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INTRODUCTION AND MOTIVATION



NOT ONLY MECHANICS.• •

nonlocal models for continuum mechanics

• stochastic jump processes

• nonlocal heat conduction

• subsurface flow/porous media

• image processing

Wikipedia Bobaru, 2012
0.5

Buades, 2010
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NOT ONLY MECHANICS...

nonlocal models for continuum mechanics

4. stochastic jump processes

• nonlocal heat conduction

• subsurface flow/porous media

• image processing

applicability: nonlocal diffusion operators

Lu(x) = Pu(y) — u(x)) - y(x , y) dy

(...or more complex operators, more later)
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MECHANICS

• interactions can occur at distance, without contact

ZE interaction domain
E: interaction radius
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MECHANICS

1 interactions can occur at distance, without contact

used in many scientific and engineering applications, where the material dynamics
depends on microstructure

• example: nonlocal continuum mechanics theories, e.g. peridynamics and physics-
based nonlocal elasticity which can model fractures and material failures

nonlocal models accurately resolve small scale features, e.g. dislocations

interaction domain
E: interaction radius
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MECHANICS

interactions can occur at distance, without contact

used in many scientific and engineering applications, where the material dynamics
depends on microstructure

• example: nonlocal continuum mechanics theories, e.g. peridynamics and physics-
based nonlocal elasticity which can model fractures and material failures

nonlocal models accurately resolve small scale features, e.g. dislocations

' interaction domain
E : interaction radius

M. D'Elia — mdelia@sandia.gov 0 Sandia National Laboratories



MECHANICS

facts:

• a recently developed theoretical and numerical analysis allows us to study
nonlocal problems similarly to the local (classical) counterpart

we have numerical convergence results for finite element approximations

M. D'Elia — mdelia@sandia.gov 0 Sandia National Laboratories



MECHANICS

facts:

• a recently developed theoretical and numerical analysis allows us to study
nonlocal problems similarly to the local (classical) counterpart

we have numerical convergence results for finite element approximations

challenges: accuracy comes at a price!

• the numerical solution might be prohibitively expensive

prescription of nonlocal "boundary conditions" is not straightforward
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COUPLING

"Whenever you can use a local model, do it", Q. Du

— M. D'Elia, M. Perego, P. Bochev, D. Littlewood, A coupling strategy for local and
nonlocal diffusion models with mixed volume constraints and boundary
conditions, Computers and Mathematics with applications, 2015

— M. D'Elia, P. Bochev, Formulation, analysis and computation of an optimization-
based local-to-nonlocal coupling method, submitted, 2018



WHAT ABOUT COUPLING?

Goal: merge two fundamentally different
mathematical descriptions of the same physical
phenomena: PDEs and nonlocal models
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WHAT ABOUT COUPLING?

Goal: merge two fundamentally different
mathematical descriptions of the same physical
phenomena: PDEs and nonlocal models

Literature

(2012) Han and Lubineau: extension of the Arlequin method to continuum
mechanics, energy blending

(2012) Lubineau et al.: morphing approach, blending of material properties

(2013) Seleson et al.: force blending

(2015) Silling et al.: variable horizon

(2017) Tian and Du.: heterogeneous localization via nonlocal trace theorems
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WHAT ABOUT COUPLING?

Our strategy split the computational domain in a local and a nonlocal domain
and couple the models at the interfaces or overlapping regions

physical BC

virtual BC
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WHAT ABOUT COUPLING?

Our strategy split the computational domain in a local and a nonlocal domain
and couple the models at the interfaces or overlapping regions

physical BC

virtual BC

Contribution: design a coupling method that

• passes the patch test

• allows for separate softwares/solvers/meshes for the local
and nonlocal problems
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OUTLINE

• Notation

• The Dirichlet diffusion problem: formulation and analysis

• The static peridynamic problem

1. formulation and finite dimensional approximation

2. efficiency improvement

3. from local to nonlocal boundary conditions



NOTATION



NONLOCAL VECTOR CALCULUS

Interaction domain of an open bounded region w E

Kernel: we assume

d

77 = {y E Rd \L A . 1 : a(x , y) 1 0, x E w},

Define: Q = w U ri

{7(x, y) > 0 Vy E B,(x)

7(x , y) = 0 Vy E Q \ B s(x),

B ',(x) = {y E C2 : Ix — yl < E, x E w}
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PERIDYNAMICS/NONLOCAL ELASTICITY

kernel:

-y(x, y) = C
Ix — Y1

1
for 1 x — Y1 < E

Lu(x) = C f u(Y) — u(x) dy
I Ix — Y1
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FRACTIONAL KERNELS

kernel:

-y(x,y) = C lx _ yln+2s ,
1

s G (0,l), E = Do

Lu(x) = C f u(Y) — u(x) dy
i Ix — 

yln+2,5

77



FRACTIONAL KERNELS

kernel:

-y(x,y) = C yln+2s
1

Lu(x) = C u(Y) u(x) 

applications:

s G (0,1), E = Do

dy_ yln+2s

— stochastic jump processes (a stable Levy processes

— subsurface flow, s E (0, 1) is the rate of the
mean square displacement of the diffusing quantity

Irinfiltration subsurface flow

'rimer 12 b I

vtouadvaaler Dow



THE OPTIMIZATION PROBLEM

— M. D'Elia, M. Perego, P. Bochev, D. Littlewood, A coupling strategy for local

and nonlocal diffusion models with mixed volume constraints and boundary

conditions, Computers and Mathematics with applications, 2015

— M. D'Elia, P. Bochev, Formulation, analysis and computation of an

optimization-based local-to-nonlocal coupling method, submitted, 2018



MODEL PROBLEMS

The nonlocal problem

{ —Lum

um

fn æ E w
an x E 77,

where an E V CO and fn E L2 (w)
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MODEL PROBLEMS

The nonlocal problem

{ Urn

fn x E w
an x E 77,

where an EV CO and fn E L2 (w)

0C2
E 0

The local problem: Poisson equation

{ —A2/1 = fl x E Q

ui = ai x E OR

where ai E Ill (0Q) and fi E L2(Q)
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LtN COUPLING

TID

Ilk

k ►

(-On Q.,

r

Ql

FD

Fc
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LtN COUPLING

State equations

{ —.Cur,
un
um

71D

Tic

fn x E con

= On X e irk

0 X E TID { —Au/ fi x E Qi
ui = 0/ x E Fe
u/ 0 X E FD

wrt s20 Ql

1 FD

1 rc
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LtN COUPLING

Optimization problem

min J(uri, ui) = min
un,ul,on,(91 un,ul,en,ol

s.t.
{—Lun

un

un

T/D

Tic

1 2

2 — 1Un — %Li 11(),C2°
„

fn x E Wn
= On x E Tic

0 x E To3 { —Au/ fi x E C21
ui = Oi x E I',

fa/ 0 X E FD

wn Clo

-MI

C21

1 FD

I Fc
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LtN COUPLING

LtN solution • optimal solution: (0Th*, On e en x 81

• LtN solution: =
U;L(19,r: ) X e C/ri

U>/i' (n ) X e Qi \ Qo
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IS THE SOLUTION UNIQUE?

Reduced form:

min J(0,,, 0/) = min 1
on,e/ 2

ur,(9.) - 111(001 2OM,
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IS THE SOLUTION UNIQUE?

Reduced form:

1
min

81 
J(6),,, Oi ) = 

mi91 n 2 - 
Ilurt(On) — ui (0i) 11 o,Q,en, 87,0

Solution splitting:

un = fun(On) + On and fa/ = vi (0i) + u°

harmonic components vn, and vl

{ —Lyn = O X E Wn { —Ay/ = O x E Ql

Vn On X E Tic and vl = Oi x E Fe

+VC +BC

homogeneous components u° and u°

{ —,Cu,°, = fn X E wn —Au? = fi X E Ql

Vn = 0 x E irk and vi = 0 x Er/

+VC +BC
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IS THE SOLUTION UNIQUE?

Reduced functional:

J(977, 0/) = 
1 
-
2Pp (077)—

01)1 20 Q0 + (un i ° —111°l n (1) (19n 
) — vl (81)) 01Q°

, 
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IS THE SOLUTION UNIQUE?

Reduced functional:

JO9n, 01) = 
1 
-2
Ilvn(On) —090 11O,Q0 + (u°n —(14, vn,(071)— vi(00)0,c20

Lemma: The reduced space problem has a unique solution
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IS THE SOLUTION UNIQUE?

Reduced functional:

J(0„,01) =
1
HI Vn On) —71)/(0011(2) Q + (um° —4, vn, 090 —v/(0/))0,Qo

Wm, oi; en, oi) = (on, 0011*

Lemma: The reduced space problem has a unique solution

Key result: f (7),, (ar, ) — vi(0-1)) (Um (bin) — yl (ill)) := ((am, al), (Lin I P O )*
20

defines an inner product in the control variable space

v7109,0—vi(001(2),sio := Van, a1)11*

defines a norm in the control variable space
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IS THE SOLUTION UNIQUE?

Reduced functional:

J(0„,01) =
1
HI Vn On) —71)/(0011(2) Q + (um° —4, vn, 090 —v/(0/))0,Qo

Wm, oi; en, oi) = (on, 0011*

Lemma: The reduced space problem has a unique solution

Key result: f (7),, (ar, ) — vi(0-1)) (Um (bin) — yl (ill)) := ((am, al), (Lin I P O )*
20

defines an inner product in the control variable space

v7109,0—vi(001(2),sio := 1(am,a1)11*

defines a norm in the control variable space

Careful: The control space is not necessarily complete consider a completion
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FINITE DIMENSIONAL APPROXIMATION

discretization: 1D finite element method (piece-wise continuous and discontinuous)

analysis: convergence rates are the same obtained by discretization of the states

results:

— polynomial patch tests

— accuracy results

— valid for several kernel choices

C2n

E 0 0.75 1 1 + E 1.75
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FINITE DIMENSIONAL APPROXIMATION

discretization: 1D finite element method (piece-wise continuous and discontinuous)

analysis: convergence rates are the same obtained by discretization of the states

results:

— polynomial patch tests

— accuracy results

— valid for several kernel choices

9 n

E 0 0.75 1 1 + E
 •
1.75
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STATIC NONLOCAL ELASTICITY

— M. D'Elia, P. Bochev, D. Littlewood, M. Perego, Optimization-based coupling of

local and nonlocal models: Applications to peridynamics, Chapter in Handbook of

nonlocal continuum mechanics for materials and structures, Springer, 2017



THE PERIDYNAMIC MODEL

Peridynamic (PD) equilibrium equation:

—L[u] (x) := —fQ {T[x](x' — x) — T[x'](x — xi)} dVx, = b(x)

u: displacement field, b: given body force, T: force state field
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THE PERIDYNAMIC MODEL

Peridynamic (PD) equilibrium equation:

—L[u](x) := —fQ {T[x](x' — x) — T[x'](x — xi)} dVx, = b(x)

u: displacement field, b: given body force, T: force state field

/
—LLps [u] (x) =b(x) x e con,

PD equation: u(x) =g(x) x E TM,

—Ar(u(x)) = rin, x E riN.
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THE PERIDYNAMIC MODEL

Peridynamic (PD) equilibrium equation:

—L[u](x) := — L{T[x](x' — x) — T[x'](x — x1)} d17x, = b(x)

u: displacement field, b: given body force, T: force state field

/
—LLps [u] (x) =b(x) x E con,

PD equation: u(x) =g(x) x E TM,

-Ar(u(x)) = qn X E TIN.

Local equation: —LNC[u](x) = b(x), where LNC is Navier-Cauchy model

LNC [11] (x) := [(K + AG) V (V • u) (x) + G V2u(x)]
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THE PERIDYNAMIC MODEL

Peridynamic (PD) equilibrium equation:

—L[u](x) := — L{T[x](x' — x) — T[x'](x — x1)} d17x, = b(x)

u: displacement field, b: given body force, T: force state field

/
—LLps[u](x) =b(x) x E con,

PD equation: u(x) =g(x) x E TID ,

—Ar(u(x)) = Tin x E TIN.

• equivalent for quadratic fields

• for E 0, PD -- NC

Local equation: —LNC[u](x) = b(x), where LNC is Navier-Cauchy model

LNC[11]* := [(K + AG) V(V • u)(x)+ G V2u(x)]
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THE COUPLING STRATEGY

Optimization-based coupling

min J(un, Ili) = 
1 

lun — u1 2 dx
un,ui,v,,,vi

s.t.

Lo

—LLPS [Un] = b x E Wm

lin, = 0 X E T/D

—Ar(un) = 0 x E TIN

un = vn x E Tic { —.CNC [lid b X EQi

Ili CI X E rD

-vu1 .n. 0 x c 17 N

ui v1 x E I-,

wn c 2o Ql
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THE COUPLING STRATEGY

Optimization-based coupling

s.t.

min J (un,u1)

—LLPS [Un]

Un =

—Ar(Un) =

Un =

1

2

b

0

o

vn

lun

E con

X E

E Tpv

X E Tic

dx

—.CNC [lid

ul

—VII/ • n

Discretization:

local problem: variational form with FEM

nonlocal problem: strong form with mesh free method

L[xi] := E {T [xi] (xj — xi) — T[xi] (xi — xj)} Vii),
3 EAlt

ul

= b E

0 E FD

o X E FN

vl xE Fe

vi(i) = IBE(xi) n B,(xj)I

M. D'Elia — mdelia@sandia.gov 0 Sandia National Laboratories



GEOMETRY

Coupling Peridigm and Albany

peridigm.sandia.gov software.sandia.gov/albany/ trilinos.org/packages/rol 
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THE GEOMETRY

M. D'Elia — mdelia@sandia.gov 0 Sandia National Laboratories



THE PATCH TEST

Analytic solution: u = 10-3(x, 0, 0), linear patch test, b(x) = 0

Q = [0, 100] x [-12.5, 12.5] x [-12.5, 12.5] mm3

'ow

Nke

•••

Sm.

\

-1_

sm.

•.• •.•

o

Displacement (mm)
g0.10

10.00
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THE PATCH TEST

Analytic solution: u = 10-3(x, 0, 0), linear patch test, b(x) = 0

Q = [0, 100] x [-12.5, 12.5] x [-12.5, 12.5] mm3

0.10

0.09

0.08

0.07
1
E 0.06
'a'
E: 0.05

cc-4
0-4 0.04

.4 

0.03

0.02

0.01

0.00
0 10 20 30 40 50 60 70

Position along Length of Bar (mm)

I I I I I i I I

-1-4-

Nonlocal Model •
Local Model

80 90 100



THE PATCH TEST

Analytic solution: u = 10-5(x2, 0, 0), quadratic patch test

K = 150GPa, G = 81.496GPa (stainless steel), 6 = 4.270mm

b =10-5(8P + 2K) = 5.173 Nmm-3

Si = [0, 100] x [-12.5, 12.5] x [-12.5, 12.5] mm3

Qi

Displacement (mm)
10.10

0.05

[0.00
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THE PATCH TEST

Analytic solution: u = 10-5 (x2, 0, 0), quadratic patch test

0.10

0.09

0.08

0.07

1
E 0.06
'a'
E: 0.05

ct°
51,. 0.04

.4
0.03

0.02

0.01

0.00
0 10 20 30 40 50 60 70

Position along Length of Bar (mm)

1 1 1 1 1 l 1 1

.....................co_+

Nonlocal Model •
Local Model

80 90 100



TENSILE BAR

Dimensions: height=100mm, width at mid point=6.25mm

Parameters: K = 160GPa, G = 81.496GPa, E = 0.54mm

control nodes

.. ...



TENSILE BAR

Dimensions: height=100mm, width at mid point=6.25mm

Parameters: K = 160GPa, G = 81.496GPa, E = 0.54mm

Anal

DIsplacement X DIsplacement Y
0 CO:04 

1111

acmos

z

x

.. ...



ANOTHER CRACK TEST

Boundary conditions: Neumann on the left, Dirichlet on the right along the x direction.

how can we guess nonlocal Neumann conditions???

pressure conditions can only be obtained on a surface
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ANOTHER CRACK TEST

Boundary conditions: 1Teumann on the left, Dirichlet on the right along the x direction.

how can we guess nonlocal Neumann conditions???

pressure conditions can only be obtained on a surface, i.e. locally!
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ANOTHER CRACK TEST

Boundary conditions: Neumann on the left, Dirichlet on the right along the x direction.

how can we guess nonlocal Neumann conditions???

pressure conditions can only be obtained on a surface, i.e. locally!

Neumann:

P = -P
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ANOTHER CRACK TEST

Boundary conditions: Neumann on the left, Dirichlet on the right along the x direction.

how can we guess nonlocal Neumann conditions???

pressure conditions can only be obtained on a surface, i.e. locally!

bending crack (magnified) no displacement
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DEALING WITH LOCAL BC

geometry: the overlap and local domains coincide

local
Neumann
boundary
condition

overlap

Dirichlet
nodes
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DEALING WITH LOCAL BC

geometry: the overlap and local domains coincide

local
Neumann
boundary
condition

overlap

coupled solution: linear elongation

Displacements magnified 5x for visualization purposes

Dirichlet
nodes

my 8.3e-03

— 6.0e-3 E

— 4.0e-3 0

— 2.0e-3 4

oni 0.0e+00
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DEALING WITH LOCAL BC

geometry with crack: the overlap and local domains coincide

local
Neumann
boundary
condition

Dirichlet
nodes
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DEALING WITH LOCAL BC

geometry with crack: the overlap and local domains coincide

local
Neumann
boundary
condition

overlap

coupled solution

Dirichlet
nodes

2.8e-02
e

— 2.0e-2 E
— 1.5e-2 '1.))
— 1.0e-2
— 5.0e-3
- 0.0e+00
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DEALING WITH LOCAL BC

NO crack

WITH crack

I 8.0
7.0
6.0

- 5.0
- 4.0
- 3.0
t 2.0

1.o
0.0

7.0
- 6.0
- 5.0 E
- 4.0 g

- 3.0
2.0 2
1.0 2
0.0

AA•Nr_..p,••••:•••:::..„,„ .....:• : •\

It 1 e• e •

V. e •• .0 •• •
0=e0-o•-• •-0..-...te 0 

ee e 0,

...-e 440 ev.:16 66 
e fete j

01.--4 IP',..6... fik:w4::60. 4to 0 IA

-1-41 
eT‘..__ c• el)ee 66" 6 

• •

1,134. efi_,-4,pe !we .0 _ e.n

•=16.,•• ,..4,‘‘‘ a ale
  4,44k,- , 4. 60% .70 v. _ ..,

..-....--•

-..--e.,-• *--,-* a 6 • I

what: unbalanced forces on control nodes in
the nonlocal domain (post processing)
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DEALING WITH LOCAL BC

NO crack

WITH crack

I 8.0

7.0
6.0

- 5.0
- 4.0

3.0
2.0
1.0
0.0

F
o
r
c
e
 M
a
g
n
i
t
u
d
e
 

e• •• • ••w •
• 

•.6 •or 
• •

V. • 
It 

•• •• 

• 

• • 

• 

•

6.0 
41=el•-••-• •-•.77.40. 

O. .0 e. 

3 0 
ii‘• 64‘ It j

- 5.0
4.0 0

•°0 
••-115‘..4, • 014% 0*

0.0 0.061 Giro • •

"744, Ilt:7-64
V,4:64,44,114: • 111

,

616 0
0 
S 
•

6 • I

what: unbalanced forces on control nodes in
the nonlocal domain (post processing)

accomplishment: converted a local traction
on a surface to nonlocal body forces

(applied individually to each node in the volumet-
ric boundary layer)

question: can we reuse these forces in
similar simulations without coupling?
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DEALING WITH LOCAL BC

coupled solution with Neumann data

1111101110000110111amrwl
00.11110111W

111111111111W111611116
sssss

41.11.111111Fi5igrami
ailftlitarninrarei

.4000000.0,01.

2.8e-02 -E
a)

— 2.0e-2 E
1.5e-2 'i.13

— 1.0e-2 o
— 5.0e-3 a
0.0e+00

purely nonlocal with forces obtained from coupled solution without crack

or 2.8e-02 c
a)

Mr 2.0e-2 E
— 1.5e-2 00
— 1.0e-2 o

di 5.0e-3 .9-,
0.0e+00 -0

note: solutions are different but results are encouraging!
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Thank you





THE PERIDYNAMIC MODEL



ODELTHE PERIDYNAMIC M

Time-dependent problem:

2p(x ,t) D0: L12 (x , t) = {T[x , t] (x' — x) — T[xl , t](x — x' )} c117 + b (x , t)

p: S-2 x R-F +: mass density
u: Q x --1± --- 3 : displacement field
b: S/ x --1±— -13 : given body force density
T: S2 x --1± -1(3,3) : force state field  

Static:

► force state at (x, t) mapping the bond
(x' — x) to force per unit volume squared

— L[u] (x) := — 12 {T [x] (x' — x) — T [xi] (x — x' )} c117 = b(x)



THE PERIDYNAMIC MODEL

T[x] (xi — x) = 0, V xi _136(x)

averaging bond elongation

/1)(1D T[x]() =   (3K 5G) (9(x) . 15G
12 
(u(x — u(x))} V x E = — x

rn

volume change, deviation, shear
dilatation

K : bulk modulus, G: shear modulus

t9:Q linearized nonlocal dilatation

w (10 Ou(x ±
136 (o)

rn = w (10) C dVc
ö (0)

u(x)) c117c

w: spherical influence function, scalar valued function that determines the support of
force states and modulates the bond strength



1D FINITE DIMENSIONAL APPROXIMATION

— M. D'Elia, P. Bochev, Formulation, analysis and computation of an

optimization-based local-to-nonlocal coupling method, submitted, 2018



THE ALGORITHM

Optimization problem
1 2min jun — ttillo,Q,

'an 014 ,on,,,
,, 
l

s.t. { —Lun
un
un

fn x E wn

On x E Irk
= nv X e rw { —Aul fi x E Q1

ul 01 x e Fe

ul = 0 x E FD

weak form + FEM

cIrtLri  

gUnh g znh dy dx = I
CA) n

fn znh dx V4Vzil dx = fi 41 dx
.Li Q1



IS THE SOLUTION UNIQUE?

Discrete reduced functional:

JhO9Thi 1,910 =
1

2 1 vmh(1971h)— vii 0910

Qh(611;,, OP;

2 (urth0 v nh (oh)
ul /̀1 ))0

- 110t 9111 h* control space complete wrt to the energy norm

Lemma: The discrete reduced space problem has a unique solution
in the discrete control space

Key results: - strong discrete Cauchy-Schwarz inequality

(vmh (an), vl (aN)0,Q. < 6 vnh (aTh)110,Q0

• inner product in the discrete control space

lo,c2o, 6 < 1



CONVERGENCE ANALYSIS

Approximation error (from 2nd Strang's lemma)

11(19n< — On" , O'IK — Oir)1111* < Cnii17)1,n + t + cf1hr+1

by using equivalence of norms

1109';1 — (91,,,2,,* , 67 — er)112 1 < Knhp2,,(Pn+t) + KiqPi+lL2><H we lose 2 order



PRELIMINARY TEST 113

Accuracy tests

quadratic
um = ui = X2

cubic
un = '14 = X

3

E h e(un) rate

2-3
2-4

0.065 2-5
2-6
2-7

2.36e-03
7.54e-04
1.88e-04
4.67e-05
1.14e-05

2-3
2-4

0.065 2-5
2-6
2-7

9.70e-03
2.68e-03
7.02e-04
1.78e-04
4.48e-05

1.65
2.00
2.01
2.04

1.86
1.93
1.98
1.99

e(ui)

2.62e-03
7.12e-04
1.78e-04
4.44e-05
1.10e-05

2.95e-02
7.54e-03
1.90e-03
4.76e-04
1.19e-04

rate e(On)

1.88
2.00
2.00
2.01

1.97
1.99
2.00
2.00

6.52e-04
1.78e-04
4.45e-05
1.11e-05
2.76e-06

4.86e-03
1.20e-03
3.11e-04
7.89e-05
1.99e-05

rate

1.87
2.00
2.00
2.01

2.01
1.95
1.98
1.98
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NONLOCAL VECTOR CALCULUS

generalization of the classical vector calculus to nonlocal operators

allows us to study nonlocal diffusion similarly to the classical, local, counterpart

based on the concept of nonlocal fluxes



NONLOCAL VECTOR CALCULUS

• generalization of the classical vector calculus to nonlocal operators

• allows us to study nonlocal diffusion similarly to the classical, local, counterpart

• based on the concept of nonlocal fluxes

Nonlocal operators acting on u(x) : d and v (x , y): d -- dX

• divergence of v: D (v) (x) = Li (v (x , y) + v (y , x)) • cx(x , y) dy

• gradient of u: g (u)(x, y) = (u(y) - u(x))a(x, y)

nonlocal diffusion of u: Lu(x) = D(g u(x))

Lu(x) = 2 Pu(y) — u(x)) a(x , y) • a (x , y) dy

d



NONLOCAL VECTOR CALCULUS

generalization of the classical vector calculus to nonlocal operators

- allows us to study nonlocal diffusion similarly to the classical, local, counterpart

• based on the concept of nonlocal fluxes

Nonlocal operators acting on u(x): d and v (x , y): d -- dX

• divergence of v: D (v) (x) = fRri (v (x , y) + v(y, x)) • cx(x , y) dy

• gradient of u: g (u)(x, y) = (u(y) — u(x))a(x, y)

• nonlocal diffusion of u: Lu(x) = D(g u(x))

Lu(x) = 2 Pu(y) — u(x)) da(x , y) • a (x , y) dy

Lu(x) = 2 Pu(y) — u(x)) 7 (x , y) dy

d


