Core Parallel Programming Models. In Proceedings
of the 7th International Workshop on Programming Models and Applications for
Multicores and Manycores (PMAM’16). ACM, New York, NY, USA, 1–10.

[26] Q. Meng, M. Berzins, and J. Schmidt. 2011. Using Hybrid Parallelism to improve
memory use in Uintah. In Proceedings of the TeraGrid 2011 Conference. ACM.

[27] Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins. 2013. Investigating Appli-
cations Portability with the Uintah DAG-based Runtime System on PetaScale
Supercomputers. In Proceedings of SC13: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. 96:1–96:12.

[28] Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins. 2013. Preliminary Experiences
with the Uintah Framework on Intel Xeon Phi and Stampede. In Proceedings
of the Conference on Extreme Science and Engineering Discovery Environment:
Gateway to Discovery (XSEDE 2013). 48:1–48:8.

[29] Q. Meng, J. Luitjens, and M. Berzins. 2010. Dynamic Task Scheduling for the Uin-
tah Framework. In Proceedings of the 3rd IEEEWorkshop on Many-Task Computing
on Grids and Supercomputers (MTAGS10). 1–10.

[30] B. Peterson, N. Xiao, J. K. Holmen, S. Chaganti, A. Pakki, J. Schmidt, D. Sunder-
land, A. Humphrey, and M. Berzins. 2015. Developing Uintah’s Runtime System
For Forthcoming Architectures. Technical Report. SCI Institute.

[31] S. Plimpton. 1995. Fast Parallel Algorithms for Short-Range Molecular Dynamics.
J. Comput. Phys. 117, 1 (1995), 1 – 19.

[32] J. Reinders, J. Je�ers, and A. Sodani. 2016. Intel Xeon Phi Processor High Perfor-
mance Programming Knights Landing Edition. Morgan Kaufmann Publishers Inc.,
Boston, MA, USA.

[33] A. G. Salinger, R. A. Barte�, Q. Chen, X. Gao, G. Hansen, I. Kalashnikova, A.
Mota, R. P. Muller, E. Nielsen, J. Ostien, and et al. 2013. Albany: A Component-
Based Partial Di�erential Equation Code Built on Trilinos. ACM Transaction on
Mathematical So�ware (Oct 2013).

[34] P. J. Smith, R.Rawat, J. Spinti, S. Kumar, S. Borodai, and A. Violi. 2003. Large
eddy simulations of accidental �res using massively parallel computers. In 16th
AIAA Computational Fluid Dynamics Conference. 3697.

[35] X. Sun. 2009. Reverse Monte Carlo ray-tracing for radiative heat transfer in com-
bustion systems. Ph.D. Dissertation. Dept. of Chemical Engineering, University
of Utah.

[36] D. Sunderland, B. Peterson, J. Schmidt, A. Humphrey, J. �ornock, , and M.
Berzins. 2016. An Overview of Performance Portability in the Uintah Runtime
System �rough the Use of Kokkos. In Proceedings of the Second Internationsl
Workshop on Extreme Scale Programming Models and Middleware (ESPM2). IEEE
Press, Piscataway, NJ, USA, 44–47.

[37] Texas Advanced Computing Center. 2017. TACC Stampede User Guide. (2017).
h�ps://portal.tacc.utexas.edu/user-guides/stampede.

[38] W. Zhang, A. S. Almgren, M. Day, T. Nguyen, J. Shalf, and D. Unat. 2016. BoxLib
with Tiling: An AMR So�ware Framework. CoRR abs/1604.03570 (2016).

7

	Abstract
	1 Introduction
	2 The Uintah Computational Framework
	3 Radiation Modeling Within Uintah
	4 Incremental Integration of Kokkos
	5 Evolution of Uintah's Hybrid Parallelism Approach
	6 Strong-Scaling Studies
	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

