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Molecular Dynamics Primer
fi2co

• Continuum models require underlying models of the
materials behavior

• Quantum methods can provide very complete
description for 100s of atoms

• Molecular Dynamics acts as the "missing link"

• Bridges between quantum and continuum models

• Moreover, extends quantum accuracy to continuum
length scales; retaining atomistic information

constraints
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Atomistic View of the (computational) World
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Exascale Supercomputers

Parallel MD

Current Petascale Machines
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Algorithmic Improvements

• Key approximation of MD is the interatomic
potential used
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• Assumes all physics of the problem is contained on
the Born-Oppenheimer potential energy surface
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MD Approximations Change Over Time
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Twobody (B.C.) Manybody (1980s) Advanced (90s-2000s) Big Data / Deep / Machine
Lennard-Jones, Hard Stillinger-Weber, Tersoff, REBO, BOP, COMB, Learning (2010s)
Sphere, Coulomb, Bonded Embedded Atom Method ReaxFF GAP, SNAP, NN,...
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Computing Environments Change Over Time

• SNAP will be Exascale ready on all hardware via KOKKOS implementation
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• Performance on modern GPUs (P100's) far exceeds previous leadership platforms (Titan, K2OX's)

Strong Scaling for CPU and GPU
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Best Practices for Interatomic Potentials?

Generating interatomic potentials is essentially a black box, this is true for all potential types.
Plenty of progress to apply known optimization tools to the fitting, GA being the most common.

• Which training data tells us the most about a material?
• How much training data until we can say we are at DFT-level of accuracy?

Transferrable, User Generated Training 

• Better for distribution to a broad
audience.

• User interaction with training sets and
objectives is very high.

• Accuracy is potentially sacrificed for
stability.

Slower, safer but still looks like black
magic to outside viewers.

Less-Transferrable, Learn On-The-Fly

• Best when the target application is
well known.

• Hands off approach to
parameterization.

• Accuracy is completely unknown
for untrained systems.

Potentially faster and the intended
use is well known to end users
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SNAP - A Look Under the Hood

Set of Descriptors 

C36

014

• Local density around each atom expanded in 4D
hyperspherical harmonics

• Bispectrum coefficients are a superset of the
bond-orientational order parameters, in 4D space.

• Preserve universal physical symmetries: invariance
w.r.t. rotation, translation, permutation
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Model Form 

• Energy of atom i expressed as a basis expansion
over K components of the bispectrum (Bk)

Ei = On +SNAp .,

K

k=

Ok(Bit - B ito)

= 00 ± /3 . Bi

Regression Method 

• 13 vector fully describes a SNAP potential, found
through a weighted linear regression.

• Decouples MD speed from training set size

mina lw ' DO — T 1
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Semi- Automated Generation Interatomic Potentials

• Even if the optimization
routine is robust, the
process still isn't
transparent.

Htting
Hyper ra meters

)fr FitSNAP. py

DAKO A

• The importance on
each objective is
part of the magic.

Objective Functions,

Materia[ Properties

OF/
Reference

Data

• Typically a small, of
0(103), number of
configurations.

• Developer has to
ration compute
resources with DFT
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SNAP as a Many-Body Correction Term

• Base potential is E„f, typically ZBL is used to constrain at small atom separations.

• Could be Columbic, LJ, EAM, etc.

E(rN) E„f(rN)H- EsNAP(rN).

SNAP + EAM :
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SNAP + Tight Binding :
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Changing the Functional Form of SNAP
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• Removing some just makes physical sense,
i.e. cohesive energy of crystals.

• Bispectrum components are non-zero as r—>oo,
energy functional needed to be corrected

• When expanding the energy functional
beyond linear order in the bispectrum,
significant accuracy increase observed.

• 1
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Quadratic SNAP

SNAP - /3 • B' (a)11 • a • a

• Linear terms are 4-body
• Quadratic terms are 7-body
• Number of linear coefficients grows as O(J3)
• Number of quadratic coefficients grows as = O(J6)

E
n
e
r
g
y
 E
rr

or
 (
e
V
/
a
t
o
m
)
 

100

10-1

io-2

1 1 1 1 1 1 1 1

Linear SNAP —a—
Quadratic SNAP

1 1 1 1 1 1 1 1 

10 100

Number of Descriptors, K

Sandia
National
Laboratories

• Energy, force, stress remain linear in fiand a
• Can still use linear least squares (SVD)
• Number of columns will increase from K to K(K+1)12
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Wood and Thompson, J. Chem.Phys., March, 2018 Also https://arxiv.org/abs/1711.11131 11



Quadratic SNAP Cross Validation

• Concerned with overfitting now that there are MANY
more free parameters during the fit.

• (Training Points) : (Descriptors) still >> 1 for
assembled training sets

10 2

1

Linear, Training Error i—m—i
Linear, Prediction Error 1-13-1

Quadratic, Training Error 1-4,-1
Quadratic, Prediction Error I-43-1

I I

10 1

• 1 •
EisNAp = 13 '131 + OT)T . a . Bi

Linear, Training Error i—m—i
Linear, Prediction Error i—e-1

Quadratic, Training Error 1-40-1
Quadratic, Prediction Error 1--e--i

1 1 i i l l I
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Number of Training Points Included
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Plasma-Facing Materials

ITER fusion reactor:
• Plasma-facing material is tungsten
• Exposed to He and H at elevated temperature
• Fuzz buildup limits power output and useful

life of diverter elements

RN02062007 (a)

Plasma exposure time
RN01222007 (c)

Nanostructured layer growth (fuzz) is observed at
T=1120 K and a flux of -5x1022 He m's-1 [2].
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Atomistic Simulation Efforts

• Objective is to develop coupled simulation
capability across three distinct spatial regions:

1. Edge/Scrape-off-layer of the plasma, with
sheath effects (W,Be + He,H)

2. Near Surface Material response to
plasma exhaust

3. Structural Materials response to intense,
14MeV peaked neutron spectrum

1.0 ps
•

Material bulk:: 0,4 ,
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Training SNAP for Transferability Tungsten

• In many cases we want a general use
potential that many users can apply to their
research needs.

Elastic Deformations
• —2200 configurations

Defects (lnterstitials, Vacancies,
Dislocations)

• —600 configurations

Free Surfaces
• —200 configurations

DFT-MD Trajectories (Solid and Liquids)
• —100 configurations

Gamma Surface
• —7000 configurations
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• 'Plug-and-Play' capability with existing W-He
and He-He potentials. Easily fix shortcomings
of existing tungsten EAM potentials.
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Training SNAP for Transferability Beryllium

• Few existing Be potentials, challenging
material system.

• Significant improvement over existing
bond order potentials (BOP)

Elastic Deformations (HCP, FCC, BCC)
• -4500 configurations

Defect Relaxations (lnterstitials, Vacancies)
• -170 configurations

Free Surfaces
• -100 configurations

DFT-MD Trajectories (Solid and Liquids)
• -1100 configurations
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Training SNAP for Transferability Tungsten+Beryllium
25  

• Making a multi-element potential
means sacrificing some accuracy from
either pure component form.

• So far the focus of the joint potential
has been on ordered phases of WBe

Elastic Deformations
• —5400 configurations

DFT-MD Trajectories
• —3500 configurations

Surface Adhesion
• —400 configurations
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Training SNAP for Transferability Tungsten+Beryllium

• Making a multi-element SNAP potential does
sacrifice some accuracy from either pure
component fit.

• No curation of the training data was done to
remove 'bad actors'

Fit weight applied
to Energy/Forces

Description NE NF UE UF

W-Be:

AIMD 3360 497124 7 • 104 6 • 102

Elastic Deform 3946 68040 3 • 105 2 • 103

Equation of State 1113 39627 2 • 105 4 • 104

Surface Adhesion 381 112527 2 • 104 9 •104

Total: MO 717318
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Out of Training Predictions

• Only one other W-Be potential available in
LAMMPS, a Bond Order Potential (BOP) from
Björkas et al 2010 J. Phys.: Condens. Matter

Defect Type Formation Energy (eV)

DFT SNAP BOP

Tetrahedral Interstitial 4.13

Octahedral Interstitial 3.00

Substitution 3.11

[111] Dumbbell 4.30

[110] Dumbbell 4.86

[100] Surf. Hollow Site -1.05

[100] Surf. Bridge Site 1.01

4.20

5.11

3.29

3.66

4.29

-1.39

0.44

-3.92

-3.29

-2.00

-3.20

-3.66

-3.52

-1.30

Much closer to DFT predictions

Energetically favored interstitial defects  
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Depth Distribution for 75 eV Be in W

- MD-SNAP

- SRIM

(b) (c)

Defect Type Percent of Implanted Be

[111] Dumbbell 41.2

Substitution 22.2

[100] Surf. Hollow Site 12.3

Tetrahedral Interstitial 10.4

[110] Dumbbell 8.4

Octahedral Interstitial 5.3

Other 0.4

[100] Surf. Bridge Site 0.03

0 10 20 30

Depth (Angstroms)

40 50

*-6O% of total Be is not captured in the W matrix
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Scrape-off Layer: Be Deposition on W Diverter

1) Accumulation of Be at W-surfaces

2) Formation of Be-rich intermetallic phases (WBe2, WBe12)

3) lntermetallic phases have lowered melting temperatures

4) Degradation of diverter rapidly quenches plasma

Be W

Captured Be

Rejected Be

Be layer thickness (ML)
0 

100 
2 4 6 8 10 12 14 16 18 20 22 24

80

.s 60
o
ce 40
0

20

1'1'1'1

from Be ls:
• metal
o alloy 

oxide

1.0 2.0 3.0 4.0

Be layer thickness (nm)

5 0

Wiltner, Linsmeier Journal of Nuclear Materials 337-339 (2005) 951-955
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• Be film persists at
high temperature:

T=1000K

41 0041
41 • t) 41 41 41
0 0 0 4, 0 41 0
41 4) 41 41 0 41
0 41 0 41 41 41 41

) 41 41 41 41 41 41 41 0 0
di di di di di A 6 di di 6 di

[001]

T=2000K [001]
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Conclusions/Path Forward

• SNAP development is targeting a space where few
other potentials exist, or where traditional energy
functionals lack quantitative accuracy.

• Biggest worry about generated potentials is how
`robust' they are.

• Understanding the pitfalls in a potential is far more
valuable than knowing its strengths

• Questions?

Fitting

Hyper- ararneters
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7) Figure and Table
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(a) Cumulative depth distribution plot for SNAP and SRIM
(b) Atomistic snapshot of initial position of atoms
(c) Atomisitic snapshot of final position of atoms after single Be

Implantation, Be located at substitutional site and the displaced
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Formation Energy (eV/f.u.)

Phase Composition DFT BOP SNAP

B2 WBe 0.67 -2.20 0.30

C14 WBe2 -0.87 -4.20 -1.27

C15 WBe2 -0.92 -4.19 -1.15

C36 WBe2 -0.90 -4.20 -1.22

L12 WBe3 -0.51 -4.58 -0.15

D2b WBe12 -0.96 -6.69 0.34

*-60% of total Be is not captured in the W matrix
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Description r
1Vp. Cr E 0"), Description N E Cr E Crp Description NE NI.. crk

W: 13e: W-Be:

Self-interstitials 5 5805 5 • 10-2 S • 102 Surfaces 90 17280 1 • 103 4 • lir AIMD 3360 497124 7,10' 6,102

Dislocations cis 39690 3 - 10° 9 • 104 Self-interstitials 179 137931 3 - 102 4 • 103 Elastic Deform 3946 68040 3,105 2,1e

Liquids 27 3120 4 - 10 3 • 102 AIM 909 130896 2• 105 2 • 10' Equation. of State 1113 39627 2,103 4,10'

Divacancy 39 6084 1 - 10" 1 , 103 Elastic Deform 4594 43260 1 - 10' 1 - 107 Surface Adhesion 381 112527 2• 10' 104

Equation of State 125 3468 1 . 10-1 1u' Equation of State 502 5418 6 • 104 3-106

r-Surface 6183 328338 1 - 10° 1 • 105 Stacking Faults 6 864 3 - 1011) 2 • 106

F-Surf.+ Vacancy 750 105750 4 • 10-1 3 • 105 Liquids 75 57 600 7 - 101 7

AIMD 6o 23040 3 • 10" 1 • 104

Elastic Deform 200€1 60,[X 5 - 10" 6 , 104

Surfaces 180 334818 1.105 3,105

Monovacancy 420 183054 2-103 1,105

'rotal 9897 1039167 6355 393249 8800 717318
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Fully-Automated Generation of SNAP

EXRECRLE COMPUTING PROJECT

• Simulation hyper

parameters (T,P, ...)

• Resource management
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• Trajectory Farm 
• . . • • • • %.•101•41.6.11.11.11.0.0.11....O.4.111.0.4.4.4,1444.0.4.:

%41044110111".4MAINMO.440010'.4100.%• • • •

•
* —s e— elie-0—.10,0•4110••• •••

.1' ..1%; • :.•
-114.-110.° 

• 
1"-0;•111V0.•.*.:11,.%10. • AP. AP. • • • • .9.'.

46%60 ee.04 110 • ..4,71,
• 4NIVIIIIINes64.41.*6 64.4%•ews*eilie • • • 0 411 411 • • • • 4 • 4_0
Ogg • • • • • • • • • • • • • • • • • • • • • • • • • 4 4 •

• Generates new training configurations, returns SNAP potentials

SNAP fit hyper

parameters (i.e. rcut)

Min regression /

prediction errors

Genetic Algorithm

2 6



Bispectrum Components as Descriptor
• Neighbors of each atom are mapped onto unit sphere in 4D

(90,9, 0) = (617x rIrct,t,cos-1(zIr), tan-1 (y1 x))
• Expand density around each atom in a basis of 4D hyperspherical harmonics,

• Bispectrum components of the 4D hyperspherical harmonic expansion are used as the
geometric descriptors of the local environment

Preserves universal physical symmetries

Rotation, translation, permutation

Size-consistent

=u,„3„,„(0,0,0) fc(riii)wiU,i,,,„,/(Oo, 0, 0)
riir <Reut

j2
jmnit

nj .B•11 )./ 2 )./ / 

hi/1277'12 U

(Uj )*Hi iinti U
j2

rn1 ,rn ni2,n12

nil ,rnii —j1

Symmetry relation:  
2j +1 2j1 +1 2j2 +1
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Design Philosophy for Multiscale, SNAP

Goal: Fully utilize exascale to
access all regions of ALT space:

Accuracy: EAM through SNAP and DFTB
Length: 103 to 1014 atoms

Time: ps to s , -11
10

18
1 I

IL 
15 .

10 ••
•

10
12

10

10

10

9

6

3

Parallel MD ,

NN'N'ENjMNLT
inaccessibleAq

fs ps ns US Ms

Timescale

ks

• Extensions of
parallel MD through
improvement of the
accuracy of MD
potentials

Sanda
National
Laboratories

103n 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 11 1 1 1 1 1 1 111 1 1 1 1 1 1 1 11 1 1 1 1 1 1 111

•—• Sequoia/Vulcan 246k
A-A Titan 246k
E—N Chama 246k

AL

-  
10

3

10° 101 10
2 

10
3 

10
4 

10
5

# of nodes

• Bonus points if the MD
potential scales well on
leadership computing
platforms
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Training SNAP for Transferability WBe

Candidate 18584
Predicts the correct WBe intermetallic phases
(stable Laves phases, unstable B2 and L12)

Key drawbacks are Be-elastic and W-vacancy
properties.
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Training SNAP for Transferability Tungsten

DFT EAM SNAP

ao 3.1803 3.165 3.1797

C11 517 517 523

012 198 200 193

C44 142 156 151

DFT EAM SNAP

He-Tet 6.2 6.2 6.2

He-Oct 6.4 6.3 6.5

He-Sub 4.7 4.7 4.2

2 H eTet 1.0 0.9 0.7

• W-He and He-He terms are using JW tables

Sandia
National
Laboratories

AEfcc-bcc AEhcp-bcc AEsc-bcc AEA15-bcc AEdia-bcc

EAM 0.155 0.155 1.37 0.216 3.38

SNAP 0.478 0.461 1.86 0.103 3.97

DFT
(eV)

EAM
(eV)

EAM
(%)

SNAP
(eV)

SNAP
(%)

Tetra 11.1 10.24 7.34 9.70 12.22

Octa 11.7 10.35 11.57 11.03 5.77

[110]d 9.8 10.06 2.26 9.70 1.43

[111]d 9.6 9.44 1.18 9.56 0.13

Vac 3.3 3.63 11.05 3.07 6.14

Divac 0.1 -0.432 460.2 0.098 18.21
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