DuraMAT

Dunblo Module Materials Consortium

Capability 2: Predictive Simulation
Progress and Updates

SAND2018- 9242PE

i ﬁ E
c
)‘

L

PRESENTED BY

James Hartley, Ashley Maes, Christine Roberts,
Scott Roberts (SNL); Nick Bosco (NREL);
Laura Schelhas (SLAC)

SAND

o1 A F> NATIONAL

— e @ FNACCELERATOR

P b NN | 150RATORY

iiNREL

() Sandia National Laboratories

Sandia National Labor: is a multimission

laboratory managex d p

Technology & Engine gS oluf
idia

t
itiol lia,
LLC, a wholly owne: d ubsidiary fHoneywell

International Inc., for the U.S. Department of
lear Security




2 1 Capability overview

DuraMAT Capability Area 2: Predictive Simulation

“This capability will be a suite of modeling and simulation tools, model workflows, and a

community of experts who work in concert with experiments and data analytics... to help interpret
and enrich existing test/experimental data, design durability-testing experiments, and help create
design rules for Materials Discovery”

Capability Area 2: Predictive simulation Capability Area 3:
Module-level model (SNL) “ . e
Siib-seala Models SNL) Materials characterization

Materials characterization (SNL) and forensics

A Cohesive Zone model for encapsulant delamination (NREL)
A Constitutive model for ECAs (NREL)

Capability Area 4: Accelerated testing .
Capability Area 1: Data

Management & Analytics



31 Module-Level Modeling Efforts

« Completed scoping studies: developing specific module mechanical models

Module datasheet/BOM:
- First Solar Series 6

- SolarTech Quantum 300

- Yingli Solar YLM 60 40mm

CAD and discretized
geometry

* Immediate goals
» Validate model against static loaded deflection data
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Predicted deflection vs.
static load experiments

» Parametric studies (i.e. develop “best practices” for modeling PV architectures)

« Applications
* Propagating environmental loads to components or mini-modules
» Trade studies for module design and “what-ifs”




Sub-scale Modeling Efforts

Developed parametric simulation capability to examine sensitivity of
interfacial stresses to geometry, materials, environmental drivers
« “Effects of Solar Cell Materials and Geometries on Thermally Induced Interfacial Stresses”, 2018 IEEE PVSC,
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Applications:
« Determining material model needs and gaps
« Testbed for new capabilities (cohesive zones, constitutive models)
« Quantitative stress and fatigue life predictions for components




Experimental Materials Characterization Efforts
 Built capability and characterized PV encapsulant bulk mechanical properties
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« Immediate goals

» Understanding specific material variability and sensitivities

» Constitutive models: f(T), Linear viscoelastic (Maxwell), Nonlinear viscoelastic
« Applications

» Direct model input; propagation of uncertainties to model output




s 1 Predictive Simulation: Capability Development Timeline

* Integration of cohesive zone models
 Implementation of ECA constitutive models
* Full electrical coupling

Jimulation Build-Out
» Module-level model build-out ?
begins
» Exercise sub-models to determine
property needs Application and Validation
» Design sub-model validation® » Sub-model validation
requirements * Module scale parametric studies and
DuraMAT Begins J- Sub-model Parametric studies application
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Scoping Studies Materials Characterization and Documented and

* Scope required lidation Experiments Packaged Capability
sub-mode| *p Capability build-out

* Scope %le-SCéﬂ“Material properties measurements
model Sub-model validation experiments
requirements @

» Materials model development

 Extension to additional material classes and histories
» ECA constitutive modeling project begins

» Cohesive zone model development complete

*Sub-model: Any sub-portion of the simulation capability, whether geometric or physical
(i.e. a cell-scale model, or a module-scale model focusing on mechanical effects only)




