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ey Design Criteria

There remains a need for grid-scale energy storage

Renewable/Remote Energy Grid Reliability National Defense Emergency Aid
« Inherent Safety Pb-Acid (E.., ~ 2.1V)

Pb + PbO, + 2H,S0O, €<= 2PbSO, + 2H,0

* Long Cycle Lite « Capacity fades quickly (typically 200-300 cycles)

: : » Temperature-sensitive function
» Functional Energy Density (voltage, g
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Operation e
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ey Design Criteria

There remains a need for grid-scale energy storage
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Renewable/Remote Energy Grid Reliability National Defense Emergency id
* Inherent Safety Na-S (E ., ~2V)
» Long Cycle Life 2Na +4S <> NayS,
_ _ « Safety: Violent, toxic reactions between molten
) Functlpnal Energy Density (voltage, Na and molten S — cascading runaway!
capacity) « Corrosive, toxic chemistries

* High temperature operation (270-350°C)
* Low to Intermediate Temperature
Operation

« Low Cost and Scalable




ey Design Criteria

There remains a need for grid-scale energy storage

Renewable/Remote Energy Grid Reliability National Defense Emergency Aid

Inherent Safety Na-NiCl, (E.., ~ 2.6V)
Long Cycle Life 2Na + NiCl, €-> 2Na* + 2CI- + Ni(s)
« Cycle lifetime (solid cathode phase)

Functional Energy Density (voltage, * Cost (related to cycle lifetime and material costs)
capacity) « High temperature operation (typically > 200°C)

Low to Intermediate Temperature
Operation

Particle

Low Cost and Scalable
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Low Temperature Molten Na-Halide Batteries

Our Vision: A molten sodium-based battery that comprises a robust, highly Na*-conductive,
zero-crossover separator and a fully liquid, highly cyclable molten catholyte that operates
at low temperatures.
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Na-Nal battery:

Na = Nat+e E0O=0QV

l;+2e > 3 E°=3.24

2Na + I;7 > 2Na* + 3l E°,=3.24V

Na-Nal battery shows promise as safe, low-cost, highly cyclable battery with
functional energy density.

Keys to success include:

1) use of a zero-crossover separator (e.g., NaSICON or ”- Al,O;)
2) maintaining a fully liquid molten salt catholyte

3) reducing operating temperature!




Virtues of a Low Temperature Battery

Low Temperature Operation of a Molten Na Battery is

Tremendously Enabling

» Improved Lifetime
* Reduced material degradation
» Decreased reagent volatility
* Fewer side reactions

» Lower material cost and processing
* Seals
« Separators
» Cell body
* Polymer components become
realistic!

» Reduced operating costs

» Simplified heat management costs

Inherent Safety
Long Cycle Life

Functional Energy Density
(voltage, capacity)

Low to Intermediate
Temperature Operation

Low Cost and Scalable




a-Nal Battery

Na-Nal battery was tested across several scales at 150-180°C.
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The catholyte is 60 mol% Nal-AIClI; (with 5-10 mol% Nal
added) — Significant undissolved solids at 150°C.

-
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We envision that cycle life will be determined through
1) use of a zero-crossover separator (e.g., NaSICON or ”- Al,O;)
2) maintaining a fully liquid catholyte

Reactant

A fully molten catholyte avoids Fere
a) Particle-hindered electrochemical processes V H P
b) Particle-related loss of capacity
Electrode Surface
9 7 Current Density at w———
:EB 1 +3.05 V vs. Na/Na* |
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| Operation

We envision that cycle life will be determined through

1) use of a zero-crossover separator (e.g., NaSICON or ”- Al,O;)

2) maintaining a fully liquid catholyte

A fully molten catholyte avoids
a) Particle-hindered electrochemical processes
b) Particle-related loss of capacity

Reactant
Iorly

S

Salt
Crystals

Electrode Surface

Nal-AlCl; at 150°C Nal-AlCl; and Nal-AlBr; salts at 90°C

b 35 mol% Nal-AlCl,

=

35 mol% Nal-AICl,

25 mol% Nal-AlClJJ

25 mol% Nal-AlBr,

Molten Nal-AlBr; composition range spans 5-25% Nal and cell voltage is near or above 3V.




ow Temperature Molten Catholyte

The Nal-AlBr; catholyte > Carbon Fiber microelectrode shows excellent
system exhibits excellent electrochemical behavior of 25 mol% Nal-AlBr; at 90°C

electrochemical behavior at
reduced operating
temperatures.
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> 25:75 Nal-AlBr;salt completely 100mV/s
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> Nal-AlBr; system shows good iodide electrochemical
reversibility.
* AlBr; (20mol% Nal) system at 120 °C and 1V/s




Na-Nal Battery Safety

Simulating separator failure, metallic Na and Nal/AlX; were combined and heated.
Byproducts of reaction are aluminum metal and harmless sodium halide salts.

Accelerating rate calorimetry reveals
that Na-Nal/AlX; mixtures exhibit:
1) no significant exothermic

behavior
2) no significant gas generation
of pressurization
200 -
s~ 180+ —NMCLi-lon
< * Inherent Safety 5160 - —Na/Na|.A|c|\
€140 - _ _
- Long Cycle Life %120 | ~Na/Nal-Albr
, , ~ 100 -
* Functional Energy Density = g -
(voltage, capacity) € 0 -
=]
« Low to Intermediate el
: 20 -
Temperature Operation a A
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Low Temperature Molten Na-Halide Batteries

Our Vision: A molten sodium-based battery that comprises a robust, highly Na*-conductive,
zero-crossover separator and a fully liquid, highly cyclable molten catholyte that operates at
low temperatures.
SR
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Our Vision: A molten sodium-based battery that comprises a robust, highly Na*-conductive,
zero-crossover separator and a fully liquid, highly cyclable molten catholyte that operates at
low temperatures.

Na-Nal battery:
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Our Vision: A molten sodium-based battery that comprises a robust, highly Na*-conductive,

zero-crossover separator and a fully liquid, highly cyclable molten catholyte that operates at

low temperatures.
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Battery cycling
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with NaSICON
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C/4 cycling

Increase battery
capacity by 3X,
change cathode

current collector, leads -

to impressive
performance
improvements.

Efficiency / %

100 ® ® ® °
80 - o o ) 4]
60
40 { e Coulombic
20 A ® Energy
Voltage
0 - £ T -
0 2 4 6
Cycle Number
100 ° ° .
] ] . e

e 80 -
-
g %1 Voltage
S a0 P
£ efficiency ———

20 A >92%! ® Energy

§ . . . AVoIItage
0 1 2 3 4 5
Cycle



Hazards of Poor Material Selection

Polymer incorporation highlights the
importance of careful material section.

Compatibility must be considered for:
Molten sodium

Molten halide catholyte salts
Non-ambient temperatures
Electrochemical reactions
Temperature

Mechanical Properties (toughness,
compliance, hermeticity, etc.)

Magnesium metal and Teflon (PTFE) are
elements of decoy flares...Sodium has a
similar reactivity.

Molten sodium and fluoropolymers should
not be considered stable, especially for
long-term use.

Thermal and mechanical stability




ake Away Messages

* We have demonstrated cycling behavior of a lab-scale molten Na-
Nal battery at temperatures as low as 100°C!

* Improving battery performance is largely tied to device engineering —
bigger improvements to come.

This demonstration utilized a materials system that addressed key
requirements of a next generation grid-scale battery:

* Inherent Safety

« Long Cycle Life

* Functional Energy Density (voltage, capacity)
* Low to Intermediate Temperature Operation

« Low Cost and Scalable
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Where are we going next?

Efforts will focus on the continued development, and improvement of
low-temperature Na-based batteries.

Continued optimization of molten salt composition and chemistry

Exploit current NaSICON ceramics and PVDF-composites for aqueous battery
applications

Modify composite electrolyte structure and chemistry to reduce resistance and
improve chemical compatibility for molten Na batteries

Refine battery test designs to improve “engineering” issues with battery testing
« System seals
* Molten component wetting
» Separator geometry

Demonstrate extended cycling behavior of low-temperature molten Na-MX
batteries!
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When complete separator failure is simulated by mixing Na metal and Nal/AICl,
catholyte, ARC testing reveals no hazardous runaway exothermic behavior!
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Low Temperature Long Cycle Life

Inherent Safety
Long Cycle Life

Functional Energy Density

(voltage, capacity)

Low to Intermediate
Temperature Operation

Low Cost and Scalable

SNL-synthesized NaSICON

We envision that cycle life will be determined through
1) use of a zero-crossover separator (e.g., NaSICON or ”- Al,O;)
2) maintaining a fully liquid catholyte
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A New Materials Science-Driven Redesign
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Molten Sodium Molten Halide Salt “j*; Addgionla' Material Issues
e e . eals
2Na* | R, > 2Nal EE%;.-. « Battery casings
L I o »  Electrical contacts
o Tnrs
1 i 1

B Anode) WaSICON| Eathodes Cathalyte CathodeCurmant;
£§mr {SolidiElectrolyte); {LiguidElectrotyte)) Chaueton

Facility Upgrades:

 New UniLab Glove Box with Atmospheric
Controls (gas and temperature)

* Arbin Instruments LBT series battery tester with
40 channels. +/- 5A, +/- 5V per channel.

« Custom electrical cables shielded up to the
point of measurement (battery), rated to 200 C,
SA.

¢ New tacet call deaciane




NaSICON Solid State Separators

Key Separator Properties:

Selective, high ionic conductivity at reduced temperature (<150°C)
Chemical compatibility (molten Na, molten halide salts, strong base)
Mechanical robustness

Low cost, scalable production

Based on its high Na-ionic conductivity (>10- S/cm at 25°C) and
established chemical compatibility, NaSICON ceramics (Na3Zr,PSi,O,,)
are good candidates for development.

Solid State Ceramic Synthesis
27rSiO, + Na,PO, > Na,Zr,PSi,0,,

» Pellet densities ~ >95%

« X-ray diffraction confirm NaSICON synthesis with minor
ZrO, and ZrSiO, secondary phases

« Conductivities reasonable, but slightly less than
commercial NaSICON

* Improved phase purity with Na;PO, .

* Increased density with decreased humidity % 4 B8 B8 B W #d

1000/T (1/K)

3
2
1
0
-1
2

Ln(sT) (S/cm/K)




Available in a variety of shapes
and sizes, including discs and
closed-end tubes.

Report conductivity as high as
16 mS/cm at 100°C —
comparable to high performing
commercial NaSICON.

Some concerns about moisture
sensitivity, sodium wetting, and
mechanical strength.

These materials provide the opportunity to explore fundamentals of electrochemistry
while we continue our development of optimal solid state separators.




Controlling Molten Salt Melt Chemistry

Hindered diffusion from solid-phases occluding electrode surfaces can impact
electrochemical performance.
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1st iteration battery - ”’-Al,0; tube containing Na anode

40mol% Nal-AlCl; molten salt catholyte at 150 °C 3.6

>
 Fully molten state - 200 mAh capacity (lab scale) E
» C/8 charge and discharge rate § B A
- OCP =3.14V 8
Smooth charge discharge voltage curves T

*Coulombic efficiency ~87% due to loss of I, from unsealed cell

Disassembled Fully loaded and assembled
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Time /h
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This 10 kWh battery pack depicted on
the side of a building likely has 5 liters

of liquid electrolyte.

Battery Recycling Plant

KWh (~6895 18650 cells) MWh (?)

Thermal runaway and flammable
organic electrolytes remain serious
hazards for Li-ion batteries!

Li-ion batteries are inherently
intolerant of harsh conditions.




Composite Separator Innovation

Composite separators could enable thinner (higher conductance), mechanically

robust separators.

Initial Approach

Powdered NaSICON and powdered polymer
(polyvinylidene difluoride: PVDF) were warm-pressed

together

Tough composite with reasonable distribution of NaSICON
Good interfaces between NaSICON and polymer

Impractically low ionic conductivity. Poor connectivity of
Na-conductive NaSICON is evident in

cross-sectional elemental mapping.
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Die body

An alternative approach

. NaSICON chips (1mm thick)
enveloped in PVDF powder and
warm-pressed

. NaSICON chips provide
continuous conductive path
through separator

plunger

Kapton Barrier
PYDF sheet
| ) PVDF

1 |Forae ™ Conductivity is
epentamer determined by

orr ~0.5 mS/cm for composite!

NaSICON ceramic.



