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INTRODUCTION AND MOTIVATION



NOT ONLY MECHANICS...

e nonlocal models for continuum mechanics
e stochastic jump processes

e nonlocal heat conduction

e subsurface flow/porous media

e image processing

—_—

Wikipedia Bobaru, 2012 Buades, 2010

M. D'Elia — mdelia@sandia.gov @ Sandia National Laboratories



NOT ONLY MECHANICS...

e nonlocal models for continuum mechanics
e stochastic jump processes

e nonlocal heat conduction

e subsurface flow/porous media

e image processing

applicability: nonlocal diffusion operators

Lu(z) = / (u(y) — u(@)) 1, y) dy

(...or more complex operators, more later)
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MECHANICS

e interactions can occur at distance, without contact

; /E . interaction domain
e: interaction radius
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MECHANICS

e interactions can occur at distance, without contact

e used in many scientific and engineering applications, where the material dynamics
depends on microstructure

e example: nonlocal continuum mechanics theories, e.g. peridynamics and physics-
based nonlocal elasticity which can model fractures and material failures

e nonlocal models accurately resolve small scale features, e.g. dislocations

/&‘ — interaction domain
| e: interaction radius
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MECHANICS

e interactions can occur at distance, without contact

e used in many scientific and engineering applications, where the material dynamics
depends on microstructure

e example: nonlocal continuum mechanics theories, e.g. peridynamics and physics-
based nonlocal elasticity which can model fractures and material failures

e nonlocal models accurately resolve small scale features, e.g. dislocations

/E? — interaction domain
| €: Interaction radius

M. D'Elia — mdelia@sandia.gov @ Sandia National Laboratories



MECHANICS

facts:
e a recently developed theoretical and numerical analysis allows us to study

nonlocal problems similarly to the local (classical) counterpart,

e we have numerical convergence results for finite element approximations
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MECHANICS

facts:
e a recently developed theoretical and numerical analysis allows us to study

nonlocal problems similarly to the local (classical) counterpart

e we have numerical convergence results for finite element approximations

challenges: accuracy comes at a price!

e the numerical solution might be prohibitively expensive

e prescription of nonlocal “boundary conditions” is not straightforward
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COUPLING

“Whenever you can use a local model, do it”, Q. Du

— M. D'Elia, M. Perego, P. Bochev, D. Littlewood, A coupling strategy for local and
nonlocal diffusion models with mixed volume constraints and boundary
conditions, Computers and Mathematics with applications, 2015

— M. D'Elia, P. Bochev, Formulation, analysis and computation of an optimization-
based local-to-nonlocal coupling method, submitted, 2018



WHAT ABOUT COUPLING?

Goal: merge two fundamentally different
mathematical descriptions of the same physical
phenomena: PDEs and nonlocal models

overlap

nonlocal
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WHAT ABOUT COUPLING?

Goal: merge two fundamentally different
mathematical descriptions of the same physical
phenomena: PDEs and nonlocal models

overlap

nonlocal

Literature

(2012) Han and Lubineau: extension of the Arlequin method to continuum
mechanics, energy blending

(2012) Lubineau et al.: morphing approach, blending of material properties
(2013) Seleson et al.: force blending
(2015) Silling et al.: variable horizon

(2017) Tian and Du.: heterogeneous localization via nonlocal trace theorems
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WHAT ABOUT COUPLING?

Our strategy split the computational domain in a local and a nonlocal domain
and couple the models at the interfaces or overlapping regions

, overlap ~__ physical BC

nonlocal local virtual BC
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WHAT ABOUT COUPLING?

Our strategy split the computational domain in a local and a nonlocal domain
and couple the models at the interfaces or overlapping regions

/ overlap ~__ physical BC

nonlocal local virtual BC

Contribution: design a coupling method that
e passes the patch test

e allows for separate softwares/solvers/meshes for the local
and nonlocal problems
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OUTLINE

e Notation

e The Dirichlet diffusion problem: formulation and analysis

e The static peridynamic problem

1. formulation and finite dimensional approximation
2. efficiency improvement

3. from local to nonlocal boundary conditions



NOTATION



NONLOCAL VECTOR CALCULUS

Interaction domain of an open bounded region w € R

n={y eRN\w: a(z,y)#0, z cw},
Define: Q@ =wUn

Kernel: we assume

y(z,y) >0 Yy e Be(z) K / e
Yz, y) =0 YyecQ)\B.(z), e

Bo(x)={yeQ: |x—y|<e, xcw}
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PERIDYNAMICS/NONLOCAL ELASTICITY

kernel
1
v(way)—0|w_y| for |z —y|<e |
1]
_ W |
Cu(z) = O / u(y) — u(z) dy N
T — vy €T
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FRACTIONAL KERNELS

kernel:

1
v(x,y)=C =g s€(0,1),e=0c

= C
/ z — yln“s




FRACTIONAL KERNELS

kernel:
1
v(x,y)=C =g s€(0,1),e=0c
=C
/ z — yln“s
applications:

— stochastic jump processes (« stable Lévy processes

— subsurface flow, s € (0, 1) is the rate of the
mean square displacement of the diffusing quantity

groundwater flow



THE OPTIMIZATION PROBLEM

— M. D'Elia, M. Perego, P. Bochev, D. Littlewood, A coupling strategy for local
and nonlocal diffusion models with mixed volume constraints and boundary

conditions, Computers and Mathematics with applications, 2015

— M. D'Elia, P. Bochev, Formulation, analysis and computation of an

optimization-based local-to-nonlocal coupling method, submitted, 2018



MODEL PROBLEMS

The nonlocal problem

{—Eun = fn xTEW

where o, € V(1) and f,, € L?(w)
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MODEL PROBLEMS

The nonlocal problem

{—Eun = fn xTEW

U, = O0Onp T ET,

where o, € V(1) and f,, € L?(w)

e—0

The local problem: Poisson equation

—Au; = fi xe€Q
u; = 0y CBE(?Q,

where oy € Hz(99Q) and f; € L2(Q)
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LtN COUPLING
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LtN COUPLING

State equations

—Lu, = f n
u, = 0,
u, = 0
D
Te ®

M. D'Elia — mdelia@sandia.gov

x € w,
T € N,
T €D

—Aul
uy
uj

J1
0,
0

x €
xel,
x el'p
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LtN COUPLING

Optimization problem

1
min  J(u,.w)= min —=|u, —u
unaulaenael ( " l) unaulaenael || " l‘
S.t. Un — H,n €Tr & Ne B
u, = 0 xc€np
D
T)e &
Wn i

M. D'Elia — mdelia@sandia.gov
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0,82,
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0

x €
x el
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LtN COUPLING

LtN solution e optimal solution: (6},60f) € ©,, x 6,

wi(0r) zeqQ,

LtN solution: =
® solution {UT(QZ*) zem\Q,
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IS THE SOLUTION UNIQUE?

Reduced form:

_ ! 2
it J (6, 1) = i o [lun () —w(@)lo g,
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IS THE SOLUTION UNIQUE?

Reduced form:

1

min J(0, 6;) = min o [lun(6n) — w (05,0,

Solution splitting:
Up = Vn (0r) +ul and u; = v (60;) +

harmonic components v,, and v;

—Lv, =0 xcw, —Avy; =0 xelYy
v, =6, xEN and vy =60, xxel,
+VC +BC
homogeneous components 42 and u?
—Lud =f, TEw, —Au? = f; @ €
v, =0 xeEN and vy =0 xel)y
+VC +BC
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IS THE SOLUTION UNIQUE?

Reduced functional:

1
T(0n,00) = 5 [0 (0n) =01 (O[30, + (uS = v (0) 0 (6))

9 o
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IS THE SOLUTION UNIQUE?

Reduced functional:

1
T(0n,00) = 5 [0 (0n) =01 (O[30, + (uS = v (0) ()

Y o

Lemma: The reduced space problem has a unique solution
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IS THE SOLUTION UNIQUE?

Reduced functional:

1
T(0n,00) = 5 [0 (0n) =01 (O[3 0, + (uS = v (0) ()

N D, yN Lo
e

Q(H’Iw Hla gna Hl) = H(Hna QZ)H*

Lemma: The reduced space problem has a unique solution

Key result: / (Un(o-n) - ’Ul(0‘1>) (,Un(:U%) - vl(:ul)) - ((O_naal)v (Mnaﬂl))*

92

defines an inner product in the control variable space

= [[on(6n) —01(0)I5 0, := (o, 1)l

defines a norm in the control variable space
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IS THE SOLUTION UNIQUE?

Reduced functional:

1
T(0n,00) = 5 [0 (0n) =01 (O[3 0, + (uS = v (0) ()

N D yN Lo
e

QOn, 01500, 01) = [[(On, 01)]]«

Lemma: The reduced space problem has a unique solution

Key result: /Q (Un(o-n) - ’Ul(0‘1>) (,Un(:U%) - vl(:ul)) - ((O_naal)v (Mnaﬂl))*

defines an inner product in the control variable space

= [vn(0n)—vi(61)]

0,02, = ll(on,a1)]l

defines a norm in the control variable space

Careful: The control space is not necessarily complete = consider a completion
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FINITE DIMENSIONAL APPROXIMATION

discretization: 1D finite element method (piece-wise continuous and discontinuous)

analysis: convergence rates are the same obtained by discretization of the states

results:

— polynomial patch tests
— accuracy results

— valid for several kernel choices

st
.....................................................................................................
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FINITE DIMENSIONAL APPROXIMATION

discretization: 1D finite element method (piece-wise continuous and discontinuous)

analysis: convergence rates are the same obtained by discretization of the states

results:

— polynomial patch tests
— accuracy results

— valid for several kernel choices

sta,
...................................................................................................
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STATIC NONLOCAL ELASTICITY

— M. D'Elia, P. Bochev, D. Littlewood, M. Perego, Optimization-based coupling of
local and nonlocal models: Applications to peridynamics, Chapter in Handbook of

nonlocal continuum mechanics for materials and structures, Springer, 2017



THE PERIDYNAMIC MODEL I
Peridynamic (PD) equilibrium equation: . I

—Lluj(z) := —/Q {Tx|(z' — z) — T[z'[{x — z')} dVar = b(x)

u: displacement field, b: given body force, T: force state field
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THE PERIDYNAMIC MODEL I
Peridynamic (PD) equilibrium equation: . I

—Lluj(z) := —/Q {Tx|(z' — z) — T[z'[{x — z')} dVar = b(x)

u: displacement field, b: given body force, T: force state field

( —Lips[u](z) =b(x) € w,,

PD equation: < u(xz)=g(x) x € Np,

—N(u(x)) = nn T €N

\
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THE PERIDYNAMIC MODEL I
Peridynamic (PD) equilibrium equation: . I

—Lluj(z) := —/Q {Tx|(z' — z) — T[z'[{x — z')} dVar = b(x)

u: displacement field, b: given body force, T: force state field

( —Lips[u](z) =b(x) € w,,
PD equation: < u(xz)=g(x) T € Np,
| Nu@) = weny

Local equation: —Ly¢[u](x) = b(x), where Lxc is Navier-Cauchy model

Lxclul(x) = [(K + %G) V(V-u)(x)+ GV2u(a:)]
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THE PERIDYNAMIC MODEL I
Peridynamic (PD) equilibrium equation: . I

—Lluj(z) := —/Q {Tx|(z' — z) — T[z'[{x — z')} dVar = b(x)

u: displacement field, b: given body force, T: force state field

i —L =b € Wn,
tes|ul(e) =b(z) @ €w e equivalent for quadratic fields
PD equation: < u(xz)=g(x) x € 1p,
o for e —» 0, PD — NC
| N((@) =n  @eny

Local equation: —Ly¢[u](x) = b(x), where Lxc is Navier-Cauchy model

Lxclul(x) = [(K + %G) V(V-u)(x)+ GV2u(a:)]
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THE COUPLING STRATEGY

Optimization-based coupling

1
min  J(u,,u;) = —/ lu, — w|* dx
Un,u;,Vn,V] 2 QO
( —ELps[un] — b Tr € Wy ( —LNe [ul] = b xec
u, = 0 T <D uy= 0 xecl'p
S.t. < <
~N(u,)= 0 xzeny —Vuyn= 0 zely
) Uy = V¥p TET: \ w= v; xel, |
Wn Qo Ql
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THE COUPLING STRATEGY

Optimization-based coupling

1
min  J(u,,w) = —/ lu,, — w|* dx
Un,u;,Vn,lV] 2 QO
( —ﬁLps[un] = b Tr € Wy ( —ENc[ul] = b xec
u, = 0 T cNp uy= 0 xecl'p
S.t. < \
~N(u,)= 0 =xzenn ~Vuyn= 0 xzecly
\ U,= V, TEN BN \ uy= v, zcl,. 1

Discretization:
local problem: variational form with FEM

nonlocal problem: strong form with mesh free method

Liw] = 32 {Tlei(w; - @) - Tle;l(w: - 2;)} v, v = |Be(a) N Be(a))]
JEN;
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GEOMETRY

Coupling Peridigm and Albany

peridigm.sandia.gov software.sandia.qgov/albany/ trilinos.orq/packages/rol

SSSS
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THE GEOMETRY
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THE PATCH TEST

Analytic solution: u = 1073(z,0,0), linear patch test, b(x) = 0

Q = [0, 100] x [—12.5, 12.5] x [~12.5, 12.5] mm?

Displacement (mm)

EO.]O

-0.05

E0.00
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THE PATCH TEST

Analytic solution: u = 1073(z,0,0), linear patch test, b(x) = 0

Displacement (mm)

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Q = [0, 100] x [—12.5, 12.5] x [-12.5, 12.5] mm?

Nonlocal Model
Local Model

|
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THE PATCH TEST

Analytic solution: u = 107°(z2,0,0), quadratic patch test
K = 150GPa, G = 81.496GPa (stainless steel), ¢ = 4.270mm
b=10"°8¢ +2K) = 5.173 Nmm™*

Q= [0, 100] x [—12.5, 12.5] x [~12.5, 12.5] mm3

Displacement (mm)

0.10
|

2005

E0.00
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THE PATCH TEST

Analytic solution: u = 107°(z2,0,0), quadratic patch test

Displacement (mm)

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

10

Nonlocal Model
Local Model

20

30 40 50 60 70
Position along Length of Bar (mm)

80

90

100



TENSILE BAR

P <

p T

Dimensions: height=100mm, width at mid point=6.25mm

Parameters: K = 160GPa, G = 81.496GPa, ¢ = 0.54mm

NN
N, ot
:N:""-‘--vaC'-u-«-u o
"‘,‘:‘w--..-.”‘--o.' i
i 4 y | !
)
|

control nodes




TENSILE BAR

P <

> T

Dimensions: height=100mm, width at mid point=6.25mm

1317

Parameters: K = 160GPa, GG = 81.496GPa, ¢ = 0.54mm
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ANOTHER CRACK TEST

Boundary conditions: Neumann on the left, Dirichlet on the right along the x direction.

how can we guess nonlocal Neumann conditions???

pressure conditions can only be obtained on a surface
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ANOTHER CRACK TEST

Boundary conditions: Neumann on the left, Dirichlet on the right along the x direction.

how can we guess nonlocal Neumann conditions???

pressure conditions can only be obtained on a surface, i.e. locally!
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ANOTHER CRACK TEST

Boundary conditions: Neumann on the left, Dirichlet on the right along the x direction.

how can we guess nonlocal Neumann conditions???

pressure conditions can only be obtained on a surface, i.e. locally!

Neumann:

p=-p
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ANOTHER CRACK TEST

Boundary conditions: Neumann on the left, Dirichlet on the right along the x direction.

how can we guess nonlocal Neumann conditions???

pressure conditions can only be obtained on a surface, i.e. locally!

crack (magnified) no displacement

~ e e AT e -
! = ¢ ¢ %" +
BRSSO b L

o W e
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DEALING WITH LOCAL BC

geometry: the overlap and local domains coincide

.~ o
local | Dirichlet
- o
Neumann - nodes
boundary J|
o, - |~
condition =
-~
P -~

overlap
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DEALING WITH LOCAL BC

geometry: the overlap and local domains coincide

- Dirichlet
local =
N nodes
eumann -
boundary -
condition :

overlap

coupled solution: linear elongation

Lt B B K B B I

-—"TeTT®%= ' 8.39-0345
e S [ 6.0e-3 8
i . —40e3 &
Y'Y X i L 2.0e-3 %

e e N 0.06+00D

X 3 Xt Lt L b L

Displacements magnified 5x for visualization purposes
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DEALING WITH LOCAL BC

geometry with crack: the overlap and local domains coincide

-
-
local -
Neumann -
boundary -
condition :
-
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DEALING WITH LOCAL BC

geometry with crack: the overlap and local domains coincide

- o ‘ e .
local . D NN Dirichlet
Neumann - ww— nodes
boundary -

oy -
condition =

-~

overlap

coupled solution

2.8e-02
N

— 2.0e-2

— 1.5e-2

— 1.0e-2
5.0e-3
0.0e+00

displacement
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DEALING WITH LOCAL BC

NO crack

M. D'Elia — mdelia@sandia.gov
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what: unbalanced forces on control nodes in
the nonlocal domain (post processing)
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DEALING WITH LOCAL BC

NO crack

what: unbalanced forces on control nodes in
the nonlocal domain (post processing)

€
€e Ce

€
€
(ttf [

@ ¢
® -

i
fi:’,‘::.,

accomplishment: converted a local traction
on a surface to nonlocal body forces

(applied individually to each node in the volumet-
ric boundary layer)

question: can we reuse these forces in
similar simulations without coupling?
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DEALING WITH LOCAL BC

coupled solution with Neumann data

' 2.8e-02
- 2.0e-2
e— 1.5e-2
— 1.0e-2

5.0e-3
0.0e+00

lacement

isp

d

2.8e-02
'

— 2.0e-2

e— 1.5e-2

— 1.0e-2
5.0e-3
0.0e+00

displacement

note: solutions are different but results

are encouraging!
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Thank you






THE PERIDYNAMIC MODEL



THE PERIDYNAMIC MODEL

Time-dependent problem:

p(x,t) %Tl;(w,t) :/Q {T[x,t](x —x) — T[x', t](x—x')}dV, + b(x,t)

p: QxRT—RT: mass density

u: OxRT—R3: displacement field

b: OxRT—R3: given body force density

T: OxRT—RG3): force state field » force state at (x,t) mapping the bond
(' — x) to force per unit volume squared

Static:

—Lluj(z) := —/Q {Tlz|(z’ — z) — T[z'[(xz — z')} dV,, = b(x)



THE PERIDYNAMIC MODEL

Tlx](z’' —x) =0, Va' ¢ Bs(x)

averaging bond elongation

T[x|(£) = # {(SK —5G) 0(x)€ + 15G€|§2€(u(w + &) — u(w))} VeeQ =o' —x
volume change, deviation, shear
dilatation

K: bulk modulus, G: shear modulus

0:Q2— R, linearized nonlocal dilatation

@)= w6 ¢ e+ ) uGa) ave
m= [ w(lc)leP dve
Bs(0)

w: spherical influence function, scalar valued function that determines the support of
force states and modulates the bond strength



1D FINITE DIMENSIONAL APPROXIMATION

— M. D'Elia, P. Bochev, Formulation, analysis and computation of an

optimization-based local-to-nonlocal coupling method, submitted, 2018



THE ALGORITHM

Optimization problem
1

' 2
min "M —
U U ,0n 01 2” n l|O,QO
5. Up = Qn T < e u, = 9[ xr & Fc
u, = 0 xTEMND w = 0 zelp

weak form + FEM

/ / Gul G2l dy dx = / frn 21 da VulVelde = fi 2 dax
Qn Qn Wn Ql Ql



IS THE SOLUTION UNIQUE?

Discrete reduced functional:

1
Tn(0: 00) = S lon (0n) =v' (01 16,0, + (un” =1, v (07) =07 (6)) g,
N s /
Qn (92, th; 07’}” th) = || (92, th) | s control space complete wrt to the energy norm

Lemma: The discrete reduced space problem has a unique solution
in the discrete control space

Key results: e strong discrete Cauchy-Schwarz inequality

[(on (o), 07 (07)o.,| < Ollvn (o)

0,92, Hvlh(gzh) 0.0, 0<1

e inner product in the discrete control space

[ (o) = o (o) (e = o)) = (ool ) G



CONVERGENCE ANALYSIS

Approximation error (from 2nd Strang’s lemma)

10— 00 — 60 s < Cot 4 Colpr ™

by using equivalence of norms

165 — 0. 6; = 01)I1%, < K™ 4 Kt
2w H?2

we lose % order



PRELIMINARY TEST - 1D

Accuracy tests

quadratic
Up = U] =T

\}

cubic
Uy = U] = T

w

£ h  e(uy) rate  e(uy) rate e(6,) rate
273 2.36e-03 - 2.62e-03 - 6.52e-04 -
274 754e-04 1.65 7.12e-04 1.88 1.78¢-04 1.87
0.065 27° 1.88e-04 2.00 1.78¢-04 2.00 4.45e-05 2.00
276 467e-05 2.01 4.44e-05 2.00 1.11e-05 2.00
277 1.14e-05 2.04 1.10e-05 2.01 2.76e-06 2.01
273 9.70e-03 - 2.95e-02 - 4.86e-03 -
274  2.68¢-03 1.86 7.54e-03 1.97 1.20e-03 2.01
0.065 27° 7.02¢-04 1.93 1.90e-03 1.99 3.11e-04 1.95
276 1.78¢-04 1.98 4.76e-04 2.00 7.89e-05 1.98
277 4.48e-05 1.99 1.19e-04 2.00 1.99e-05 1.98
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e generalization of the classical vector calculus to nonlocal operators
e allows us to study nonlocal diffusion similarly to the classical, local, counterpart

e based on the concept of nonlocal fluxes

Nonlocal operators acting on u(x): R? — R and v(z,y): R? x R — R?
o divergence of v: D(v)(z) = / (v(z,y) +v(y,z)) - a(z,y)dy

o gradient of u: G(u)(z,y) = (u(y) — u(z))a(z,y)

e nonlocal diffusion of u: Lu(x) = D(Gu(x))
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