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Molecular Dynamics Primer Notorat

years

« Continuum models require underlying models of the
materials behavior

* Quantum methods can provide very complete
description for 100s of atoms

* Molecular Dynamics acts as the “missing link”
 Bridges between quantum and continuum models

* Moreover, extends quantum accuracy to continuum
length scales; retaining atomistic information
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Atomistic View of the (computational) World e

» Key approximation of MD is the interatomic

& potential used
18 { Exascale Supercomputers

« Assumes all physics of the problem is contained on
the Born-Oppenheimer potential energy surface
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MD Approximations Change Over Time

Twobody (B.C.)
Lennard-Jones, Hard
Sphere, Coulomb, Bonded

Manybody (1980s)
Stillinger-Weber, Tersoff,
Embedded Atom Method

Advanced (90s-2000s)
REBO, BOP, COMB,
ReaxFF

Sandia

Big Data / Deep / Machine
Learning (2010s)
GAP, SNAP, NN,...
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Computing Environments Change Over Time L.

« SNAP will be Exascale ready on all hardware via KOKKOS implementation

» Performance on modern GPUs (P100’s) far exceeds previous leadership platforms (Titan, K20X’s)

Strong Scaling for CPU and GPU Weak Scaling for CPU and GPU
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Best Practices for Interatomic Potentials? Mool

Generating interatomic potentials is essentially a black box, this is true for all potential types.
Plenty of progress to apply known optimization tools to the fitting, GA being the most common.

« Which training data tells us the most about a material?
« How much training data until we can say we are at DFT-level of accuracy?

Transferrable, User Generated Training Less-Transferrable, Learn On-The-Fly
« Better for distribution to a broad « Best when the target application is
audience. well known.
« User interaction with training sets and  Hands off approach to
objectives is very high. parameterization.
« Accuracy is potentially sacrificed for « Accuracy is completely unknown
stability. for untrained systems.
Slower, safer but still looks like black Potentially faster and the intended
magic to outside viewers. use is well known to end users
6
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SNAP - A Look Under the Hood Notionel

Set of Descriptors Model Form

Cas * Energy of atom i expressed as a basis expansion
over K components of the bispectrum (B;)

K
Einar =Bo+ ) Br(Bi — Bio)
k=1

= fo+ 8- B

Regression Method

_ _ » [ vector fully describes a SNAP potential, found
Local density around each atom expanded in 4D through a weighted linear regression.

hyperspherical harmonics

g .. * Decouples MD speed from training set size
Bispectrum coefficients are a superset of the

bond-orientational order parameters, in 4D space. min( |w .DB — T| |2 — Yn ||,3| |n)
Preserve universal physical symmetries: invariance < A v
w.r.t. rotation, translation, permutation o° - Y

Weights Set of Descriptors ‘DFT Training ;




Semi- Automated Generation Interatomic Potentials Nl

« Even if the optimization
routine is robust, the Fitting
process still isn’t Hyper-parameters
transparent.

DAKOTA {

FitSNAP.py
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« The importance on U

each objective is Objective Functions,
part of the magic. Material Properties

Typically a small, of
0(103), number of
configurations.

Developer has to
ration compute
resources with DFT
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SNAP as a Many-Body Correction Term Notonal

 Base potential is E,,, typically ZBL is used to constrain at small atom separations.

 Could be Columbic, LJ, EAM, etc.
SNAP + Tight Binding :

40

Ny __ N N LATTE - ol )
E(I‘ ) — E?"ef(r ) + ESNAP(r ): 30 | LATTE+SNAP GO
% 20 |
SNAP + EAM : S ot
et
1000 ‘ (@] |
DAC, Cynn Yoo L 0
SNAP Current —s=— 8
- 800 - Raveloral g 10
B Ravelo Ta2 —— '6
© 600 g -20 |
B S
= -30 B s §
G 400 g P
; DAC, Cynn Yoo -40 | | | | | | |
i "SNP Te0eA —— 200 40 -30 20 -10 O 10 20 30 40
Ravelo Tal ——
I L ! ! Ravelo T2 — 0 I L L L ! DFT Force (eV/A)
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Pressure (GPa) Pressure (GPa) 9



Sandia

Changing the Functional Form of SNAP e e
4 — 150 _ _
_ oL R 5 ¢p— « When expanding the energy functional
£ i s S 1060 beyond linear order in the bispectrum,
c O0r ' | _ significant accuracy increase observed.
3 ol § 1
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» Bispectrum components are non-zero as r—,

: Number of Descriptors, K
energy functional needed to be corrected
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Quadratic SNAP Netorel

i i, Lo i
Esnap = ﬁ-B+§(B)T-a-B

Linear terms are 4-body

Quadratic tgrms are 7-body * Energy, force, stress remain linear in fand o
Number of linear coefficients grows as O(J3) « Can still use linear least squares (SVD)
Number of quadratic coefficients grows as = O(J°)  « Number of columns will increase from K to K(K+1)/2

100 g .
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Wood and Thompson, J. Chem.Phys., March, 2018 Also https://arxiv.org/abs/1711.11131 11
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Quadratic SNAP - Cross Validation Netionel

« Concerned with overfitting now that there are MANY _ 1. . _
more free parameters during the fit. Etvap = B-B'+ —(B*)T o - B
* (Training Points) : (Descriptors) still >> 1 for 2
assembled training sets
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Plasma-Facing Materials B e

ITER fusion reactor:

» Plasma-facing material is tungsten

« Exposed to He and H at elevated temperature

* Fuzz buildup limits power output and useful
life of diverter elements

[P0 e v A 4 e Pl es 4 VmET T Mo A gt e 0T
o . L4 ¥

RN02062007

S O S LK)
Nanostructured layer growth (fuzz) is observed at

T=1120 K and a flux of ~5x10% He m>3s™ [2] Luis Sandoval, Blas Uberuaga, Danny Perez, Art Voter, Phys. Rev. Lett. (2015)
Sefta, F., Hammond, K. D., Juslin, N., & Wirth, B. D. (2013). Nuclear Fusion, 53(7), 073015. 13




Atomistic Simulation Efforts

* Objective is to develop coupled simulation
capability across three distinct spatial regions:

1. Edge/Scrape-off-layer of the plasma, with
sheath effects (W,Be + He,H)

2. Near Surface Material response to
plasma exhaust

3. Structural Materials response to intense,
14MeV peaked neutron spectrum

0.18 ps 4.
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Training SNAP for Transferability — Tungsten Nt

* In many cases we want a general use * ‘Plug-and-Play’ capability with existing W-He
potential that many users can apply to their and He-He potentials. Easily fix shortcomings
research needs. of existing tungsten EAM potentials.

Elastic Deformations
« ~2200 configurations

Defects (Interstitials, Vacancies,
Dislocations)

« ~600 configurations

Free Surfaces
« ~200 configurations

Percent Error w.r.t. DFT

DFT-MD Trajectories (Solid and Liquids)
« ~100 configurations

Gamma Surface
« ~7000 configurations

(Above) Interested in He-bubble bursting

15




Training SNAP for Transferability — Beryllium

* Few existing Be potentials, challenging
material system.

« Significant improvement over existing
bond order potentials (BOP)

Elastic Deformations (HCP, FCC, BCC)
« ~4500 configurations

Defect Relaxations (Interstitials, Vacancies)
« ~170 configurations

Free Surfaces
« ~100 configurations

DFT-MD Trajectories (Solid and Liquids)
* ~1100 configurations

Percent Error w.r.t. DFT
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SNAP relaxed
crowdion defect
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Training SNAP for Transferability — Tungsten+Beryllium B e

25 — . : ;
« Making a multi-element potential Cis vﬁémhg SR : | | |
means sacrificing some accuracy from oo L WeeSNAP BRI} HN

either pure component form.

. So far the focus of the joint potential 15 _

has been on ordered phases of WBe I

Elastic Deformations
« ~5400 configurations

0
DFT-MD Trajectories

« ~3500 configurations

Q/(/ ,\"\ 1V btb‘ (b'
& O Yy

Surface Adhesion

. ~400 configurations WBe-SNAP Tungsten Properties

14[‘[1001 17




Training SNAP for Transferability — Tungsten+Beryllium

« Making a multi-element SNAP potential does
sacrifice some accuracy from either pure

component fit.

* No curation of the training data was done to

remove ‘bad actors’

Fit weight applied
/ to Energy/Forces

Description Ng Nr o0E OF
W-Be:

AIMD 3360 497124 7-10* 6102
Elastic Deform 3946 68040 3-10° 2-10°
Equation of State 1113 39627 2-10° 4-10*
Surface Adhesion 381 112527 2-10* 9-10*

Total: 8800 717318

Fraction of Training Data

Fraction of Training Data
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Out of Training Predictions B e
« Only one other W-Be potential available in

LAMMPS, a Bond Order Potential (BOP) from (a)l_z __Depth Distribution for 75 eV Be in W

Bjorkas et al 2010 J. Phys.: Condens. Matter — MD-SNAP

— SRIM
1.0
Defect Type Formation Energy (eV) 2
DFT SNAP BOP <08 o
- (b) c
Tetrahedral Interstitial 4.13 4.20 -3.92 c | 1 |
S 0.6 Defect Type Percent of Implanted Be |
Octahedral Interstitial  3.00 5.11 -3.29 g [111] Dumbbell 412
Substitution 3.11 3.29 -2.00 £ Substifin = 2R
) ) 2 04r [100] Surf. Hollow Site 123
111| Dumbbell 4.30 3.66 -3.20 E Tetrahedral Interstitial 10.4
e oy 2 [110] Dumbbell 8.4
110] Dumbbell 4.86 4.29 -3.66 0.2 Octahedral Interstitial 53
[100] Surf. Hollow Site -1.05 -1.39 -3.52 Other 04
) : ) ) [100] Surf. Bridge Site 0.03
100] Surf. Bridge Site 1.01 0.44 -1.30 0.0 . . . .

- - » ’ =10 0 10 20 30 40 50

Depth (Angstroms)

*~60% of total Be is not captured in the W matrix
19

Much closer to DFT predictions J .

Energetically favored interstitial defects




Scrape-off Layer: Be Deposition on W Diverter

1

3
4

Accumulation of Be at W-surfaces

‘ (Q Be,/ O W

Captured Be

Rejected Be

=

)

2) Formation of Be-rich intermetallic phases (WBe,, WBe,,)
) Intermetallic phases have lowered melting temperatures
)

Degradation of diverter rapidly quenches plasma

Be layer thickness (ML)

1000 2 4 6 8 10 12 14 16 18 20 22 24

(o]
(=]

g - from Be 1s:
S 60} e metal
b= I o alloy
Q | a oxide
£ 40f
o L
o L
20}
%% "0 20 30 40 50

Be layer thickness (nm)

Wiltner, Linsmeier Journal of Nuclear Materials 337-339 (2005) 951-955

| T=2000K =

Sandia

» Be film persists at
high temperature:

T=1000K il

[1 010]



Conclusions/Path Forward taooat

sEs I EEEOER
EEEENN EEE

« SNAP development is targeting a space where few e ‘.;::::
other potentials exist, or where traditional energy

Hyper-parameters
functionals lack quantitative accuracy. [L\

» Biggest worry about generated potentials is how
‘robust’ they are.

« Understanding the pitfalls in a potential is far more
valuable than knowing its strengths
Objective Functions,

Material Properties

e Questions?

0 \
@ ciiciay oo %0AK RIDGE \(\g\, P Lol Alamos
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EXASCALE COMPUTING PROJECT
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7) Figure and Table

(a)l 5 Depth Distribution for 75 eV Be in W
— MD-SNAP
— SRIM
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(a) Cumulative depth distribution plot for SNAP and SRIM

(b) Atomistic snapshot of initial position of atoms

(c) Atomisitic snapshot of final position of atoms after single Be
Implantation, Be located at substitutional site and the displaced

| T=1000K o

[1 0101

Formation Energy (eV/f.u.)

Phase Composition DFT BOP SNAP
B2 WBe 0.67 -220 0.30
C14 WBe, -0.87 -4.20 -1.27
C15 WBe, -092 -419 -1.15
C36 WBe, -090 -4.20 -1.22
L12 WBe;, -0.51 -458 -0.15
D2b WBe,, -096 -6.69 0.34

*~60% of total Be is not captured in the W matrix
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Description Ng Nrp og o Description Ng N og oE Description Ng Np og or
W Be: W-Be:

Self-Interstitials 15 5805 5-107% 8-10° Surfaces 90 17280 1-10° 4-10° AIMD 3360 497124 7-10° 6-10°
Dislocations 98 39690 3-10" 9.10" Self-Interstitials 179 137931 3-10° 4.10° Elastic Deform 3946 68040 3-.10° 2.10°
Liquids 27 3120 4-107% 3.10° AIMD 909 130896 2-10°% 2-10° Eguation of State 1113 39627 2.10° 4.10¢
Divacancy 39 6084 1-10° 1-10% Elastic Deform 4594 43260 1-10° 1-107 Surface Adhesion 381 112527 2-10' 9-10%
Equation of State 125 3468 1-107' 6.10" Eguation of State 502 35418 6.10% 3.10°

I'-Surface 6183 328338 1-10 1-10% Stacking Faults 6 864 3-10" 2.10°

I-Surf+Vacancy 750 105750 4-10"' 3- 10° Liquids 75 57600 T-10" T7-10°

AIMD 60 23040 3.10" 1-.10°

Elastic Deform 2000 6000 5-10° 6.10°

Surfaces 180 334818 1-10° 3.10°

Monovacancy 420 183054 2-10° 1-10°

Total YRYT 1039167 6355 393249 BROO 717318




Percent Error w.r.t. DFT
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Fully-Automated Generation of SNAP Notomst

ECP

EXASCALE COMPUTING PROJECT

« Generates new training configurations, returns SNAP potentials

e Simulation hyper
parameters (T,P, ...)
e Resource management

* SNAP fit hyper
parameters (i.e. r )

FitSNAP.py | + Min regression /

prediction errors

D A K O TA * Genetic Algorithm
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Bispectrum Components as Descriptor
* Neighbors of each atom are mapped onto unit sphere in 4D

(6,,6,8)= (6”"“" r/r. ,cos” (z/7), tan"l(y/x))

« Expand density around each atom in a basis of 4D hyperspherical harmonics,
« Bispectrum components of the 4D hyperspherical harmonic expansion are used as the
geometric descriptors of the local environment
* Preserves universal physical symmetries
* Rotation, translation, permutation
+ Size-consistent

) = U;,m,(0,0,0) + Z fc(m)wz-Uﬁg,m/(Qo,@,qﬁ)

TZ’LI <Rcut

J1.J2,J — 2 : E : 2 : ;;Tnlﬁri/? uml m’lumg mi

mi mlf_Jl ma2 mg*_JQ m,m/=

Symmetry relation: B o _ B jo.ia _ Bjy 4,5

2j4+1 251 +1 241

m,m

27




Design Philosophy for Multiscale, SNAP

’ b | I | I |
Goal: Fully utilize exascale to | o e
access all regions of ALT space: ° Extensionsof 1078 et | 3
parallel MD through olk
_ improvementofthe |= ¢
Accuracy: EAM through SNAP and DFTB accuracy of MD 2 0%
A Length: 10° to 10™ atoms potentials =
1018 Time:pstos e 7 10"
10’2é- Trott, Hamman, Thomgsson, Mnteoationsl
07500 100 10t 100 100 10
# of nodes

Number of atoms

* Bonus points if the MD
potential scales well on
leadership computing
platforms

v.‘ 1
.M 3 J
4
v N |
. - r |
> 1

¥ /:;:m

Timescale 28




Training SNAP for Transferability — WBe Ngoret

Candidate 18584
Predicts the correct WBe intermetallic phases
(stable Laves phases, unstable B2 and L12)

Key drawbacks are Be-elastic and \WW-vacancy

properties.
Be Phase Stability Be Elastic Moduli Be Defect Formation
20 100 100
Be-BOP Be-BOP mmm Be-BOP mmmm
Be-SNAP mmm Be-SNAP mmm Be-SNAP mmm
WBe-SNAP = WBe-SNAP mmm WBe-SNAP =
- 80 L 80
o 15F a a
E 5 60} = 60
S 10| E ugJ
T w B o 40
2 2 4 g
0 7 S
g °r $ 20 g 20




Training SNAP for Transferability — Tungsten

DFT EAM SNAP
 W-He and He-He terms are using JW tables
a 3.1803 3.165 3.1797
0 AEfcc-bcc AEhcp-bcc AEsc-bcc AEA1 5-bcc AEdia-bcc
Cis 517 517 523 EAM 0.155 0.155 1.37 0.216 3.38
C,, 198 200 193 SNAP 0.478 0.461 1.86 0.103 3.97
Cus 142 156 151 DFT EAM EAM SNAP SNAP
(eV) (eV) (%) (eV) (%)
Tetra 11.1 10.24 7.34 9.70 12.22
DFT EAM SNAP
Octa 11.7 10.35 11.57 11.03 5.77
He-Tet 6.2 6.2 6.2 [110]d 9.8 10.06 2.26 9.70 1.43
He-Oct 6.4 6.3 6.5 [111]d 9.6 9.44 1.18 9.56 0.13
He-Sub 4.7 4.7 4.2 Vac 3.3 3.63 11.05 3.07 6.14
2HeTet 1.0 0.9 0.7 Divac 0.1 -0.432 460.2 0.098 18.21




Surface Hop —m— Sandia
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