

1 **Evolution of Tantalum Content During Vacuum Induction Melting and**
2 **Electroslag Remelting of a Novel Martensitic Steel**

4 Martin Detrois^{1,2,*}, Paul D. Jablonski¹, Jeffrey A. Hawk¹

6 ¹ National Energy Technology Laboratory, 1450 Queen Ave. SW, Albany, OR 97321, USA

7 ² Leidos Research Support Team, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA
8 15236, USA

10 * Corresponding author. *E-mail address:* martin.detrois@netl.doe.gov

13 **Abstract**

14 The need for materials with superior thermal and mechanical properties while mitigating cost
15 increases interest in new complex alloy compositions which brings challenges to manufacturing
16 processes. In this investigation, vacuum induction melting (VIM) and electroslag remelting
17 (ESR) of a novel tantalum (Ta) containing martensitic steel was performed using standard
18 industry practices at a laboratory scale. A 25% loss of Ta was measured from the VIM electrode
19 to the ESR ingot using x-ray fluorescence. Several tools were used for broad characterization of
20 the ingots, including LECO for chemistry analysis, scanning electron microscopy and electron
21 probe microanalysis for observation of the precipitate and inclusion phases post-VIM and post-
22 ESR as well as computational modeling of the ESR process for calculation of macrosegregation
23 and inclusion travel. It was found that a significant amount of Ta₂O₅ inclusions formed during
24 VIM and were transferred to the slag during ESR. While ESR was particularly successful at
25 decreasing the number density of inclusions by 95%, additional efforts are needed with regards
26 to vacuum leak rate and purity of stock material when melting novel advanced steels.

27

28 **Keywords:** Electroslag remelting, Vacuum induction melting, Slag, Tantalum, Oxide, Steel

29

30 **I. Introduction**

31 Electroslag remelting (ESR) is a widely used process to produce materials in which
32 cleanliness is of upmost importance.^[1] A consumable electrode is cast using vacuum induction
33 melting (VIM) with a mold geometry optimized for ESR. The electrode is then placed in a water-
34 cooled copper crucible that contains a ceramic slag (or flux) consisting of combinations of CaF₂,
35 CaO, Al₂O₃, SiO₂ and MgO.^[2] Although there are slags for general purpose melting such as 40-
36 30-30 CaF₂-CaO-Al₂O₃, the slag composition can, and should, be optimized for electrical
37 efficiency, prevention of Al pickup, and/or lubrication, among other factors. During ESR,
38 electrical current passes from the electrode through the slag layer and forming ingot to the
39 bottom of the crucible. The current superheats the electrically resistive slag which, in turn,
40 causes the electrode to melt. Liquid metal droplets travel from the bottom of the electrode to the
41 crucible where the ESR ingot forms. During their travel within the slag, the droplets are
42 superheated which causes favorable reactions that (under usual circumstances) remove tramp
43 elements.

44 Casting and remelting of metals have important features that lead to the production of
45 final ingots that possess greater cleanliness with reduced segregation.^[3] During VIM, the
46 induction heating contributes to the motion of the liquid metal in the furnace crucible, resulting
47 in a better mixing of the constituting elements of the alloy. Furthermore, removal of tramp
48 elements such as oxygen is enabled during VIM by CO boil or in Cr-containing alloys where Cr-
49 oxides form and float on top of the liquid metal or attach to the VIM skull.^[4] During ESR,
50 desulfurization of the liquid droplets occurs from their reaction with the CaO from the slag.^[5]

51 Furthermore, ESR is particularly effective at removing inclusions that either dissolve or remain
52 in the slag depending on their composition, size and density.^[6]

53 Several factors influence the overall cleanliness of the final ingot and/or the efficiency of
54 the removal of tramp elements and other undesirable inclusions during VIM and ESR. First, the
55 selection of the melt stock is critical to the application intended for the alloy. Most alloys are
56 made from industry-grade melt stock that contain impurities, such as oxygen, nitrogen and
57 sulfur, usually in relatively high concentrations. For instance, Cr has an affinity for oxygen and
58 selecting 500 ppm oxygen containing Cr versus 5000 ppm influences the cleanliness of the final
59 product after melting. In some instances, industries use scrap metal to save on material cost,
60 particularly for alloys that contain expensive elements such as Ni-based superalloys.^[3] Another
61 important factor is the atmosphere in which melting is performed, which is determined by
62 pressure, leak rate and cover gas. In the VIM process, the integrity of the furnace is determined
63 by the capability of the furnace to hold the pressure inside the chamber, and thus, prevent outside
64 air from getting inside the furnace.^[7] A large leak rate would result in oxygen and nitrogen being
65 present around the liquid metal and decrease the cleanliness of the cast ingot.

66 After performing a leak check, pumping resumes until the furnace is backfilled with inert
67 gas, most commonly argon (although this step is not always performed). Similarly, an argon
68 atmosphere can be used during ESR to prevent oxygen and nitrogen from the air entering the
69 melt^[8]. Finally, selection of the melt parameters during ESR plays a role in reducing the amount
70 of inclusions and/or tramp elements by controlling mixing in the slag and superheating of the
71 liquid metal.^[9] While the concentration of tramp elements can be decreased during melting, some
72 of the material's constituent elements can also be affected. The loss of reactive elements such as

73 Ti can occur during ESR from its reaction with the alumina (Al_2O_3) from the slag.^[10] Similarly,
74 pick up of Al in the liquid metal can occur when used as a deoxidizer for the slag.^[11]

75 Consequently, it is essential to monitor and control the chemistry of manufactured alloys,
76 particularly those with complex compositions and highly reactive elements. Recently, a novel
77 advanced martensitic steel was designed, CPJ7^[12], containing 15 elements of concentrations
78 listed in Table I. Among them, highly reactive elements are present in narrow concentration
79 ranges, namely Si, Nb and Ta. Tantalum is used in steels for the formation of carbides and
80 carbonitrides such as MX precipitates that increase intergranular corrosion resistance and
81 resistance to creep deformation. Tantalum is also used in Ni-based superalloys from 0 to above
82 10 wt.% for carbide formation, solution hardening and oxidation resistance.^[13] Being an
83 expensive alloying element with a strong affinity for oxygen (as well as hydrogen, nitrogen and
84 carbon^[14]), the concentration of Ta should be monitored during melting of novel alloys. The
85 evolution of the concentration of Ta in VIM electrodes and ESR ingots of CPJ7 was studied in
86 this investigation.

87

88 **II. Experimental Procedure**

89 Five CPJ7 alloys were considered in this investigation with heat designations Z, AA, AB,
90 AC and AD, all with compositions within the range of Table I. The alloys were weighted to the
91 target composition using commercial grade, high purity, melt stock with a total weight of 77 kg.
92 The charges were loaded in an alumina crucible in a 136 kg capacity VIM furnace and ultra-high
93 purity nitrogen and argon were backfilled to 200 Torr prior to starting the melt with the added
94 nitrogen pressure determined to meet the chemistry requirements.^[15] Once fully molten, the
95 liquid was poured at approximately 50 K (50 °C) superheat with the liquidus temperature

96 calculated from Thermo-Calc ^[16] using the Fe database. The liquidus temperature of the alloy
97 was equal to 1763 K (1490 °C). The molds employed to form the ESR electrodes were steel
98 cylinders with 114 mm inside diameter. Finally, leak rate checks were performed prior to each
99 melt for 1 minute; the pressure at start, prior to backfilling the furnace was ~30 µHg with the
100 leak rate around 6.5 µHg/min. Additional details on the typical VIM/ESR process used in the
101 laboratory are described in Reference ^[9].

102 The ESR of the VIM ingot was performed after cropping the top and bottom of the ~114
103 mm diameter electrodes and welding a stub oriented so that the original top of the VIM ingot,
104 which contains shrink, was first to melt. Melting was performed with ESR current control set to
105 melt rate with a setpoint of 1.47 kg/min. Voltage control was set to voltage swing with a setpoint
106 of 0.8 V in steady state. The slag was 40-30-30 CaF₂-CaO-Al₂O₃ with the detailed and complete
107 chemistry listed in Table II. The slag was previously degassed in a steel retort under vacuum at
108 723 K (450 °C) for 1 h, followed by 793 K (520 °C) for 1 h, followed by 0.5 h at 1073 K (800
109 °C), using a ramp rate of 1 K/min (1 °C/min) between 793 K (520 °C) and 1073 K (800 °C).

110 The melts were started using compacts made of turnings of the VIM ingot layered with
111 the slag at the bottom of a 152 mm diameter ESR crucible. Additional slag was added around the
112 compact and in the feeder for startup. Each subsequent ingot was melted under an argon
113 atmosphere protective cover. The run time for each electrode was approximately 52 min with
114 steady-state conditions reached 13 min following startup. For more information about the startup
115 process and operation of the ESR furnace used in this investigation, see Reference ^[17].

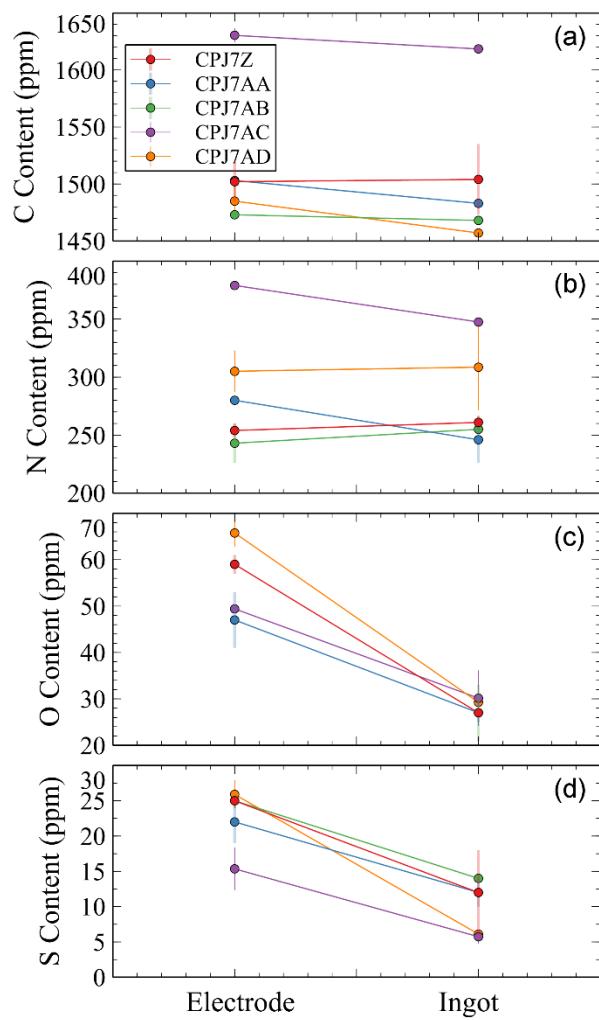
116 Specimens were extracted from the ESR ingots at various positions along the ingot for
117 chemistry evaluation. The VIM ingot/ESR electrodes specimens were taken from a slice cut
118 approximately 10 mm away from the bottom of the ingot while the chemistries of the ESR ingots

119 were obtained from specimens extracted at the top of the ingot from an approximately 15 mm
120 thick slice. The slag chemistry was analyzed by crushing the used slag (skin and cap) to fine
121 particles and compacting into small specimens. X-ray fluorescence (XRF) was used to obtain the
122 metal chemistries. A Rigaku ZSX Primus II was used with NIST traceable standards with
123 reported values accurate to 0.01 wt.%. Trace and tramp element concentrations were determined
124 using a LECO CS444LS for carbon and sulfur. A LECO TC436AR was used for oxygen and
125 nitrogen concentrations, also using NIST traceable standards. Microstructural characterization
126 was performed on the XRF samples following polishing to 0.05 μm using a solution of colloidal
127 silica. The microstructures and various inclusions were observed on a FEI Inspect F field
128 emission scanning electron microscope (SEM). An Oxford Instrument energy dispersive
129 spectrometer (EDS) was used for preliminary phase identification. More detailed phase
130 characterization was performed on a JEOL JXA-8530FPlus HyperProbe electron probe
131 microanalyzer (EPMA).

132 Computational fluid dynamics (CFD) simulations of the ESR process were performed
133 using MeltFlow-ESR from Innovative Research, LLC.^[18] The thermo-physical properties of
134 alloy CPJ7 were determined using JMatPro^[19] and consisted, among others, of liquid and solid
135 density, volume expansion coefficient, solidus and liquidus temperatures, latent heat, electrical
136 conductivity and partitioning coefficient in addition to thermal conductivity, specific heat,
137 viscosity and solid fraction as a function of temperature. Furthermore, inclusions were modeled
138 using a range of relative densities and sizes, where the relative density was defined as the density
139 of Ta_2O_5 over the liquid density of the alloy. Similarly, the slag thermo-physical parameters were
140 used in the simulations and obtained from References ^[20] and ^[21]. The slag and metal properties
141 are listed in Table III.

142 Finally, the melt parameters used in the simulations were those extracted from ESR
143 experiments and consisted of the voltage setpoint, current setpoint and measured melt rate as a
144 function of the melt time. The simulations were run using the dimensions of the electrode and
145 crucible used in the laboratory as described in the second paragraph of Section II. Description of
146 the model including the assumptions, boundary conditions and various governing equations used
147 to model electromagnetics, fluid motion, phase change, inclusion behavior and
148 macrosegregation, among others has been presented by Kelkar et al.^[18,22].

149 Finally, the ESR ingots were sectioned into approximately 54 mm thick slices for hot
150 working at 1273 K (1000 °C). The slices were first homogenized in a vacuum heat treatment
151 furnace using a computationally optimized homogenization algorithm^[23]. Hot working consisted
152 of multiple forging steps to square the discs followed by hot rolling to form ~13 mm thick plates.
153 The plates were then normalized at 1423 K (1150 °C) for 30 min followed by cooling in air. The
154 plates were then aged at 973 K (700 °C) for 1 h followed by air cooling. This process was
155 performed for weld testing experiments which are beyond the scope of this investigation.
156 However, additional chemistry specimens for XRF and LECO analyses were extracted from the
157 plates in locations corresponding to the centerline of the ingot, the mid-radius and outer radius to
158 compare the results to the CFD predictions.

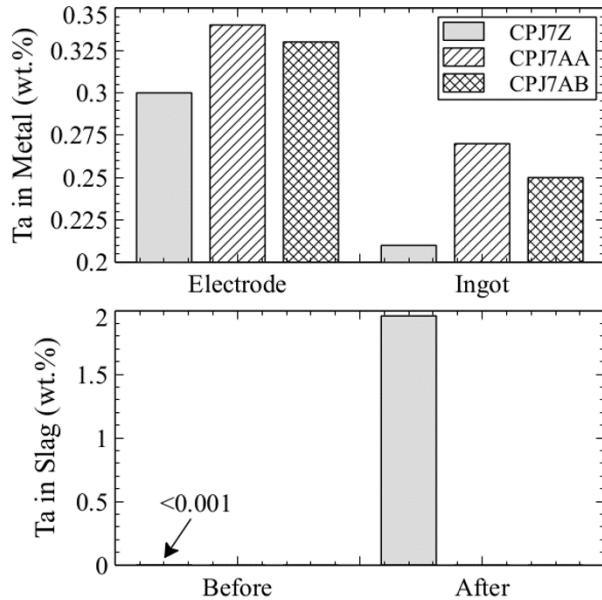

159

160 **III. Results**

161 The results of carbon, nitrogen, oxygen and sulfur concentrations in the electrode and
162 ESR ingot product are presented in Figure 1 for the five heats Z, AA, AB, AC and AD. Both
163 carbon and nitrogen contents were relatively unchanged from the VIM electrode to the ESR
164 ingot with regard to the standard deviations and differences between the heats. A significant

165 decrease in the oxygen content was observed for the five heats with a final concentration in the
166 ESR ingots around 28 ppm. Thus, ESR of the CPJ7 electrodes resulted, on average, in a 49%
167 decrease in oxygen content. Similarly, decreases in sulfur concentrations were found following
168 ESR with a final amount around 10 ppm which represents, on average, a 56% decrease from the
169 electrode to the resulting ESR ingot.

170



171
172 Fig. 1- (a) Carbon, (b) nitrogen, (c) oxygen and (d) sulfur concentrations before and after ESR
173 for the five heats of CPJ7.

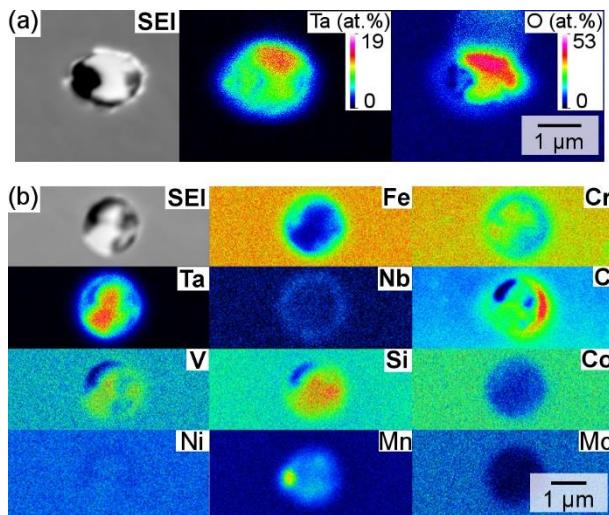
174

175 The XRF results of Ta concentrations revealed a relatively significant loss of Ta in the
176 ESR ingot metal, and a gain of Ta in the slag after ESR, as observed in Figure 2. In CPJ7Z, the
177 Ta concentration in the electrode and ingot almost spanned the entire Ta range specified in the
178 composition of the alloy, Table I, with a starting concentration of 0.30 wt.% and final of 0.21
179 wt.% in the ESR ingot. Thus, the starting Ta concentration in the other two heats, CPJ7AA and
180 CPJ7AB, was increased to obtain a Ta concentration in the ESR ingot more centered within the
181 allowable range. In CPJ7AA, the Ta concentration decreased from 0.34 to 0.27 wt.% and from
182 0.33 to 0.25 wt.% in CPJ7AB. Similarly, the Ta concentration decreased from 0.33 to 0.25 wt.%
183 and from 0.31 to 0.22 wt.% in CPJ7AC and CPJ7AD, respectively (not represented in Figure 2).
184 On average, the decrease in Ta content in the metal was calculated at 25%. The opposite was
185 observed in the slag where the Ta content in the virgin slag, prior to ESR, was below the
186 detectable amount from XRF analysis (<0.001 wt.%). Following remelting, almost 2 wt.% Ta
187 was measured in the used slag. From the chemistry for oxides reported in Table IV, 1.66 wt.%
188 Ta_2O_5 was measured in the slag after ESR. MnO_2 and Cr_2O_3 were also detected. The
189 concentration of CaF_2 , CaO and MgO decreased and the Al_2O_3 content increased. Interestingly, a
190 significant increase in the concentration of SiO_2 from 0.74 to 3.22 wt.% was also measured from
191 XRF. This was associated with a decrease in the concentration of Si in the metal, as reported in
192 Table V. On average, a 51% decrease in Si content was measured from ESR of the three CPJ7Z,
193 CPJ7AA and CPJ7AB heats.


194

195
196
197
198

199 Observation of the microstructure of the CPJ7Z and CPJ7AC alloys in the SEM
200 following VIM and ESR revealed two Ta-containing precipitate phases present after each melt
201 sequence. The first was the interdendritic phase that commonly originates from elemental
202 segregation during solidification, Figure 3. EPMA analysis revealed major partitioning of Ta and
203 Nb, and less significant partitioning of Si, C and V. The phase was relatively depleted of Fe, Cr
204 and, less significantly, of Co. The second phase was identified as Ta_2O_5 inclusions, Figure 4a.
205 Relatively significant partitioning occurred for Si and V, with less partitioning for Mn and C
206 (EPMA elemental maps of Figure 4b). Note that the Mn-rich region on the left of the inclusion of
207 Figure 4b was identified as MnS.

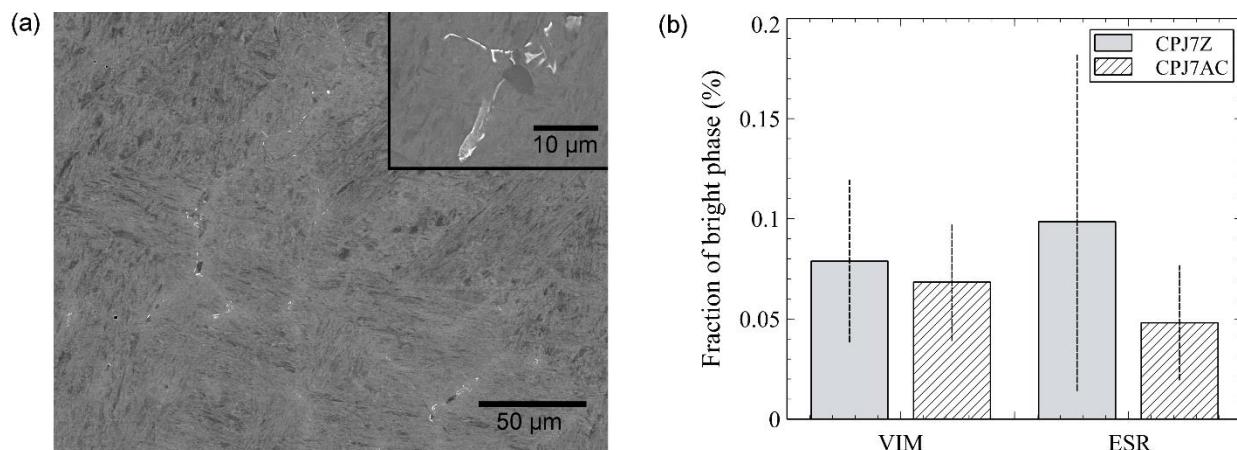

208

209

210 Fig. 3- EPMA elemental maps showing the interdendritic phase in CPJ7AC following VIM.

211

212

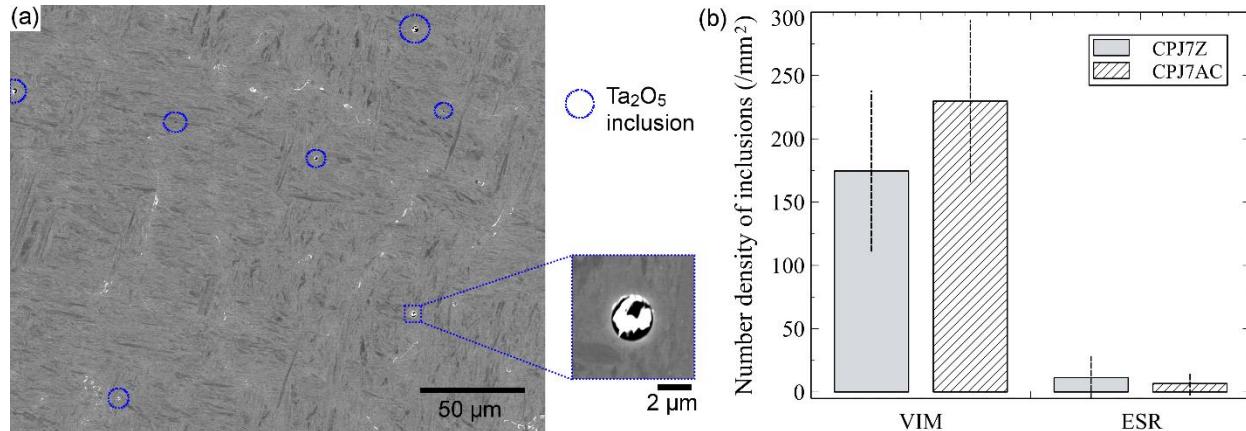

213 Fig. 4- EPMA elemental maps on Ta_2O_5 inclusions with (a) atomic percent concentration for Ta
214 and O and (b) with the constituting elements of the alloy.

215

216 The interdendritic phase appeared throughout the microstructure and primarily at the
217 grain boundaries. The precipitates appeared bright in the SEM (from the atomic number
218 difference of Ta) and in the form of small plates as observed in Figure 5a. It should be noted that
219 a brighter shadow can be observed on the SEM micrograph of Figure 5a which may be caused by

220 elemental segregation as the alloy was not homogenized at that stage. While, the fraction and
221 morphology of the interdendritic precipitates did not change visually from post-VIM to post-ESR
222 condition, the area fraction was calculated and reported in Figure 5b for better accuracy. The
223 results confirmed that no significant variation in the fraction of the precipitates occurred during
224 ESR particularly considering the standard deviations over more than 10 regions similar to that of
225 the SEM image in Figure 5a. The large standard deviations are attributed to the fine structure of
226 the phase and its dependence on the grain size since the precipitates formed primarily at the grain
227 boundaries and the cast structure is not homogeneous. Thus, the average fraction of the
228 interdendritic phase in CPJ7Z and CPJ7AC was calculated at approximately 0.07%.

229

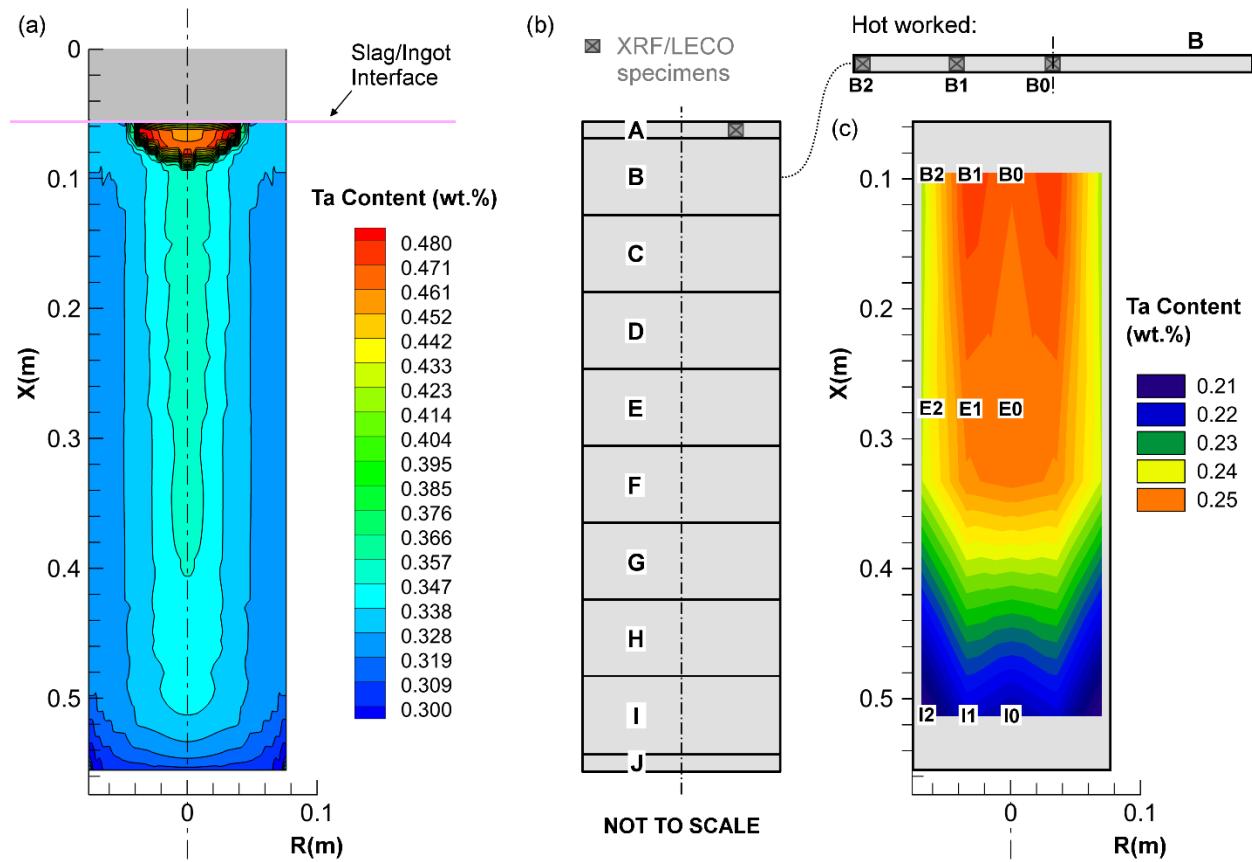

230
231 Fig. 5- (a) SEM images of the interdendritic phase found in the ESR electrode and resulting ingot
232 with (b) calculated phase fraction from image analysis.

233

234 The second Ta-containing precipitate phase was found in the form of Ta_2O_5 inclusions,
235 Figure 6a. On average, the number density of inclusions was calculated at 196 inclusions/ mm^2
236 following VIM, Figure 6b, which represents an average of 11 inclusions on the SEM region of
237 Figure 6a for visual reference. Following ESR, only 9 inclusions/ mm^2 remained in the

238 microstructure which represents an average of 0.5 inclusions in the surface of Figure 6a.
239 Consequently, the ESR process resulted in a 95% reduction in the number density of inclusions
240 in the CPJ7 alloy. The inclusions were measured to have an average diameter of $1.5 \pm 0.6 \mu\text{m}$.

241


242
243 Fig. 6- (a) SEM images of inclusions found in the VIM ingots (i.e. ESR electrodes) and (b)
244 calculated number density from image analysis following VIM and ESR for CPJ7Z and
245 CPJ7AC.

246

247 The MeltFlow-ESR simulations were used to plot the predicted Ta content in CPJ7AC
248 following ESR in Figure 7a. In this ingot, the concentration of Ta in the electrode was measured
249 using XRF at 0.33 wt.% and this value was used as input in the simulations. The nominal
250 (targeted) concentration of 0.33 wt.% is found in light blue between the center line and the outer
251 radius. The lowest Ta content was found around the bottom of the ingot at approximately 0.29
252 wt.%. In the section of the ingot melted in steady state, the Ta content was higher around the
253 centerline, above the nominal value, and decreased to below the nominal value at the outer
254 radius. At $X = 0.2 \text{ m}$ for reference, the calculated Ta concentration was 0.35 wt.% at the
255 centerline of the ingot ($R = 0 \text{ m}$) and 0.32 wt.% at the outer radius.

256 A schematic of the sectioned ingot is represented in Figure 7b with the chemistry slice
 257 (A) used for XRF and LECO analyses and the various thick slices used for hot working to 13
 258 mm thick plates. The Ta content from XRF analysis on the B, E and I plates was mapped in
 259 Figure 7c. First, the Ta content from XRF on the chemistry slice A was measured at 0.25 wt%.
 260 Similar values were obtained at B0, B1, E0 and E1. The XRF-determined Ta concentration was
 261 found to decrease toward the outer radius to 0.237 wt% at B2 and 0.238 wt% at E2, and more
 262 so towards the bottom of the ingot with values of 0.215, 0.219 and 0.207 wt% at I0, I1 and I2,
 263 respectively. Note that the variations in Ta content recorded on the XRF throughout the radius
 264 of the ingot are only relevant with an added significant figure when compared to those from the
 265 MeltFlow-ESR simulations.

266

267

268 Fig. 7- (a) MeltFlow-ESR predicted Ta concentration throughout the solidified ingot in CPJ7AC,
269 (b) schematic of the ingot cut into slices for hot working with the resulting plates for chemistry
270 specimens and (c) XRF measured Ta concentration obtained at three times three locations in the
271 ingot CPJ7AC (slices B, E and I).

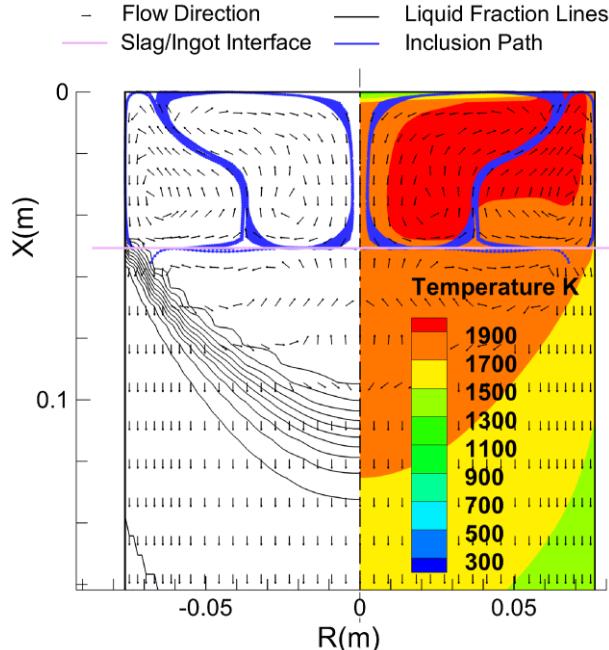
272

273 **IV. Discussion**

274 A 25% decrease in the Ta content of martensitic steel CPJ7 was observed from VIM to
275 ESR in ingots prepared using standard industry practices. Tantalum is used in CPJ7 primarily to
276 form the MX precipitate phase and improve resistance to creep deformation. In the cast
277 condition, the interdendritic phase was observed in Figures 3 and 5a and its presence resulted
278 from the segregation of reactive elements, particularly Ta and Si. The interdendritic phase is
279 dissolved later after the alloy undergoes the homogenization heat treatment cycle, while the MX
280 phase forms during subsequent aging. The morphology of the interdendritic phase did not
281 visually change after ESR as well as its calculated fraction (see Figure 5b). Thus, the
282 interdendritic phase does not influence the overall Ta concentration measurements for the alloys
283 particularly considering the use of XRF (large sampling area). Therefore, from the results
284 presented, it is evident that the strong presence of Ta_2O_5 inclusions following VIM and the 95%
285 decrease in number density of said inclusions during ESR is the main reason for the decrease in
286 concentration of Ta in the ingot and increase in the slag during ESR.

287 Prior to starting the melt in the 136 kg capacity VIM furnace, the chamber was pumped
288 down to approximately 30 μ Hg pressure. A leak rate test over a one-minute time range was
289 systematically performed before backfilling to the desired nitrogen pressure (that leads to the N
290 concentration in the alloy) and 200 torr argon gas. On average, the leak rates were approximately
291 6.5 μ Hg/min which is acceptable in the industry. Thus, some oxygen is expected to originate

292 from outside air, but the amount should be relatively limited. Another source of oxygen,
293 however, is the raw Cr which contains 5000 ppm O. With 10 wt.% Cr in the CPJ7 alloys, 500
294 ppm O is already present in the melt charge, originating from the raw Cr only. Therefore, with
295 oxygen concentrations in the electrode between 40 and 70 ppm following VIM, the VIM process
296 was particularly effective at removing oxygen from the melt, Figure 1. While this can be
297 attributed to oxides floating on top of the liquid metal during VIM or attaching to the VIM skull
298 (particularly Cr-oxides), some of the oxygen reacted with Ta to form Ta_2O_5 inclusions, Figures 4
299 and 6a.


300 To compare the influence of the leak rate and raw Cr on the oxygen content and amount
301 of Ta_2O_5 inclusions following VIM, two smaller CPJ7 melts were performed in a 9 kg capacity
302 VIM furnace that has a sub-micron leak rate. The findings after melting are reported in Table VI.
303 In the first melt, the leak rate was measured at 0.73 $\mu\text{Hg}/\text{min}$. When using 5000 ppm O
304 containing Cr, the measured oxygen content in the VIM ingot from LECO analysis was 74 ppm
305 which is close to that measured in the large CPJ7 VIM ingots. SEM analysis further revealed the
306 presence of Ta_2O_5 inclusions with a number density of 111 inclusions/ mm^2 , which is less than
307 the results contained in Figure 6. This suggests that the lower leak rate was beneficial in
308 preventing Ta_2O_5 formation.

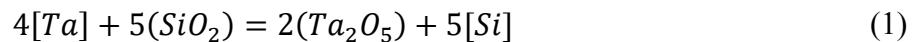
309 In the second melt, the leak rate measured was comparable at 0.34 $\mu\text{Hg}/\text{min}$ and a higher-
310 grade Cr was used (400 ppm O). LECO analysis revealed 105 ppm O concentration in the VIM
311 ingot following melting while SEM analysis showed a density of inclusions of 136
312 inclusions/ mm^2 . Thus, it might be necessary to use even higher purity melt stock to prevent the
313 formation of the Ta-oxides. It should be noted that the oxygen content from the 9 kg furnace
314 ingots were higher than from the 136 kg furnace. This may be attributed to the different location

315 were specimens were extracted for analysis (bottom of large heat and top of small heats).
316 Furthermore, oxygen can originate from other elements (not tracked or discussed).

317 The removal of inclusions during ESR is primarily driven by their absorption and
318 dissolution in the slag^[24] while some travel in the moving fluid.^[25,26] Mixing in the slag
319 originates from the slag losing heat from both the melting electrode and the water-cooled copper
320 crucible, as observed on the temperature gradient of Figure 8 at $X = 0$ m and $R = 0.076$ m in the
321 slag (described in Reference ^[27]). This creates two flow loops in the simulations described in
322 Figure 8 that can be identified from the liquid direction in the slag. For inclusions traveling in the
323 slag, the model describes the inclusion trajectories assuming no dissolution and by introducing
324 them under the slag/metal interface from the center ($R = 0$ m) to $R = 0.057$ m, the radius of the
325 electrode. It was found in Figure 8 that, due to their relative density and sizes, most inclusions
326 travelled around the center loop, below the electrode, while some travelled around the outer loop.
327 Few trajectories were predicted to enter the liquid metal in the mushy zone, adding to the non-
328 complete removal of inclusions observed in Figure 6b. It should be noted that the decrease in
329 oxygen from VIM to ESR observed in Figure 1c correlates to the removal of inclusions from the
330 VIM electrode.

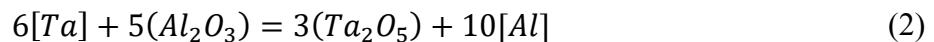
331

332


333 Fig. 8- MeltFlow-ESR simulation of Ta_2O_5 inclusion travel during ESR of CPJ7AC for a range
 334 of relative densities ρ_r (0.8, 0.9, 1, 1.1 and $1.2\rho_r$) and a $1\ \mu m$ particle size with flow direction,
 335 liquid fraction lines and temperature gradient in the slag, sump and solidified ingot.

336

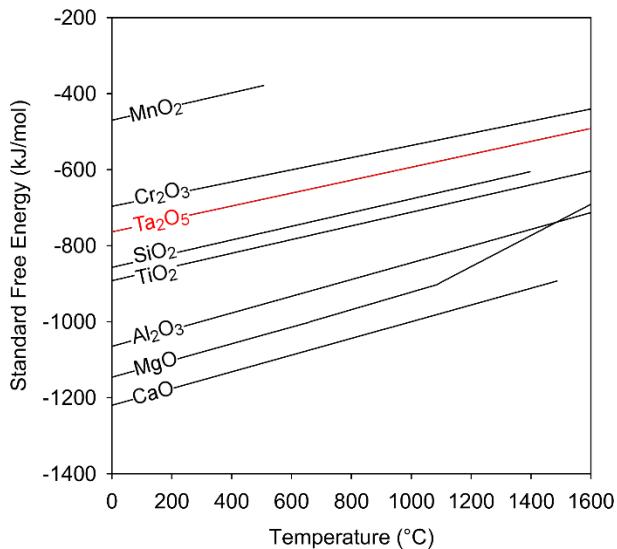
337 The macrosegregation observed in Figure 7 is a known product of ESR and has been
 338 described for Nb in Alloy 625 by Fezi et al.^[28]. During solidification of the liquid metal, the
 339 interdendritic liquid becomes enriched with Ta due to its partitioning coefficient respective to the
 340 bulk composition. The liquid motion in the sump causes the interdendritic front to move towards
 341 the ingot centerline and limits its travel towards the outer radius, since liquid motion is weaker in
 342 the center of the molten metal pool, and eventually creates the radial variations observed in
 343 Figure 7a. The longitudinal variations are attributed to the enrichment in Ta of the melt pool
 344 throughout the melt, and thus, throughout solidification of the ingot thereby causing a slight
 345 increase in concentration from bottom to top, as described by Kelkar et al.^[18]. The partitioning
 346 predicted in Figure 7a is confirmed experimentally on part of the ingot in Figure 7c. The trends
 347 between computational and experimental results agree, while the differences in values are


348 attributed to the overall Ta loss from the removal of inclusions not captured with respect to
349 elemental concentration in the simulations. It should be noted that the macrosegregation
350 observed in Figure 7 can influence the calculation of the Ta loss from the removal of inclusions
351 depending on the location of the XRF specimens. However, the losses presented in the results
352 section, and in Figure 2, were calculated using specimens extracted from slice A (Figure 7b) in
353 consistent locations and that were shown to present Ta concentrations representative of the
354 centerline up to mid-radius of the ESR ingot, on the higher end of the concentration range, which
355 mitigates the influence of macrosegregation.

356 Although the Ta loss from VIM to ESR is attributed to the removal of the Ta_2O_5
357 inclusions, possible reactions may have occurred between the liquid metal and slag during ESR
358 thereby contributing to the variation in Ta content. The simplified Ellingham diagram for
359 selected oxides is shown in Figure 9 using the data from Reference ^[29]. While falling above some
360 of the slag constituents on the diagram, Ta_2O_5 is a very stable oxide, along with SiO_2 and TiO_2 .
361 As reported in Figure 4b, the Ta_2O_5 inclusions show strong partitioning of Si and the slag
362 composition following ESR showed elevated concentrations of not only Ta_2O_5 but also SiO_2 ,
363 Table IV. It is common for certain slags to contain SiO_2 , particularly for remelting of steels as it
364 improves lubrication and leads to a better ingot surface quality.^[30] However, the authors also
365 underlined the possible reaction between SiO_2 and highly reactive elements such as Al and Ti to
366 explain why SiO_2 containing slags are avoided during ESR of Ni-based superalloys. The
367 following reaction exists between Ta and SiO_2 in a slag-iron system^[31]:

368 From the reaction of Eq. 1, the Ta in the electrode could have oxidized due to SiO_2 from the slag,
369 however, the reaction would only be possible when enough SiO_2 is also transferred to the slag

370 from dissolution of the inclusions. Therefore, this reaction is unlikely to have contributed to the
371 loss of Ta, particularly considering the low concentration of SiO_2 in the slag chemistry, Table II,
372 and the loss of Si in the metal, Table V. Another factor potentially influencing Ta loss remains
373 the potential oxidation of Ta by the slag constituents. Alumina is a primary suspect as an
374 increase in the Al concentration was measured in the metal before and after ESR from 90 to 140
375 ppm. Similar to the reaction of Al_2O_3 with Ti in superalloys,^[32] the reaction of Ta and Al_2O_3 can
376 be expressed as follow:



377 It should be noted that a similar reaction could take place between Si and Al_2O_3 as described by
378 Shi et al.^[33] which can also account for the increased Al content in the metal following ESR:

379 However, the contributions of Equation 2 to the loss of Ta is expected to be far less than that of
380 the inclusion removal with regards to the decrease in oxygen content from VIM to ESR (Figure
381 1) and increase in Al_2O_3 in the slag. Nevertheless, more research is needed to assess oxidation of
382 Ta during ESR particularly as a function of slag chemistry. This will require electrodes with few
383 Ta_2O_5 inclusions to reduce the number of variables which, according to the Ellingham diagram,
384 will be challenging as Ta_2O_5 is more stable than Cr_2O_3 , illustrating the difficulty of avoiding Ta-
385 oxide inclusion formation during VIM.

386

387
388 Fig. 9- Ellingham diagram for select oxides. Data extracted from Reference ^[29].
389

390 **V. Conclusions**

391 Vacuum induction melting and electroslag remelting of a novel Ta-containing martensitic steel
392 were performed to study the evolution of Ta throughout the process. The following conclusions
393 are reported:

394 1. The Ta content in CPJ7 decreased by 25% during ESR which was attributed to the
395 formation of Ta_2O_5 inclusions during VIM and subsequent 95% reduction in number
396 density of inclusions during ESR.

397 2. Ta is a highly reactive element and is prone to the formation of Ta_2O_5 oxides during VIM
398 when the selected melt stock contains significant amounts of oxygen. Tantalum oxide
399 formation in this investigation was slightly influenced by the leak rate, more so than the
400 starting pressure during VIM for a leak rate range from sub-micron to $\sim 10 \mu\text{Hg}/\text{min}$ and a
401 pressure range from around 0.04 to 50 μHg .

402 3. Macrosegregation of Ta was predicted from CFD-based simulations and confirmed
403 experimentally using XRF measurements. The Ta concentration was higher at the
404 centerline of the ESR ingot and decreased towards the outer radius and the bottom of the
405 ingot.

406 4. The fraction and morphology of the Ta-containing interdendritic phase forming during
407 solidification from elemental segregation did not significantly change from the VIM to
408 the ESR condition.

409

410 **Acknowledgements**

411 This work was performed in support of the US Department of Energy's Fossil Energy
412 Crosscutting Technology Research Program. The Research was executed through the NETL
413 Research and Innovation Center's Advanced Alloy Development Field Work Proposal. Research
414 performed by Leidos Research Support Team staff was conducted under the RSS contract
415 89243318CFE000003. The authors would like to thank Mr. Edward Argetsinger and Mr. Joseph
416 Mendenhall for assistance in melting, Mr. Richard Chinn for XRF analysis, Mr. Peter Hsieh and
417 Mr. Christopher McKaig for LECO analysis, Mr. Matthew Fortner for metallographic
418 preparation and Mr. Keith Collins for EPMA. The authors would also like to thank Kanchan M.
419 Kelkar from Innovative Research LLC and Krzysztof Wroblewski from American Flux & Metal
420 LLC for the useful discussions.

421

422 **Disclaimer**

423 This project was funded by the Department of Energy, National Energy Technology Laboratory,
424 an agency of the United States Government, through a support contract with Leidos Research
425 Support Team (LRST). Neither the United States Government nor any agency thereof, nor any of
426 their employees, nor LRST, nor any of their employees, makes any warranty, expressed or
427 implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
428 usefulness of any information, apparatus, product, or process disclosed, or represents that its use
429 would not infringe privately owned rights. Reference herein to any specific commercial product,
430 process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
431 constitute or imply its endorsement, recommendation, or favoring by the United States
432 Government or any agency thereof. The views and opinions of authors expressed herein do not
433 necessarily state or reflect those of the United States Government or any agency thereof.

434

435 **References**

436 1 G. Hoyles: *Electroslag Processes: Principles and Practice*, Applied Science Publishers
437 Co., Inc., New York, 1983.

438 2 A. Mitchell: in *LMPC 2005 - Proceedings of the 2005 International Symposium on Liquid*
439 *Metal Processing and Casting*, P.D. Lee, ed., ASM International, Materials Park, Ohio,
440 USA, 2005, pp. 195–200.

441 3 G.E. Maurer and A.D. Patel: in *LMPC 2005 - Proceedings of the 2005 International*
442 *Symposium on Liquid Metal Processing and Casting*, ASM International, Materials Park,
443 Ohio, USA, 2005.

444 4 F.N. Darmara: *JOM*, 1967, vol. 19, pp. 42–8. DOI: 10.1007/BF03378664

445 5 D. Hou, Z.-H. Jiang, Y.-W. Dong, Y. Li, W. Gong, and F.-B. Liu: *Metall. Mater. Trans.*
446 *B*, 2017, vol. 48, pp. 1885–97. DOI: 10.1007/s11663-017-0921-0

447 6 M. Detrois and P.D. Jablonski: in *LMPC 2017: Proceedings of the Liquid Metal*
448 *Processing & Casting Conference 2017*, M.J.M. Krane, R.M. Ward, S. Rudoler, A.J.
449 Elliott, and A. Patel, eds., TMS, Philadelphia, PA, 2017, pp. 75–84. DOI:
450 10.2172/1406915

451 7 ASM: in *ASM Handbook, Volume 15: Casting*, ASM International, Materials Park, Ohio,
452 USA, 2008, pp. 1–8.

453 8 C. Shi, X. Chen, and H. Guo: *Int. J. Miner. Metall. Mater.*, 2012, vol. 19, pp. 295–302.
454 DOI: 10.1007/s12613-012-0554-x

455 9 M. Detrois and P.D. Jablonski: in *Proceedings of the 9th International Symposium on*
456 *Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications*, E. Ott, X.
457 Liu, J. Andersson, Z. Bi, K. Bockenstedt, I. Dempster, J. Groh, K. Heck, P.D. Jablonski,
458 M. Kaplan, D. Nagahama, and C. Sudbrack, eds., Springer International Publishing,
459 Pittsburgh, PA, 2018, pp. 287–302. DOI: 10.1007/978-3-319-89480-5_17

460 10 T.R. Bandyopadhyay, P.K. Rao, and N. Prabhu: *Metall. Min. Ind.*, 2012, vol. 4, pp. 6–16.

461 11 B. Arh, B. Podgornik, and J. Burja: *Mater. Tehnol.*, 2016, vol. 50, pp. 971–9. DOI:
462 10.17222/mit.2016.108

463 12 US9556503B1: 2017.

464 13 A. Choudhury: *ISIJ Int.*, 1992, vol. 32, pp. 563–74. DOI: 10.2355/isijinternational.32.563

465 14 W. Köck and P. Paschen: *JOM*, 1989, vol. 41, pp. 33–9. DOI: 10.1007/BF03220360

466 15 P.D. Jablonski and J.A. Hawk: in *Proceedings of the 2013 International Symposium on*
467 *Liquid Metal Processing & Casting*, M.J.M. Krane, A. Jardy, R.L. Williamson, and J.J.
468 Beaman, eds., Springer International Publishing, Cham, 2013, pp. 315–9. DOI:
469 10.1007/978-3-319-48102-9_45

470 16 J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: *Calphad Comput.*
471 *Coupling Phase Diagrams Thermochem.*, 2002, vol. 26, pp. 273–312. DOI:
472 10.1016/S0364-5916(02)00037-8

473 17 P.D. Jablonski, M. Cretu, and J. Nauman: in *LMPC 2017: Proceedings of the Liquid*
474 *Metal Processing & Casting Conference 2017*, M.J.M. Krane, R.M. Ward, S. Rudoler,
475 A.J. Elliott, and A. Patel, eds., TMS, Philadelphia, PA, 2017, pp. 157–62.

476 18 K.M. Kelkar, S. V. Patankar, S.K. Srivatsa, R.S. Minisandram, D.G. Evans, J.J.
477 DeBarbadillo, R.H. Smith, R.C. Helmink, A. Mitchell, and H.A. Sizek: in *Proceedings of*
478 *the 2013 International Symposium on Liquid Metal Processing & Casting*, M.J.M. Krane,
479 A. Jardy, R.L. Williamson, and J.J. Beaman, eds., Springer, Cham, 2013, pp. 3–12. DOI:
480 10.1007/978-3-319-48102-9_1

481 19 N. Saunders, Z. Guo, X. Li, A.P. Miodownik, and J.P. Schillé: *Jom*, 2003, vol. 55, pp. 60–
482 5. DOI: 10.1007/s11837-003-0013-2

483 20 D.D. Gohil and K.C. Mills: *Arch. für das Eisenhüttenwes.*, 1981, vol. 52, pp. 335–40.
484 DOI: 10.1002/srin.198104944

485 21 B. Birol, G. Polat, and M.N. Saridede: *JOM*, 2015, vol. 67, pp. 427–35. DOI:
486 10.1007/s11837-014-1230-6

487 22 K.M. Kelkar, S. V. Patankar, and A. Mitchell: in *LMPC 2005: Proceedings of the 2005*
488 *International Symposium on Liquid Metal Processing and Casting*, 2005, pp. 1–8.
489 http://inresllc.com/assets/files/meltflow/ESR-Model_LMPC-2005-Conference.pdf

490 23 P.D. Jablonski and J.A. Hawk: *J. Mater. Eng. Perform.*, 2017, vol. 26, pp. 4–13. DOI:

491 10.1007/s11665-016-2451-3

492 24 Y. Dong, Z. Jiang, Y. Cao, A. Yu, and D. Hou: *Metall. Mater. Trans. B*, 2014, vol. 45, pp.
493 1315–24. DOI: 10.1007/s11663-014-0070-7

494 25 Q. Wang, R. Wang, Z. He, G. Li, B. Li, and H. Li: *Int. J. Heat Mass Transf.*, 2018, vol.
495 125, pp. 1333-44. DOI: 10.1016/j.ijheatmasstransfer.2018.04.168

496 26 X. Huang, B. Li, Z. Liu, X. Li, and M. Sun: *Metals (Basel)*., 2018, vol. 8, p. 392. DOI:
497 10.3390/met8060392

498 27 A.S. Ballantyne: in *LMPC 2017: Proceedings of the Liquid Metal Processing & Casting*
499 *Conference 2017*, M.J.M. Krane, R.M. Ward, S. Rudoler, A.J. Elliott, and A. Patel, eds.,
500 TMS, Philadelphia, PA, 2017, pp. 177–82.

501 28 K. Fezi, J. Yanke, and M.J.M. Krane: *Metall. Mater. Trans. B Process Metall. Mater.*
502 *Process. Sci.*, 2015, vol. 46, pp. 766–79. DOI: 10.1007/s11663-014-0254-1

503 29 U. of Cambridge: DoITPoMS Ellingham Diagrams.

504 30 C. Bin Shi, J. Li, J.W. Cho, F. Jiang, and I.H. Jung: *Metall. Mater. Trans. B Process*
505 *Metall. Mater. Process. Sci.*, 2015, vol. 46, pp. 2110–20. DOI: 10.1007/s11663-015-0402-
506 2

507 31 Q. Han, J. Deng, S. Huang, and Y. Fang: *Metall. Trans. B*, 1990, vol. 21, pp. 873–8. DOI:
508 10.1007/BF02657813

509 32 Z. Jiang, D. Hou, Y. Dong, Y.-L. Cao, H. Cao, and W. Gong: *Metall. Mater. Trans. B*,
510 2016, vol. 47, pp. 1465–74. DOI: 10.1007/s11663-015-0530-8

511 33 C. Shi, H. Wang, and J. Li: *Metall. Mater. Trans. B*, 2018, vol. 49, pp. 1675–89. DOI:
512 10.1007/s11663-018-1296-6

513

514

515 **Table I. Composition Range of the CPJ7 Martensitic Steel Investigated with Fe Balanced**
 516 **(Wt. Pct)^[12]**

Cr	Mo	C	Mn	Si	Ni	V	Nb	N	W	Co	Ta	Cu	B
Min.	9.75	1.0	0.13	0.25	0.08	0.15	0.15	0.05	0.015	0.25	1.35	0.20	0.003
Max.	10.25	1.5	0.17	0.50	0.15	0.30	0.25	0.08	0.035	0.75	1.65	0.30	0.0110

517

518 **Table II. Slag Chemistry from Vendor (Wt. Pct)**

CaF ₂	CaO	MgO	Al ₂ O ₃	SiO ₂	C	S	MnO ₂	Fe	TiO ₂	P	LOI
38.94	31.50	0.691	28.81	0.16	0.001	0.013	0.006	0.054	0.102	<0.01	0.036

519

520 **Table III. Thermo-Physical Parameters Used in the Simulations**

	Slag	Metal
Liquid Density	2.67×10 ³ kg/m ³	7.11×10 ³ kg/m ³
Solid Density	2.90×10 ³ kg/m ³	7.46×10 ³ kg/m ³
Volume Expansion Coefficient (Liquid)	1.30×10 ⁻⁴ /K	4.13×10 ⁻⁵ /K
Solidus Temperature	1587 K (1314 °C)	1468 K (1195°C)
Liquidus Temperature	1673 K (1400 °C)	1763 K (1490°C)
Latent Heat	4.30×10 ⁵ J/kg	1.85×10 ⁵ J/kg
Electrical Conductivity (Liquid)	1.82×10 ² /Ω-m	8.72×10 ⁵ /Ω-m
Thermal Conductivity (Liquid)*	0.5 W/m-K	38.7 W/m-K
Specific Heat (Liquid)*	1.23×10 ³ J/kg-K	7.96×10 ² J/kg-K
Viscosity (Liquid)*	3.90×10 ⁻² kg/m-s	7.10×10 ⁻³ kg/m-s
Emissivity	0.90	-

521 *Additional values were used as a function of temperature

522

523 **Table IV. Concentration of Specific Oxides in the Slag Before and After ESR of CPJ7Z**
 524 **from XRF (Wt. Pct)**

	CaF ₂	CaO	MgO	Al ₂ O ₃	SiO ₂	MnO ₂	TiO ₂	Ta ₂ O ₅	Cr ₂ O ₃
Before	53.28	27.50	0.58	17.20	0.74	-	-	-	-
After	48.49	26.26	0.42	18.75	3.22	0.14	-	1.66	0.35

525

526 **Table V. Concentration of Si in the Metal and Slag Before and After ESR from XRF (Wt.**
 527 **Pct)**

		CPJ7Z	CPJ7AA	CPJ7AB
Metal	Before	0.09	0.10	0.08
	After	0.04	0.06	0.04
Slag	Before	0.41	-	-
	After	1.79	-	-

528

529

530

531

532 **Table VI. Oxygen Content and Inclusion Density Following VIM of CPJ7 Ingots Under**
 533 **Various Conditions**

Furnace	Charge Weight (kg)	O Content in Cr (ppm)	Pressure at Start (μHg)	Leak Rate ($\mu\text{Hg}/\text{min}$)	O Content (ppm)	Number Density of Inclusions (mm^{-2})
136 kg*	77	~5000	29.6 \pm 8.7	6.5 \pm 1.9	56 \pm 8	196 \pm 67
9 kg	7	~5000	0.042	0.73	74 \pm 13	111 \pm 41
	7	~400	0.028	0.34	105 \pm 5	136 \pm 41

534 * Average between the ingots Z, AA, AB, AC and AD with standard deviations.

535