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Overview

= |TS Electron Transport Algorithms

Condensed History
Hybrid Continuous-Energy/Multigroup
Single Scatter (Based on LLNL Evaluated Data Library)

= Validation Comparisons

Lockwood Albedo (Uranium, 1 MeV — 30 keV)

Hanson Angular Scattering (Gold, 15.7 MeV)

Tabata Charge Deposition (Beryllium, 14.9 MeV)
McLaughlin Energy Deposition (Aluminum, 3 MeV)
Sanford Bremsstrahlung (Carbon, 750 keV)
McLaughlin Energy Deposition (Polystyrene, 100 keV)
Dolan Photoemission (Tantalum, 50 keV)

=  Other Topics

Relaxation Radiation
Differential Operator for Sensitivities

Biasing with Electron Trapping




Condensed History ) B,

= Pre-computed energy-loss (step) and angular scattering (substep) distributions

= Goudsmit-Saunderson angular scattering
= Screened Mott high-energy factorization above 256 keV
= Fits to Riley data below 256 keV
= |nelastic angular deflection based on (Z+1)/Z correction
= Jordan-Mack algorithm used for boundary crossings

= Energy loss from Blunck-Leisegang with Seltzer correction
=  Accounts for ionization and excitation energy loss
=  Option for per-substep straggling (per Hughes MCNP implementation)

= Bremsstrahlung events sampled from a Poisson distribution along each substep

= Energy subtracted from primary electron

= Knock-on and relaxation events sampled along each substep
= Sampled to preserve mean number of events
= Not correlated with primary electron energy-loss
= Relaxation cascade uses K and L shells, plus average N and M shells.

M. J. BERGER, “Monte Carlo Calculations of the Penetration and Diffusion of Fast Charged Particles,” in B. ADLER, S. FERNBACH,
and M. ROTENBERG, editors, “Methods in Computational Physics, Vol. 1,” Academic Press, New York (1963).

T. M. JENKINS, W. R. NELSON, and A. RINDI, editors, “Monte Carlo transport of electrons and photons,” Plenum Press, New York,
Ettore Majorana international science series: Physical sciences (1988).

S. SELTZER, “Electron-Photon Monte Carlo Calculations: The ETRAN Code,” Appl. Radiat. Isot., 42, 10, 917-941 (1991).




Multigroup UL

=  Group-to-group energy/angle scattering, within group angle scattering, CSDA.

= Angular scattering moments preserved through discrete-angle scattering
= Screened Mott high-energy factorization above 256 keV
= Fits to Riley data below 256 keV
= Single discrete angle as a Fokker-Planck approximation
= |nelastic angular deflection based on kinematics in group-to-group scattering

= Energy loss as Moller distribution and restricted stopping power
=  Accounts for ionization and excitation energy loss
= |nelastic scattering events are distributed exponentially
= Restricted stopping power is applied as a continuous-slowing-down approximation

= Bremsstrahlung, knock-on, and relaxation sampled as group-to-group scatters

= Relaxation cascade uses K and L shells, plus average N and M shells

= Secondaries and primaries are not correlated within the Monte Carlo simulation, but average
behaviors are captured in the cross section data

Multigroup cross sections can be inverted to enable adjoint simulations

J. E. MOREL, et al., Nucl. Sci. Eng., 124, 369-389 (1996).
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Single Scatter UL

= Analog simulation using LLNL Evaluated Data Libraries
= Elastic angular scattering

= Screened Mott high-energy factorization 10 MeV and above
= Fit to Riley data for 1-256 keV

= |sotropic at 10 eV

= Screened Rutherford distribution for p, > 0.999999

= |nelastic electro-ionization scattering
= Angular deflection based on particle kinematics

= Bremsstrahlung scattering
= Energy subtracted from primary electron
=  Photon angular distribution based on the “simple-brems” model

=  Knock-on and relaxation from ionization events

= Detailed shell models for binding energies and relaxation cascade

S. PERKINS, D. CULLEN, and S. SELTZER, EEDL, UCRL-50400 Vol 31, LLNL (1991).

D. CULLEN, M. CHEN, J. HUBBELL, S. PERKINS, E. PLECHATY, J. RATHKOPF, and J. SCOFIELD, EPDL, UCRL-50400 Vol 6, LLNL (1989).
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D. M. FLETCHER and B. C. FRANKE, in “Proc. M&C 2017,” Jeju, Korea (April 16-20 2017), American Nuclear Society (2017). 5



Lockwood Albedo )
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Hanson Angular Scattering
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Tabata Charge Deposition UL

Electron beam normally incident on a thick
slab of beryllium
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McLaughlin Energy Deposition UL

Electron beam normally incident on a thick
slab of aluminum

Monoenergetic source at 3 MeV
Experiment measured energy deposition
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Sanford Bremsstrahlung Converter @&
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McLaughlin Energy Deposition UL

Electron beam incident on thick slab of polystyrene
Monoenergetic source at 100 keV
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Dolan Photoemission ) 2=

50 keV endpoint bremsstrahlung source
Photon spectrum incident on thick slab of tantalum
Experiment measured reverse electron emission
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Relaxation Radiation

Photon beam incident on thick slab of gold
Monoenergetic source at 4 keV

No experimental data, computational comparison only

Reverse electron emission
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Differential Operator Sensitivity UL

McLaughlin energy deposition from a normally incident 100 keV electron beam on polystyrene.
Energy deposition vs. Experiment Differential Operator Sensitivities
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Differential Operator Sensitivity UL

McLaughlin energy deposition from a normally incident 100 keV electron beam on polystyrene.
Differential Operator Sensitivities Ratio of DO to CD Sensitivities
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Biasing with Electron Trapping UL

“Electron Trapping” is a truncation method. For electrons below a user-specified threshold energy, the
range of an electron is compared to the distance to geometry boundaries (and subzone tally-region
boundaries). If the electron cannot reach the boundary, then it is “trapped”. Trapped electrons are
terminated, and energy and charge is deposited locally.
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Conclusions and Future Work i)t

= Generally, we achieve reasonable agreement with experimental validation
data with all three algorithms.

= The limitations in the elastic scattering angular distribution data appear to
affect the accuracy of electron transport using the EEDL data for problems
above 256 keV.

= We plan to investigate alternative distributional data, such as from ELSEPA.

= We have added a bremsstrahlung angular distribution model to the
analog model.

=  For “thin” problems, the multigroup model shows discrete scattering
artifacts.
= Alternative cross section generation settings (that increase the total cross and number
of discrete scattering angles) can improve the agreement with validation data.
= Analog is computationally expensive, especially for high energy problems.

=  We will be implementing biasing techniques and moment-preserving GBFP methods to
accelerate the transport.
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