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Outline and acknowledgments

■ Why study minerals under high pressure?

■ What is Pulsed Power?

■ Mg0 (periclase) — the end member of ferropericlase

■ Mg2SiO4 (forsterite) — end member of olivine

■ Outlook and other ongoing work
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How to access extreme states for planetary science?
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• Rapid planetary discovery driven by NASAs Kepler mission
• Challenges our understanding of structure, dynamics, etc.
• Static compression techniques span Earth conditions
• Dynamic compression techniques allow direct

measurements of planetary materials at relevant V, P, T
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Pulsed power: The temporal compression of
electrical energy to produce short bursts of high power
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Dynamic compression experiments on the Z Machine

• Z is 33 x 8 m to store
the energy and shape
the pulse

• The load is 4x1x1 cm
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Using magnetic pressure as a source has unique
advantages

■ In Magneto Hydrodynamics (MHD) — a magnetic

field is equivalent to a scalar pressure

■ Can create high pressures without heating

■ Generated over long time scales (100-1200 ns) with

control over the pressure pulse

■ Large samples (mm to cm)

■ Allows HED conditions in sample sizes » sample

grain boundary dimensions

■ One Z experiment can field 6-20 samples all

experiencing identical drive

Sandia
National
Laboratories

Joule-heated compressed undisturbed
(plasma/gas/liquid) (solid) (solid)

The stress/pressure front runs
faster than the magnetic field/melt
— a fluke of nature...
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Opportunity for theory and experiments to complement
each other in analyzing shock compression

Sandia
National
Laboratories

• Dynamic experiments on Z have limitations Conservation of mass, energy, and momentum

• Main diagnostics is velocimetry — yields p,P 
lead to the Rankine-Hugoniot condition for
the initial (1) and final state (2)

• Measuring temperature is only a recent capability

• No XRD for microstructure

• Ab initio methods have limitations

• Free energy is difficult and has uncertainties

• "Band gap problem" in Density Functional Theory (DFT)

• Modest system sizes / finite size effects

We use high precision dynamic experiments to tightly
constrain knowledge of the material behavior, calculations
are then validated and used to fill in missing information

UP
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We utilized the Z-machine to investigate the behavior of
Mg0 at multi-Mbar pressure

• Mg0 (periclase) is an end member of the
Mg1_,,Fex0 mineral ferropericlase that
comprises a large fraction of the earth's

—0.2
mantle Mbar

• Useful check of experimental methodology:
simple structure and transport properties

• The range of conditions inside earth is
—3.2

relatively small — from DAC we know that Mbar

Mg0 is boring under terrestrial conditions

Earth Composition vs Depth

—1.3
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Exo-planet distribution: rocky worlds, water-worlds, and gas
giants

• Exo-planets are clustered

• Gas giants (Jupiter and

super-Jupiters)

• Rocky worlds (Earth, Mars,

Venus, super-Earths)

• Water worlds (missing in

the solar system)

Li Zeng, Stein B. Jacobsen,...,TRM, et.
al. Submitted to PNAS (2018).
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Exo-planet distribution: rocky worlds, water-worlds, and gas
giants

• The center of rocky planet
distribution is

• 5-6 Earth masses

• 1.5 Earth radii

• Significantly higher pressure
in the mantle and core

• Where is melt, for plate
tectonics, magnetic
dynamo, and thus life?

Li Zeng, Stein B. Jacobsen,...,TRM, et.
al. Submitted to PNAS (2018).
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Key features of the Mg0 phase diagram

• Mg0 occurs in two solid phases

• The nature of solid phases can
have large impact on structure
and transport in planets

• The melt boundary at high
pressures is not well known
• Important for giant impacts and

super-earth planets

T

> 3000 K

Schematic Mg0 phase diagram
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Preliminary analysis showed Mg0 data was inconsistent
with extrapolation from low pressure 61 state

• At 330 GPa, the Hugoniot point lies
on the extrapolation of the gun
data fit 4,c,-.

• Slope change starting at 440 GPa —
suggests a phase transition

• No obvious slope changes at higher
pressures that would suggest melt

P (GPa)

6,
0
0
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S. Root, L. Shuienburger, R.W. Lemke, D.H. Dolan, T.R. Mattsson,
and M.P. Desjarlais, Phys. Rev. Lett 115, 198501 (2015).
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Careful analysis of refined shock data suggests a rich
behavior
• Use many shots to map us(up) along the

Hugoniot — with high accuracy

• Phase changes are inferred by assuming us(up) is
linear in any given phase

• Similar method was applied to diamond
(Knudson et al, Science 322, 1822 (2008))

• Coincident with last break, the shock becomes
reflective

• Assuming some knowledge of the phase
diagram, suggests large region of coexistence
between B2 and liquid
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Theory and experiment together give a comprehensive
picture of Mg0 at higher pressures

• Use U5 vs T fit from DFT calculations

and apply to experimental data

• DFT confirms a large coexistence

region between B2 and liquid on the

Hugoniot

• Density driven phase change between
B1 and B2

• Large difference in entropy between

B2 and liquid along Hugoniot
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B1 melt, this work
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B2 melt, this work

• Z data with DFT Us - T Fit
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S. Root, L. Shulenburger, R.W. Lemke, D.H. Dolan, T.R. Mattsson,
and M.P. Desjarlais, Phys. Rev. Lett 115, 198501 (2015).
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Most recently, we have investigated Forsterite Mg2SiO4

■ Forsterite (Mg2SiO4) end member of olivine

■ Major constituent of the Earth and other
terrestrial planetary interiors

■ Analytic EOS's fit to low pressure gun data
P<2OO GPa, higher pressure behavior
poorly understood

■ High-precision shock experiments on Z and
extensive Density Functional Theory
simulations

Sandia
National
Laboratories

What happens in a giant impact
scenario depends sensitively on
principal Hugoniot states of planet

S. Root, J. Townsend, E. Davies, et. al
Geophysical Research Letters (2018). 15



The principal Hugoniot of forsterite to 950 GPa

• Sandia, Harvard, UC Davis, and
LLNL collaboration

• 44 data points form Z spanning up
6-13 km/s

• Excellent agreement with previous
low P data

• Curvature in Hugoniot due to
compressibility increase in liquid
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• Z Data

O QMD: Liquid Mg2SiO4

• Sekine et al.
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O Watt and Ahrens

- Jackson and Ahrens
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S. Root, J. Townsend, E. Davies, et. al.
Geophysical Research Letters (2018).
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Temperature measurements along the principal Hugoniot of

forsterite to 950 GPa / 35,000 K validate DFT simulations

■ First Z optical pyrometry experiments

■ Important cross validation between OMEGA

and Z experiments

■ Both agree with DFT-MD predictions

■ Validates the earlier Mg0 temperature inference

Z + DFT is a powerful method to elucidate the

properties of materials in extreme conditions

But, this is a multi-component system.

Does phase separation/recrystallization occur

on principal Hugoniot?

Sekine et. al. Sci. Adv., 2, e1600157 (2016).
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• Z Data

QMD: Liquid Mg2SiO4
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S. Root, J. Townsend, E. Davies, et. al.
Geophysical Research Letters (2018).



No discontinuous change on the principal Hugoniot of
forsterite: likely no phase separation at low P
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S. Root, J. Townsend, E. Davies, et. al.
Geophysical Research Letters (2018).
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The possibility of phase separation investigated with
simulations the effect is within experimental uncertainties

• Sekine et al. proposed recrystallization of

Mg0 from the Mg2SiO4 liquid caused the

observed changes in their data

• Using DFT-MD, we can calculate the

Hugoniot for two mixed-phase assemblages:

- Mg0 (solid) + MgSiO3 (liquid)

- zivigu (solid) + SIC), (I1C1U1Cli

• Mixed-phase assemblages are consistent

with the uncertainties in our data

• Lower temperature in the MgO+MgSiO3

assemblage suggests IF phase separation

occurs, it may be more likely

Sekine et. al. Sci. Adv., 2, e1600157 (2016).
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S. Root, J. Townsend, E. Davies, et. al
Geophysical Research Letters (2018).
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Atomistic simulation advances and Z experiments are being
successfully used together to address transport, phase
dynamics and multiphase EOS

Exciting future and ongoing work 

• DFT/QMD predicted/explained Z&NIF results • Improved capabilities for phase transitions,
• EOS & Phase Boundaries

Deuterium, H20, LiD, CH2, Xe, Kr, Si02, Mg0

• Electrical and Thermal Transport

Cu, Al, H20, Be, Li, Deuterium

TDDFT simulation of moving ion
exciting the electronic structure

Sandia
National
Laboratories

transport, and response of dense plasmas/ warm
dense matter using time-dependent DFT (TDDFT)

• Quantum Monte Carlo: high-precision results for
challenging materials — new results on D2
Hugoniot and phase transitions in strongly
correlated systems (Clay et al., submitted PRL,
Townsend et al submitted PRB)
• Computational Materials Science Center

• ECP - Exascale Computing Project

• Develop high fidelity potentials suitable for
exploring transport or kinetics of phase transitions
- collaboration with LLNL/Jon Belof
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Z is the world's largest pulsed power machine, and
compresses energy in space (>109 x) and time (>109 x) to
generate high energy density conditions
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Z is an "engine of discovery"
for stewardship and
fundamental HED science
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There are two new opportunities for Fellowships to
perform Thesis work on Thor and other Sandia DMP
facilities
■ SUPER Center Fellowships [Sandia/UNM Pulsed power Extreme condition Research (SUPER) Center]

■ Two joint UNM/SNL Ph.D. Fellowships

■ The successful applicant will have a primary advisor at UNM but will also be expected to collaborate
with scientists at SNL.

■ Ph.D. Fellowship in High Pressure Earth and Planetary Sciences

■ The Institute of Meteoritics (IOM) — Prof. Carl Agee

■ HEDP load dynamics research as applied to the extreme conditions in the Earth and planetary
interiors.

■ Ph.D. Fellowship in Pulsed Power for High Energy Density Science

■ Applied Electromagnetics Group - Prof. Edl Schamiloglu

■ HEDP load dynamics (both experimental and modeling), pulsed power machine design and
optimization (both experimental and simulation), diagnostics, and modeling machine/load coupling

Sandia
National
Laboratories
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Sandia plays a key theoretical and modeling role in the
Center for the Predictive Simulation of Functional Materials

• Computational Materials Science Center

• Funded by the DOE Office of Basic Energy Sciences

• Joint Collaboration between four National Laboratories (ORNL,

SNL, ANL and LLNL) and two universities (UC Berkeley and

NCSU)

• Produces open source software (qmcpack.org)

• Accuracy of standard electronic structure techniques like DFT is

not known a priori

• Calculations may even fail qualitatively for strongly

correlated materials where charge and spin degrees of

freedom are both important (eg magnets, oxides, actinides)

• The center develops Quantum Monte Carlo techniques that

aim for systematically improvable approximations

• Understanding of errors leads to confidence in predictions

OMCPACK

QMCPACK: an open source ab initio

Monte Carlo package for the electr

structure of atoms, mole
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Sandia is a key partner for QMCPACK: Predictive and

Improvable Quantum Mechanics — Based Simulations
Scaling of throughput on Sequoia

• QMC is ideally suited to today's largest

supercomputers

• Nearly perfect parallel scaling on 1.5 million

processing elements on LLNL's biggest machine

• Next generation of supercomputers will involve more

complex architectures: GPUs, FPGAs etc.

• Working as part of the Exascale Computing Project

(exascaleproject.org) to develop performance

portable code for these more complex machines

• Goal is to improve parallelism while writing code that

can run across a wide variety of machines

• Multi — Year effort leveraging Sandia's strengths in

computing (e.g., kokkos) in collaboration with ORNL,
LLNL and ANL
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If you are interested in pulsed power related research
as a career, one option is to apply for the LRGF

LRGF DOE NNSA Laboratory Residency Graduate Fellowship
.

• Managed by the Krell Institute for NSNA (https://www.krellinst.org/Irgf/) 

• Applications for academic year 2019-2020 will open in late November

• Must be at least a second year graduate student

• Proposals to perform thesis work on national laboratory facilities

• Two 12 week residencies at the laboratory required; more is desired

• Fellowships for study in:

• Pulsed Power Science and Engineering

• Radiation MHD

• Atomic physics and Spectroscopy

• Dynamic Materials Properties/Shock Physics

• Accelerator Design

Sandia
National
Laboratories
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Sandia National Laboratories is a world leader in dynamic materials science and
applications
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■ We apply a unique suite of driver technologies covering a wide range of strain rates, time scales,
and pressures in large sample sizes (mm to cm)

■ Pulsed power

■ Gas guns

■ We are working at the forefront of dynamic material properties science

■ Novel, high-precision platforms for materials research (e.g., shock+ramp)

■ First-principles density functional theory

■ New Quantum Monte Carlo computational tools for exascale computers

■ We are developing new experimental capabilities that will greatly advance our program in the
near future

■ New diagnostics for pulsed power platforms

■ New pulsed power drivers with unprecedented pulse shaping control

27



A challenge for Z experiments is that they release the
energy of a few sticks of dynamite

• Harsh debris, shock, and radiation
environment make fielding
experiments unique and challenging

Sandia
National
Laboratories
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Collectively, we have a wide range of tools on Z allowing
dynamic compression experiments to probe large regions
of a material's equation-of-state surface
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Z flyers provided first experimental evidence of diamond-liquid-BC8
triple point in carbon, important for determining at what shock
pressure diamond ICF capsule ablators on NIF would melt

quartz (or sapphire)
windows (4mm dia) Order-of-magnitude improvement in precision over laser-

driven shock techniques (larger spatial/temporal scales)

QMD Hugoniot

Neptune
adiabat

diamond targets (500, 750,
and 1000 µm thk, 6 mm dia)
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M.D. Knudson, M. P. Desjarlais and

D. H. Dolan, Science 322, 1822 (2008)
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Z flyer experiments and theory provided new
understanding of high pressure Xenon
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S. Root et al., Phys. Rev. Lett. 105, 085501 (2010).
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The possibility of phase separation investigated with
simulations the effect is within experimental uncertainties

Recent observations of crystallization of pure
Si02 in pure Si02 liquid at LCLS by Gleason et al.
give an upper bound on crystallization rate for
Mg0 in silicate liquid

Rudimentary crystallization model suggests that
phase separation may not be observable over
timescale of experiment.
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