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ABSTRACT
Large-scale parallel applications with complex global data depen-
dencies beyond those of reductions pose significant scalability chal-
lenges in an asynchronous runtime system. Internodal challenges in-
clude identifying the all-to-all communication of data dependencies
among the nodes. Intranodal challenges include gathering together
these data dependencies into usable data objects while avoiding
data duplication. This paper addresses these challenges within the
context of a large-scale, industrial coal boiler simulation using the
Uintah asynchronous many-task runtime system on GPU architec-
tures. We show significant reduction in time spent analyzing data
dependencies through refinements in our dependency search algo-
rithm. Multiple task graphs are used to eliminate subsequent analysis
when task graphs change in predictable and repeatable ways. Us-
ing a combined data store and task scheduler redesign reduces data
dependency duplication ensuring that problems fit within host and
GPU memory. These modifications did not require any changes to
application code or sweeping changes to the Uintah runtime system.
We report results running on the DOE Titan system on 119K CPU
cores and 7.5K GPUs simultaneously. Our solutions can be general-
ized to other task dependency problems with global dependencies
among thousands of nodes which must be processed efficiently at
large scale.
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1 INTRODUCTION
A broad class of large-scale multiphysics applications requiring long-
range interactions, such as molecular dynamics [7], cosmology [18],
neutron transport [4], and radiative heat transfer [10] calculations use
algorithms requiring global data dependencies. Such dependencies
require each node to first send data to potentially every other node,
and then prepare itself to receive data from most or all nodes. Once a
node has received all data from other nodes, data dependencies must
be gathered together into usable data objects. This sending, receiving,
and gathering process can be prohibitively expensive both in terms

of computational analysis and memory storage if the amount of data
to be sent is large in contrast, say, to an MPI reduction.

This paper’s motivation comes from our experience running mas-
sively parallel simulations aimed at predicting the performance of a
commercial, 1000 MWe Ultra-Super Critical coal boiler. The size
and complexity of these boiler simulations required a 351 million
CPU hour INCITE award, 280 million and 71 million on the DOE
Mira and Titan systems respectively. The Titan boiler case utilized
the Uintah asynchronous many-task (AMT) runtime system [13, 14]
which managed the scheduling and execution of over 8 million com-
putational tasks on 119K CPU cores and 7.5K GPUs simultaneously.

In these boiler simulations the dominant mode of heat transfer is
radiation, which presents significant challenges for AMT runtime
systems [1] due to the all-to-all nature of radiation. The first of these
challenges was that each Titan node was assigned ~1400 Uintah
computational tasks, generating hundreds of thousands of global
data dependencies introduced by the radiation solve. These depen-
dencies become potential MPI messages for which Uintah must
generate correct message tags [15]. Within Uintah, analyzing tasks
for data dependencies is referred to as dependency analysis, part
of the task graph compilation process. For standard stencil calcula-
tions, where each compute node only needs to search surrounding
nodes containing neighboring simulation data, dependency analysis
completes in milliseconds, even at scale. However, with the introduc-
tion of global dependencies, initial boiler runs on Titan required 4.5
hours for this dependency analysis at production scale. Additionally,
the simulation required alternating between task execution patterns
for timesteps involving either 1.) the standard computational fluid
dynamics (CFD) calculation or 2.) CFD plus a radiation calculation
to recompute the radiative source term (on Titan’s GPUs) for the
ongoing CFD calculation. Alternating between these separate task
execution patterns occurred every 20 timesteps and required reanal-
ysis of all global dependencies for the radiation solve, incurring
potentially another 4.5 hour dependency analysis.

The second challenge was for each compute node to efficiently
gather and combine together the thousands of dependencies sent
from all other nodes into usable data objects ready for task execution.
An initial attempt to address this challenge afforded each task its own
copy of a data object, however this exhausted all available memory
on-node. A follow-up attempt created only one shared data object



by utilizing locks, but contention for these locks was prohibitively
slow. A new mechanism was needed.

The principal contribution of this work is to address these chal-
lenges through 1.) an improved search algorithm to reduce depen-
dency analysis processing time by avoiding unnecessary searches,
combined with multiple task graphs and 2.) a heterogeneous task
scheduler and data store design which concurrently prepares tasks
with simulation variables composed of shared dependencies gath-
ered from potentially thousands of other nodes. We demonstrate
how these changes do not require a large rewrite of key portions
of Uintah, and how these improvements can be applied in a hetero-
geneous AMT environment with a mixture of CPU and GPU tasks
providing speedups over a homogeneous set of CPU-only tasks. The
solutions presented here can be generalized to other problems where
each node has large numbers of data dependencies involving most
or all of the domain. In addition, the solutions are also pertinent to
task scheduler coordination schemes for preparation of simulation
variables with global dependencies.

Section 2 describes the background of the data dependency chal-
lenges in the context of the target coal boiler problem, and provides
detail on computational methods used, including radiation. Section
3 overviews the Uintah AMT runtime including its data stores, task
graph, and task scheduler design. Section 4 describes a reduction in
data dependency analysis times through an improved search algo-
rithm and implementation of multiple task graphs to avoid redundant
analysis with detailed complexity analysis. Section 5 provides novel
mechanisms for concurrency and storage of simulation variables
with large halos. Section 6 reports results on Titan using 119K cores
and 7.5K GPUs using our improvements. Related work is given in
Section 7 and conclusions in Section 8.

2 TARGET PROBLEM BACKGROUND
The global dependencies in our target 1000 MWe coal boiler problem
arise from solving the radiative heat transfer equation (RTE) [8, 10].
Both the DOE Titan and Mira systems were used to simulate coal
boiler designs using different methods for computing the RTE. On
Mira, the global radiation dependencies required numerous sparse,
global linear solves for the discrete ordinates method [12]. For ev-
ery data dependency sent out from one compute node to another,
the source node could expect to receive a corresponding data de-
pendency in return. On the Titan platform, radiative heat transfer
was computed using a reverse Monte Carlo Ray Tracing (RMCRT)
technique [8], which requires replication of radiative properties to
facilitate local ray tracing. Data dependencies here required more
analysis as dependencies were not symmetrical. A compute node
sending out a data dependency to another node did not always receive
a similar data dependency in return.

The production problem computed on Titan used a uniform Carte-
sian mesh subdivided into ∼497 million cells and ran for 220K
timesteps over 5.5 days of simulation (wall) during which vari-
ous physics parameters and runtime optimizations were tested and
analyzed. Within Uintah, a group of cells is organized into a fun-
damental unit termed a patch, with the production problem having
∼121 thousand patches. Simulation variables residing in Uintah’s
patches are termed patch variables. A patch variable needed by
one compute node but found on another is considered to be a single

data dependency. The superset of patches with the same mesh spac-
ing is termed a level. Uintah provides support for Adaptive Mesh
Refinement (AMR), viewing the computational grid as a sequence
of nested, successively finer levels 1, ....,lmax , such that G = ∪ Gl
where Gl is a collection of a patches with the same mesh spacing.

2.1 RMCRT Radiation Model
The scalability of the RMCRT model has been demonstrated to 256K
CPU cores [8] and 16K GPUs [9] on a benchmark problem [5]. The
challenge was then in using this model in the production boiler case.

The RMCRT model creates between dozens to hundreds of rays
per cell, each moving in a random direction. Local ray tracing is
facilitated by using a local fine mesh on which the solution is calcu-
lated and a coarse version of the entire mesh replicated on each node.
This replication was made possible by a global, but scalable commu-
nication phase [8], which generates thousands of data dependencies
on each compute node. Without local ray tracing, there would be
significantly more communication due to the need to transfer billions
of rays via MPI throughout a timestep.

In the Titan boiler case, a two-level mesh refinement approach
was used to reduce these data dependencies [8]. This two-level
computational grid is described by 1.) a highly resolved fine mesh
level for the CFD calculation and 2.) the coarse mesh level, replicated
on each compute node for the radiative properties. As shown in
Figure 1, a ray begins from the fine mesh level partition present on
the node and will eventually transition onto the global coarser mesh
level stored on that node as it moves outward, thus giving massively
parallel ray tracing on a node. Radiation data at the ray’s starting
point is updated when the ray terminates.

Figure 1: A 2D representation of an RMCRT ray as it moves
across a domain with two levels of refinement. A ray begins on
the fine mesh level and transitions to the coarse mesh level, ter-
minating after its intensity falls below a specified threshold.

2.2 The Arches Combustion Component
The Uintah Arches turbulent combustion component is used to com-
pute coal multiphysics for the target boiler problem. Arches is a
three-dimensional, large eddy simulation (LES) code that uses a
low-Mach number variable density formulation to simulate heat,
mass, and momentum transport in reacting flows [8]. Additional fine-
grained CPU tasks are responsible for simulating coal combustion,
kinetics, and deposition. Arches is second-order accurate in space
and time and is highly scalable through Uintah to 256K cores [17]
and its coupled solvers, such as hypre [6].
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The combination of Arches and RMCRT tasks dramatically com-
plicated data dependency analysis. The Arches component generated
close to one thousand tasks per compute node, with many containing
direct dependencies on the global radiation data. Arches’s CPU tasks
required concurrency and data sharing mechanisms to move data
in and out of GPU memory for RMCRT tasks. Every 20 timesteps
a radiation solve takes place to update the radiative source term.
The additional tasks generated during the radiation solve result in a
repeated analysis of data dependencies.

3 UINTAH OVERVIEW
The Uintah framework [3, 13] is an asynchronous many-task run-
time system designed to support multiphysics simulations for a broad
range of problems involving fluids, solids, and fluid-structure inter-
action problems. Uintah is unique in its approach for providing a
clear separation of duties between the application developer and
the underlying runtime system. An application developer defines
tasks by supplying key parameters for each task and includes such
things as the simulation variables a task requires or will compute,
halo extents for simulation variables, whether it is a GPU task, and
a function pointer to the task code. Once all tasks are defined and
listed in algorithmic order of priority, task code is written in C++ or
CUDA. The Uintah runtime manages all underlying details of de-
pendency analysis, task graph generation, MPI messages generation,
halo scattering and gathering, task preparation and execution, data
store concurrency, checkpointing, etc.

Uintah over-decomposes the computational domain into a struc-
tured grid of rectangular cuboid nodes or cells with support for adap-
tive mesh refinement (AMR). All Uintah simulation data is stored
in patch variables maintained within a data store known as a data
warehouse [13] which are shared among all threads in a compute
node, allowing Uintah to launch one MPI rank per compute node
rather than one MPI rank per CPU core. Uintah currently maintains
a host (CPU) memory and GPU memory data warehouse, known as
the Host Data Warehouse and the GPU Data Warehouse.

Uintah’s task graph is based on a distributed directed acyclic
graph (DAG) of task dependencies. Uintah utilizes a static task
graph of data dependencies for two purposes, 1.) automated MPI
message generation among compute nodes, and 2.) scheduling the
preparation and execution of tasks within a compute node. A directed
acyclic graph (DAG) of tasks is created after a node analyzes all data
dependencies on all tasks that node will execute. This task graph is
cached and reused in subsequent timesteps if the data dependencies
do not change (this scenario is common among most simulations
using Uintah). Dependency analysis only occurs once at initialization
and when regridding takes place if AMR is employed.

Uintah has a task scheduler responsible for both preparing each
tasks’ patch variables in memory and efficiently executing those
tasks. Every CPU thread on a compute node is assigned to the
scheduler with a work loop that checks various shared queues and
pools and assigns work to each thread. For example, one CPU thread
may initiate an asynchronous MPI send or process MPI receives,
another CPU thread may be executing a CPU task, another may
invoke an asynchronous GPU kernel, another may initiate a GPU-to-
host memory transfer for a patch variable, while yet another may be
writing simulation data to disk for checkpointing.

4 DEPENDENCY ANALYSIS
OPTIMIZATIONS

Owing to the global dependencies, the sheer size and complexity of
the resulting task graphs at a production scale presented two signifi-
cant challenges, determining potential dependencies and repeated
dependency checking before and after radiation solves. The follow-
ing two subsections describe these challenges and our solutions. In
this discussion we use the term node to mean compute node. Dur-
ing dependency analysis, each node then considers itself the source
node. This analysis is distributed in that each node performs its own.
We also use the term task to mean Uintah computational task.

4.1 Uintah Task Dependency Analysis
Uintah’s runtime system uses a three step algorithm on each source
node to discover internodal data dependencies for MPI message
generation. In the first step a set of nodes are identified in which halo
exchange may occur based on halo requirements specified by the
application. This list is termed a processor neighborhood in Uintah,
and refers to the total number of MPI ranks in the simulation owning
patches that may interact with a particular source node. In the second
step, task objects are created by assigning tasks to patches. Each
source node creates a collection of task objects that execute within its
processor neighborhood. In the final step, each source node analyzes
its collection of task objects to identify the data dependencies with
tasks that execute within the source node. After all of the identified
dependencies are placed into a task graph, then MPI messages tags
are created [15].

Figure 2: A visualization of data dependencies from the per-
spective of Node 46 in a simple N node problem with a global
dependency on simulation variable X . After Node 46’s Task A
executes, the data dependencies must be sent out to N − 1 other
nodes. Similarly, before Node 46’s Task B executes, it must re-
ceive data dependencies from N − 1 other nodes.

4.1.1 Example Dependency Analysis. A simplified problem
demonstrating global dependencies is given in Figure 2, where each
node has a processor neighborhood consisting of all other nodes
in the computational domain. Each source node searches all tasks
within its processor neighborhood to determine which tasks it in-
teracts with (via halo exchange). For simulations with only local
communication (nearest neighbor), the resulting processor neighbor-
hood is relatively small [15], being at most 26 nodes immediately
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surrounding the source node (3 dimensions - x,y,z). For large-scale
simulations with global communication and roughly 1000 tasks per
node, a processor neighborhood may contain thousands of nodes
and millions of potential dependencies.

4.2 Global and Local Neighborhoods
For the initial boiler simulations on Titan, the processor neighbor-
hood included every node in the simulation, effectively the entire
computational domain. A consequence of this approach is that tasks
requiring only local communication still searched every task on
every node for potential dependencies.

Using multiple processor neighborhoods to limit the search re-
gion for tasks reduced the time to identify task dependencies. Tasks
requiring global dependencies search a global neighborhood and
tasks with only local dependencies search a much smaller local
neighborhood. The challenge in creating multiple neighborhoods is
determining the appropriate neighborhood bounds for tasks which
only compute variables and do not require halos. For example, in
Figure 2, the set of “A” tasks do not specify that the simulation
variable to be computed will be a globally dependent variable. These
tasks on their own do not provide enough information to determine
if they belong to a global or local neighborhood.

The key insight was to use the maximum halo extents on a per-
variable-basis in contrast to the per-task basis to identify the bound-
ary for either a local or global neighborhood. All tasks are searched
to determine the maximum halo extent for each simulation variable.
Each task is then assigned a maximum halo extent based on the
largest halo extent of its simulation variables. From this per-variable
maximum halo extent, a processor neighborhood can be correctly
determined. When this algorithm is applied to the simple problem
in Figure 2, the set of “A” tasks are assigned to a global neighbor-
hood as the node shares a simulation variable with another “B” task
that indicates the variable has global dependencies. If another set
of tasks only used simulation variables requiring one cell of halo
data, those tasks would be assigned a local neighborhood. If any sets
of tasks share the same halo requirements, their dependencies are
still analyzed as these task graph edges are vital to ensure proper
ordering of task execution.

An additional complexity with the production coal boiler problem
comes from tasks that execute on multiple mesh levels with non-
uniform halo extents across mesh levels. Our solution was to further
extend our improvements to define the maximum halo extents not
just on a per-variable basis, but on the basis of a per-variable and
per-level tuple. Although this solution was motivated by the boiler
problem, it applies to any Uintah problem with a mixture of local
and global dependencies.

4.2.1 Complexity Analysis. Consider a global dependency
analysis problem with one neighborhood on a single mesh level.
Uintah assigns tasks to patches uniformly across a given mesh re-
finement level, e.g. for 10 tasks over 100 patches, there would be
exactly 1000 task objects for the entire computational grid. These
tasks objects are later analyzed to find external (MPI) dependencies
with a source node. The number of task objectsT is then given by nд,
where n is the number of patches owned by nodes (MPI ranks) in the
global processor neighborhood and д is the number of generalized
tasks. When only local communication is considered, n would be

small with a maximum of 26 surrounding patches (3 dimensions -
x,y,z) and the total number of task objects is manageable. However,
when considering global dependencies, the dependency analysis be-
comes O ((nд)2), a search between every task/patch tuple, nд in the
computational domain.

In the Titan boiler simulation, the 2 mesh refinement levels used
to achieve scalability [8] further increased the number of global
dependencies due to the inter-level dependencies using the same
global neighborhood for every task on every mesh refinement level.
The number of task objects T is then given by

T =

ltot∑
l=1

ttot∑
t=1

ntot∑
n=1

Pl,t,n (1)

where ltot is the total number of mesh levels, ttot is the total num-
ber of tasks assigned to mesh level l , ntot is the total number of
neighborhoods for mesh level l , and Pl,t,n is the number of patches
in a particular mesh level’s neighborhood. It is this total task object
count, T that we seek to reduce, much like a partial order reduction
algorithm prunes an exponential search space.

The generalized complexity of the task object count, T shown by
Equation 1 in the target boiler case prior to our improvements was

O (nf дf ) + O (ncдc ) (2)

where nf and nc are the number of fine- and coarse-level patches
respectively, and дf and дc are the number of fine and coarse mesh
level generalized tasks that would be created. Prior to our improve-
ments, the total number of task objects created in the target boiler
case was T = 10,044,888, with nf = 119,462, nc = 1,440, дf = 84
and дc = 7, and so (nf дf = 10,034,808) + (ncдc = 10,080) =
10,044,888. Introduction of global and local processor neighbor-
hoods tailored for a task’s variables and mesh level reduced the
total number of task objects by 81x. This reduced the complexity in
Expression 2 to

O (
nf

p
tf l ) + O (

nc
p
tcl ) + O (nc tcд ) + O (nf tf д ) (3)

where nf and nc are the number of fine- and coarse-level patches
respectively, p is the number of nodes, tf l is the number of fine-level
tasks with a local neighborhood, tcl is the number of coarse-level
tasks with local neighborhood, tcд is the number of coarse-level tasks
with a global neighborhood (tasks which globally distribute coarse-
level simulation variables among nodes), and tf д is the number of
fine-level tasks with a global neighborhood (tasks which compute
on the fine-level and require a global coarse mesh).

Table 1 illustrates the improvements from this reduction in com-
plexity for our standard RMCRT benchmark problem [5]. Results
were computed on a single node with an Intel Xeon CPU E5-2660
@ 2.20GHz. In the full coal boiler simulation at 119K cores, the
task graph processing was reduced 93% from 4.5 hours to roughly
20 minutes. This was deemed acceptable for the Titan boiler case
as it was a one-time cost and could be amortized over the entire
simulation, running for 220K timesteps over 5.5 days of simulation
(wall) time.

The remaining 20 minutes is largely due to one production task
associated with the dominant fourth term of Expression 3, O (nf tf д ).
This particular task computes on every fine-level patch and also
requires a global coarse mesh. Therefore, for every fine-level patch
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Initial Dependency Analysis Improvements
# of Fine

Level Patches
Original
time (s)

Improved
time (s) Speedup

64 ∼0.00 ∼0.00 1x
512 0.03 0.02 1.5x
4K 0.51 0.25 2.04x
32K 20.90 1.41 14.82x
128K 468.98 6.80 68.97x
256K 2331.66 15.02 155.24x

Table 1: Task graph compilation improvements combined with
multiple task graphs (Section 4.3) enabled scaling to 122K
patches for the target boiler problem.

there exists data dependencies with every coarse-level patch. The
runtime stores these dependencies for each task in linked lists and
most of the 20 minutes was spent in list traversal, searching for
matching dependencies. From a nodal perspective most of these are
duplicate dependencies. Work is underway to address this remaining
cost by analyzing dependencies on a per-node basis to automatically
eliminate all duplicates. When complete, the fourth term in Expres-
sion 3 will change to O (df tf д ), where df is the number of nodes
containing fine level patches. This change will retain the use of mul-
tiple processor neighborhoods while greatly reducing the number of
dependencies stored and analyzed by the runtime.

4.3 Multiple Task Graphs
Previously, whenever Uintah detected a different set of dependencies
compared to a previous timestep’s dependency set, a new data depen-
dency analysis was triggered. If no change in dependencies occurred
between timesteps, the previous task graph was reused. The key goal
was to avoid the all-to-all communication (required for radiation)
on regular CFD timesteps. As noted in Section 1, this approach was
suitable for typical, stencil-based Uintah-based simulations, as the
number of dependencies was much smaller with dependency analy-
sis completing in milliseconds. However, as noted in Section 4.2.1,
this dependency analysis still required 20 minutes. Recomputing this
every 20 timesteps was still untenable.

Our solution added support within Uintah for temporal scheduling
based on using multiple task graphs. With this approach, the type
of timestep being executed determines which task graph is used,
and consequently which tasks are executed for that timestep. The
application developer is responsible for defining how many task
graphs are needed and in which task graph a particular task executes.
The Uintah runtime creates each of these task graphs upfront only
once during the initial timestep, handling the dependency analysis
for each task graph separately. The task graphs are cached and reused
throughout the remainder of the simulation, so that no further data
dependency analysis phase is required.

Analysis of a task graph does not require knowledge of exactly
what task graph existed in the prior timestep. In every task graph
Uintah creates a special runtime task called send_old_data and asso-
ciates it with every data warehouse simulation variable. A current
task graph requiring a dependency from a prior timestep can create a
task graph edge with this send_old_data task, as this task is always
guaranteed to exist no matter what prior task graph was used.

As an example, suppose a task developer required one task run
in a radiation timestep, and a second task run in a CFD timestep.
Previously the application developer would inform Uintah’s runtime
of both tasks with:

sched->addTask(taskRadiation);
sched->addTask(taskCFD);

Then when either task is executed, the application developer placed
conditional statements within that task to short circuit task execution
if the current timestep did not match the task’s purpose. For example,
on a regular CFD timestep, the ray tracing task used to update the
radiative source term would execute, however the conditional placed
by the application developer would simply have the task method
immediately return, avoiding the execution of the ray tracing code.
Unfortunately the Uintah task scheduler’s data preparation phases
had no knowledge of these conditionals, resulting in unnecessary
dependency analysis and subsequent global communication.

With multiple task graphs, this process is greatly simplified for
the application developer. A simple enum of task graphs is supplied
in a header file and tasks are associated with an enum element:

sched->addTask(taskRadiation, RADIATION);
sched->addTask(taskCFD, CFD);

Any tasks not assigned to a specific task graph are placed into all
task graphs, which ensures backward compatibility of existing tasks
used within other simulations.

5 TASK SCHEDULER AND DATA
WAREHOUSE OPTIMIZATIONS

Uintah’s task scheduler is responsible for gathering together halo
data from other nodes into usable data objects. In the target problem,
multiple tasks on a node routinely required different nodal data
(patch variables) while using the same data dependencies (halo data).
Prior task scheduler logic could share halo data at the cost of locking
mechanisms [9], or the task scheduler could retain asynchrony at
the cost of duplicating halo data [16]. The target problem required
sharing both halo data and retaining asynchrony as the prior task
schedulers either executed inefficiently due to contention caused
by locks or the problem could not fit into GPU memory due to
duplicated halo data. This section describes the problem in detail
and presents our current novel solution.

Properly sharing data and its dependencies evolved through three
distinct phases. The first approach [9], termed Phase I, created one
shared data object that is composed of all patch variables and all
halo data for a simulation variable. It used a third data warehouse to
manage simulation variables that encompassed an entire mesh level.
Phase I used CPU locks and GPU barriers that affected performance
by preventing GPU kernel overlap, resulting in GPU tasks executing
serially. The second approach, Phase II [16], allowed sharing of
patch variables among tasks, but did not allow sharing of halo data.
Scheduler threads coordinated among themselves through atomic
bitsets which represent lifetime states of a simulation variable. One
bitset was assigned to each patch variable to ensure only one sched-
uler thread can allocate, prepare halo data, and copy a simulation
variable. The overall goal was asynchrony and overlapping of GPU
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tasks, as can be seen in Figure 3. Phase II avoided the third data ware-
house in Phase I, however the the duplication of halo data drastically
increased memory usage overhead in the target problem.

Figure 3: Visual profiling of Phase II [16] showing four
timesteps with asynchrony and overlapping of GPU tasks. The
gaps between timesteps illustrates lack of full GPU occupancy.

Phase III combines the best attributes of Phase I and Phase II.
Phase III introduces new task scheduler and data warehouse changes
to share both patch variables and halo data in shared data objects.
The task scheduler is asynchronous and lock-free. Phase III avoids
a third data warehouse, a large data warehouse code rewrite, and
overly complicated logic.

Our solution 1.) decouples components of a data warehouse item,
2.) allows multiple data warehouse items to share decoupled ob-
jects, 3.) introduces additional asynchronous task scheduler logic
for shared decoupled objects, and 4.) fits into existing data ware-
house logic throughout Uintah. A simplified visual representation of
the new data warehouse layout is given in Figure 4. A data ware-
house entry now only contains identifying metadata (e.g. simulation
variable name and patch ID). A data description object contains
metadata for simulation variable layout and usage status. Multiple
data warehouse entries may share a data description object using
shared pointers. If data sharing is not needed (which is the case for
most existing simulations using Uintah), existing data warehouse
functionality is retained by having each data warehouse entry point
to its own data description object.

Figure 4: Simplified Data Warehouse design - Phase III.

Creation of data description objects is managed by task scheduler
logic. When a scheduler thread analyzes an upcoming task for simu-
lation variable preparation, it computes a spatial box necessary to

encompass all halo data for a group of simulation variables assigned
to various patches on that node. If the halos are small (such as one
cell of halo data), the box only spatially encompasses one simulation
variable, and requires no additional work. If the halos are large and
multiple simulation variables are spatially contained within a box,
then the scheduler thread begins a process to share a data description
object among all the corresponding data warehouse entries.

As an example, suppose a simulation is laid out in a 2D grid
exactly as shown in Figure 4. Each node is assigned its own square
block of four patches for task computation. Further, suppose the
halo for a simulation variable requires a full patch of 16 cells in
every direction. One possible box, shown in Figure 4, encompasses a
region of 16 patches numbered as shown. The four patches assigned
to the node would then share a data description object, and the four
data warehouse entries for this simulation variable would all refer to
the same shared object.

Multiple scheduler threads preparing different tasks may simul-
taneously attempt to form the same shared data description object
for a contiguous group of simulation variables. An atomic bitset is
employed for coordination among scheduler threads. As no shared
object has yet been created, the bitset used is the one associated
with the smallest unique integer patch ID among the boxed entries.
Once the separate patch variables have been merged into one shared
data description object, the atomic bitset is copied into the shared
object and a bit updated to indicate the simulation variable and its
associated halo data are all valid and ready for use. Any other sched-
uler threads processing a task requiring any of these data warehouse
entries in this box must either wait or seek new work from a work
queue.

Previously, seven bits of the bitset described these different states
of simulation variables: allocating, allocated, copyingIn,
validForUse, gatheringHaloCells, validWithHalo-
Cells. This work added bits for mergingDataObjects and
mergedDataObject. Additionally, the status bitset now uses an
additional 16 bits to hold a reference-counting short integer. This
count represents how many data warehouse entries are sharing the
data description object.

Overall, this new data warehouse design has many desirable qual-
ities. There is no need for a third data warehouse as described in
Phase I. Non-cubic domains are supported by allowing multiple data
description objects to exclude void regions where no patches exist.
Task scheduler thread asynchrony is retained. Memory overhead is
kept low since duplication is avoided. All variables are managed in
current data warehouses without requiring a large refactoring of the
infrastructure code. All logic for this data warehouse can co-exist
for other projects using Uintah which have dramatically different
data dependency requirements.

The most important improvement is a reduction of memory usage
on a node. Table 2 shows with this approach, the target problem fits
within GPU memory, whereas before it could not fit within GPU
memory in Phase II. Results were computed on a single node with
an Intel Xeon CPU E5-2660 @ 2.20GHz with 32 GB RAM running
Uintah on 16 CPU threads and a NVIDIA GeForce GTX TITAN X
with 12 GB of RAM.
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Improvements in Overhead

Type of Mesh
Timestep

(s)
Host Mem

(MB)

Coarse: 323 cells, 43 patches
Fine: 643 cells, 43 patches

Phase I 1.79 57
Phase II 0.21 3073
Phase III 0.15 65

Coarse: 323 cells, 43 patches
Fine: 1283 cells, 43 patches

Phase I 4.95 213
Phase II 1.41 23229
Phase III 0.82 279

Coarse: 643 cells, 43 patches
Fine: 1283 cells, 43 patches

Phase I 6.44 218
Phase II Exceeded memory
Phase III 1.08 311

Table 2: Results of running only GPU RMCRT benchmark tests
for the three phases detailed in this section. Phase I has low
memory usage but high wall time overhead due to frequent
GPU blocking calls. Phase II improves wall times, but memory
usage is unacceptably large. Phase III’s low overhead results in
both faster wall times and low memory usage.

5.1 Improving GPU Occupancy
Section 5 assumes concurrently executing scheduler threads for
preparation and execution of GPU tasks. This subsection describes
an optimization to this scheduler model enabling wall time speedups
through better GPU occupancy. The target problem assigned 15 or 16
patches per node. However, as seen in Figure 3, this patch count in-
efficiently occupied a GPU throughout a timestep. Titan’s NVIDIA
K20X GPUs contained 14 streaming multiprocessors (SMs), not
enough for the 15 or 16 GPU tasks to compute simultaneously,
slightly oversubscribing the total SMs. Instead of assigning only 14
patches per node (and thus using ∼10% more compute hours), we de-
sired a solution which retained a low patch count per node for faster
dependency analysis while also providing good GPU occupancy.

We first attempted to split a kernel into multiple blocks, but a
kernel would not vacate SMs until all of its blocks computed, leav-
ing some SMs idle. We then split each GPU task into multiple
kernels and launched them on a shared task GPU stream, but we
observed serialization among kernels when multiple CPU threads
asynchronously launched multiple kernels intermixed with host-
to-device transfers. Our adopted solution assigns each GPU task
multiple GPU streams and splits a task into multiple kernels. The
task scheduler does not consider a GPU task complete until each
GPU stream assigned to that task completes all of its operations. Fig-
ure 5 demonstrates significantly better SM occupancy with smaller
kernels on multiple streams. We measured speedups of 1.2x com-
pared to the baseline of supplying only one kernel and one stream per
task. This approach of launching higher numbers of small kernels
to a GPU best allows Uintah to target GPUs with differing number
of SMs. The only requirement is that a GPU’s compute capability
version must support more concurrent kernels than SMs.

6 SUMMARY OF RESULTS
A before and after summary of all optimizations at full scale (119K
CPU cores and 7.5K GPUs) is shown in Table 3. Both CPU and

Figure 5: Visual profiling - Phase III showing six successive
timesteps. Uintah’s scheduler supplies each GPU task multiple
streams so that task can be split into multiple kernels, executed
concurrently and achieving better GPU occupancy.

Operation Before After
Dependency analysis 4.5 hours 20 minutes

Dependency re-analysis
Before and after

each radiation calc
No longer
required

Nodal memory
footprint 21 GB 3.5 GB

RMCRT radiation
avg timestep

77.4 sec (CPU)
97.1 sec (GPU) 53.1 sec (GPU)

Nonradiative
avg timestep 8.34 sec 8.38 sec

Table 3: Cumulative results of improvements from Sections 4
and 5. Full boiler simulation, 129K CPU cores and 7.5K GPUs.

GPU production boiler runs used a fine mesh level patch size of 163

cells, 15 to 16 fine mesh level patches per node, and 150 RMCRT
rays per cell. The production problem size was ∼497 million cells
distributed among ∼121 thousand total mesh patches.

The first two data rows of Table 3 come from work in Section 4.
We measured 93% reduction in task graph dependency analysis times
on the coal boiler simulation’s initial timestep. The implementation
of multiple task graphs eliminated subsequent re-analysis when
alternating between radiation and non-radiation timesteps. Both of
these improvements required a one-time, 20 minute dependency
analysis phase, but it was amortized over several hundred thousand
timesteps and was a negligible cost overall.

The table’s last three rows come from work in Section 5. Initially
the 21 GB of host memory usage was too large for the 6 GB of
memory in Titan’s GPUs. Our work reduced this to 3.5 GB per node,
allowing the problem to run in GPUs, as well as reducing wall times
by requiring less data to be transfered across the PCIe bus.

The simulation was tested in both a homogneous mode of CPU
only tasks and a heterogenous mode where GPU and CPU tasks
intermixed. In the heterogenous mode, the Uintah runtime reached
a state where data dependencies for RMCRT tasks were prepared
quickly and kernels spread among a GPU with the vast majority of
the timestep being GPU memory-bounded. For radiation timesteps,
the runtime is no longer a bottleneck for efficiency, and any further
speedups would need to come from algorithmic changes.
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The non-radiative timestep wall times demonstrate that the over-
head of adding task scheduler heterogeneity is minimal. In these
timesteps, the hundreds of tasks were processed by more work pools
and queues in a heterogeneous environment than in a homogeneous
environment. As shown in the last row of Table 3, the average
timesteps in both environments are relatively similar.

7 RELATED WORK
Other AMT runtimes use different approaches for handling data
dependencies. Charm++ [11] requires the user to manage data de-
pendencies. Users create a set of interacting data objects called
chares (roughly analogous to Uintah tasks). A dependency is cre-
ated through an event of one chare sending a message to another,
which could be on the same node or on another node. Charm++
does not have an explicit task graph, and concurrency of shared
data resources in data structures happens through user programmed
code and proper message structuring. Global dependencies would
likewise require chares to manually send numerous messages to
facilitate an all-to-all communication structure. The Legion [19] run-
time system automates dependency analysis and concurrency by first
requiring the application developer to supply many more character-
istics of a data structure’s data dependencies. Global dependencies
would likewise require using the Legion API to manually specify
every dependency to allow Legion to automate all communication.
Legion also leverages a parallel global address space approach using
GASNet for all internode communication. The DARMA project [2]
functions at lower level on the software stack to provide a general-
ized tool to facilitate AMT functionality. For example, Uintah could
conceivably be built on top of DARMA. DARMA’s focus is on nodal
management of tasks, and data dependencies across many nodes are
again left up to the application developer.

8 CONCLUSIONS AND FUTURE WORK
We have demonstrated optimizations for the sending, receiving, and
gathering process for global dependencies in an asynchronous run-
time system using GPUs. We have shown that globally coupled prob-
lems such as radiation heat transfer create overhead challenges for
identifying data dependencies, storing dependencies into a static task
graph, and avoiding data store duplication. We have demonstrated
these challenges in the context of a full multiphysics simulation of
a 1000MWe coal boiler on Titan using 119K CPU cores and 7.5K
GPUs using the Uintah asynchronous many-task runtime.

We reduced data dependency analysis processing through two
means. First, eliminating unneeded dependency checks by consid-
ering dependency neighborhoods on a per-variable and per-level
basis, rather than on a simulation-wide basis. Second, elimination of
redundant processing of dependencies mid-simulation by enabling
caching of multiple task graphs that are processed only on the initial
timestep. We reduced data duplication overhead by sharing simu-
lation variable data on a compute node in a data object. Enabling
these shared data objects in an asynchronous and concurrent envi-
ronment required novel modifications to our task scheduler and data
stores. At full scale, these modifications demonstrated that tasks
could be processed faster in a heterogeneous task environment than
a homogeneous CPU-only environment.

Our future work will extend Uintah’s task scheduler and data
stores to a more generalized and portable manner. We are using
Kokkos for portability and ensuring Uintah’s runtime is performant
for both Xeon Phis and GPUs.
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