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Abstract. Reductions represent a common algorithmic pattern in many
scientific applications. OpenMP* has always supported them on paral-
lel and worksharing constructs. OpenMP 3.0's tasking constructs enable
new parallelization opportunities through the annotation of irregular al-
gorithms. Unfortunately the tasking model does not easily allow the ex-
pression of concurrent reductions, which limits the general applicability
of the programming model to such algorithms. In this work, we present
an extension to OpenMP that supports task-parallel reductions on task
and taskgroup constructs to improve productivity and programmability.
We present specification of the feature and explore issues for program-
mers and software vendors regarding programming transparency as well
as the impact on the current standard with respect to nesting, untied
task support and task data dependencies. Our performance evaluation
demonstrates comparable results to hand coded task reductions.
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1 Introduction

Migrating applications to multi-core and many-core architectures is a challeng-
ing but necessary step to achieve scalable performance on modern systems.
Thus, parallel programming models such as OpenMP [7] have gained popularity
through concepts and tools to introduce portable concurrency in a broad range
of algorithms with relatively little programming effort. This work proposes a task
redutcion extension to OpenMP that supports a yet wider class of algorithms.

A reduction is an iterative update of a variable var, defined as:

iter : var = op(var, expression),

where op is an associative function and var does not occur in expression. Typ-
ically, a for-loop (bounded loop) or while-loop (unbounded loop) iteratively or
recursively defines the iteration space.
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1 //Compute
2 float var
3

reduction by traversing
0;

nodes 1 //Compute reduction by traversing nodes
2 float var = 0;
3#pragma omp parallel

4 4 {
5 5 #pragma omp single
6 while ( node ) { 6 while ( node ) {
7 var += node—>value ; 7 #pragma omp task firstprivate (node)
8 node = node—>next ; 8 1
9 } 9 #pragma omp atomic
10 10 var += node—>value ;
11 11 }
12 12 node = node—>next ;
13 13 }
14 . 14 }

(a) Original code (serial version) (b) Parallel with atomics

1 //Compute reduction by traversing nodes 1 //Compute reduction by traversing node•
2 float var = 0; 2 float var = 0;
3 float part [ nthreads ] = { 0 }, 3 float part = 0;
4 4#pragma omp threadprivate ( part )
5A3ragma omp parallel reduction (-F var) 5
6 { 6#pragma omp parallel reduction(-Hvar)
7 #pragma omp single 7 {
8 { 8 #pragma omp single
9 while ( node ) { 9 {
10 #pragma omp task \ 10 while ( node ) {
11 firstprivate (node) 11 #pragma omp task \
12 { 12 firstprivate (node)
13 part [thread_ld] += 13 1
14 node—>value ; 14 part += node—>value ;
15 } 15 }
16 node = node—>next ; 16 node = node—>next ;
17 } 17 }
18 } 18 }
19 var += part [thread id ]; 19 var += part ;
20 1 20 1

(c) Parallel with manual privatization (d) Parallel with thread-privatization

Fig. 1: Different versions of a while-loop reduction over a linked list

For-loops have a constant iteration space. OpenMP supports their concur-
rent execution through worksharing constructs. The iterations space of while-
loops and recursions is dynamic, which prohibits efficient use of worksharing
constructs. OpenMP 3.0 added support for these irregular algorithms through
the task directive. In this formulation, loop iterations and recursive calls create
task instances of the enclosed code, typically the loop body.

While for-loops and while-loops can be efficiently parallelized through work-
sharing constructs or tasks, reductions within them require special attention. A
closer look reveals that the reduction operation represents a read-modify-write
sequence that is not atomic so that its parallel execution introduces data races.

Figure 1 shows while-loop reductions over a linked list that avoid data races
by introducing locks or by applying techniques like thread-privatization. Pro-
gramming model support would eliminate the required boilerplate code. Even
though manual implementations are viable solutions, they are error prone and
require the programmer to select a specific implementation, which may be inef-
ficient on a given architecture or incur unnecessary memory overheads.

OpenMP needs a solution that supports task reductions and minimizes the
effect on unrelated constructs. It should comprehensively define the scope of the
reduction and a data context for the private reduction variable.
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2 Related Work

OpenMP supports reductions on parallel and worksharing constructs through
the reduction clause. It implies data privatization of the reduction variable that
removes race conditions by replacing accesses to the original variable with ac-
cesses to per-thread private copies. Each copy is initialized with the operation's
identity and is reduced to the original variable at the end of the construct.

While the specification does not yet support task reductions, prior work has
explored them for OpenMP [3] and OmpSs [1]. These papers discussed different
scenarios in which to use task reductions and compared the results with manual
transformations that use atomics. This general approach could specify the task
reduction scope through the taskgroup, taskwait or barrier constructs or task
dependences on the reduction variable. This paper extends that work.

Intel(R) Cilk(TM) [5] coordinates the view of a variable of a task and its de-
scendants through hyperobjects [4]. A reduction operation can combine these
views when a descendant task finishes execution. This mechanism targets a mul-
tilevel task hierarchy. We target the task hierarchy within a taskgroup region.

The X10 [2] programming model supports task reductions through phaser-
accumulators [8, 9]. Focused on the Partitioned Global Address Space environ-
ment, X10's phaser-accumulators can send and receive results from different
activities and combine them in a point-to-point pattern.

3 Discussion

We propose to extend the taskgroup and task constructs to support task re-
ductions. Prior work identified taskgroup construct as a possible scope of the
reduction [3]. We prefer this choice since it does not affect other OpenMP mech-
anisms (e.g., barriers) and the taskgroup structured block defines a clear reduc-
tion scope.

We extend the taskgroup and task construct with the clauses reduction and
in_ reduction respectively. The in_ reduction clause declares a task as a partic-
ipant in the computation of var that was previously declared in an enclosing
taskgroup reduction clause with the same reduction-identifier. We deliberately
use the in_ reduction clause instead of reusing the reduction clause in order to
stress the differences in behavior to the programmer. The reduction clause in the
taskgroup construct follows its current specification for other constructs. Alter-
natively, the in_ reduction clause on a task construct defines an access pattern
(an update operation) to one of those copies. Figure 2(a) illustrates our proposal
for the previous example.

3.1 Updates of a reduction variable outside a reduction context

Programmers must consider that an update of the original reduction variable
occurs just after the taskgroup region and that accesses to that outside of the
taskgroup may create a race condition. Figure 2(b) shows code that updates the
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1 //Compute reduction by traversing nodes
2 float var = 0
3
4 #pragma omp parallel
5 {
6 #pragma omp s i n g le
7 #pragma omp taskgroup \

1 //Compute reduction by traver•ing nodes
2 float var = 0;
3
4 #pragma omp p a r al 1 e I
5 {
6 #pragma omp s i n g 1 e
7 {

8 reduction ( +i var) 8 #pragma omp t ask
9 while ( node ) { 9 var+};
10 #pragma omp task \ 10
11 firstprivate (node) \ 11 #pragma omp taskgroup \
12 in—reduction (+ i var) 12 reduction (+: var)

13 { 13 while ( node ) {

14 var }= node—>value ; 14 #pragma omp task \

15 4 15 firstprivate (node) \

16 node = node—>next ; 16 in_reduction(-Pi var )

17 } 17 {
18 } 18 var += node—>value ;
19 19 }
20 20 node = node—>next ;
21 21 }
22 22 }
23 23 I

(a) While-loop reduction (tentative) (b) While-loop reduction (race condi-
tion)

Fig. 2: Examples of our proposal

reduction variable both inside and outside a taskgroup reduction. The task cre-
ated in line 8 can be executed concurrently with the taskgroup reduction update
occurring at the end of the taskgroup created in lines 11 — 12. This situation
may also occur when multiple taskgroup reductions are working with the same
variable simultaneously. The programmer must provide proper synchronization
to avoid this situation. This requirement is analogous to existing restrictions on
reductions:

To avoid race conditions, concurrent reads or updates of the original list
item must be synchronized with the update of the original list item that
occurs as a result of the reduction computation (line 20, p. 170 [7]).

3.2 Over-specifying the reduction identifier

The declaration of the reduction identifier in the in_ reduction clause could be
inferred from the taskgroup context and thus could be omitted to minimize
the potential for programming errors. However, vendor feedback indicates that
omitting the identifier could limit compiler optimizations, or at least introduce
some additional overhead (i.e., registering the reduction inside the runtime) to
perform these optimizations. OpenMP vendors may use the identifier to combine
a local-copy of a reduction variable with the original/thread-copy (depending
on the implementation approach), which specification of the identifier in the
in_ reduction clause would facilitate. Thus, we choose to require it.

3.3 Supporting untied tasks

Untied tasks can be suspended at a task scheduling point and later resumed on
a different thread. Without proper handling, a task might resume execution on
a different thread but still continue using the thread-private copy of the thread
that started its execution, which could create a race condition. Tied tasks do
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not encounter this issue since they execute entirely on one thread even if they
are suspended at some point. Thus, they can safely use that thread's copy as
they will not be suspended while accessing it.

Several solutions could support untied reduction tasks. First, an implemen-
tation could not migrate any task (e.g., treat it as tied) if it is involved in a
reduction even though it is declared as untied. This approach is simple but elim-
inates the potential benefit of untied task migration.

Alternatively, an implementation could introduce an additional local variable
for each untied reduction task. This task-local variable must be initialized to
the identity. A reference to the local variable would replace all references to
the reduction variable inside the untied task. Finally, at the end of the task,
the partial result stored in the task-local variable would be combined with the
thread-private copy of the thread that finalizes the task. This approach supports
tasks that migrate among threads at the cost of an additional task-local copy
that must be initialized and an additional partial reduction per untied task.

Finally, the compiler could generate a request for the thread-private copy
after each possible task scheduling point, thus supporting the use of the thread-
private copy. The reduction task would then always access the thread-private
copy of the thread that is executing it. This approach supports tasks that migrate
among threads at the cost of repeatedly obtaining the thread-private location.

We recommend that the following be implementation defined:

— Whether untied tasks involved in reductions can migrate;
— The number of private copies that are created for a task reduction.

The number of private copies could be defined as the number of tasks that
participate in the reduction. Our recommendation thus allows an implementation
to choose any of the above solutions (or a hybrid of them). Untied tasks could
migrate and the number of private copies could be anything between the number
of threads to the number of tasks.

Evaluating support for untied tasks: We use two benchmarks to evaluate
the choice of supporting untied tasks by not migrating them or by introducing
a new local copy per task. The first performs a reduction over a scalar. The
performance of both versions is equivalent since the extra overhead introduced
in the task-local approach is small in scalar reductions and the benchmark is
well-tuned to obtain good performance using tasks so the extra overhead of the
task-local version is insignificant compared to the task granularity.

Our second benchmark, Array Sum UDR (since it has a User Defined Reduc-
tion) reduces an array of structs to a unique struct. This struct has a static array
of TS integers. The UDR's initializer sets every element of the struct to zero and
its combiner adds the values of the two arrays. We choose this benchmark since
it increases the cost to allocate and to initialize the extra copy and to perform
its associated reduction.

Figure 3 shows the relative performance of the task-local version compared
against the untied-as-tied version, with different number of threads and fixing
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Fig. 3: Array Sum UDR benchmark results

1 int a = 0 ,

2#pragma omp

3 {

4

1 int a = 0 ;

taskgroup reduction (+ a) 2#pragma omp

3 {

4

taskgroup reduction (+: a )

5 int b = 0 ; 5

6 #pragma omp taskgroup reduction(-Hb) 6 #pragma omp taskgroup reduction(+ a)

7 { 7

8 8

9 } 9

1 0 10

1 1 a += b , 1 1

1 2 I 12 I

(a) Nesting over two different variables (b) Nesting over the same variable

Fig. 4: Nested taskgroup reduction scenarios

the total number of integers to N = 109. The relative performance is computed
dividing the execution time of an approach by the execution time of another.

The overhead of the task-local version increases with TS, the size of the
static array. The differences among the different relative perfomances require
further analysis and it's deferred to future work. Thus, the task-local approach
is reasonable for scalar reductions but may incur excessive overhead for array
reductions or UDRs; implementations could define values based on the type of
the reduction.

3.4 Supporting nested taskgroups

Nested taskgroup reductions can be defined either over different list items or the
same ones, as Figure 4 shows. If the nested taskgroup defines a reduction over
a different list item (Figure 4(a)), the runtime registers a new reduction that is
independent of the ongoing outermost taskgroup reduction. Thus, the runtime
creates a new set of thread-private copies to compute the reduction.

Two alternatives exist if the nested taskgroup reduction is over the same list
item (Figure 4(b)). The first uses the same approach as when the list item is
different: register a new reduction. The second alternative reuses the same set
of private copies for both reductions. With this approach, we cannot reduce the
private copies at the end of the nested taskgroups reductions: the final reduction
must be computed at the end of the outer taskgroup region, counter to current
reductions semantics that compute the reduction at the end of the construct
that has the reduction clause.
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3.5 Cancellation, dependencies and merged tasks

Cancellation implies the value of the reduction variable is unspecified since we
cannot guarantee how far the computation of the reduction has progressed. The
programmer must anticipate this behavior.

The specification of a dependency (using the task depend clause) over a reduc-
tion variable might introduce a conceptually misleading situation. The program-
mer might intend a dependency over the original variable or the private copy in
the data context of the taskgroup reduction. We could explicitly restrict the use
of the in_ reduction clause and depend clause over the same variable. However
the current OpenMP specification does not restrict similar cases. A dependency
over a private variable produces a similar situation where the OpenMP specifi-
cation does not provide clarification about the interaction between data-sharing
attributes and dependencies.

A merged task that participates in a reduction does not have a data environ-
ment. Thus, it must use the parent's data environment that includes the private
copy of the reduction variable. Since the parent environment for a reduction
task can only be either a taskgroup reduction or another reduction task environ-
ment, the use of the corresponding private copy' in the parent region is always
guaranteed. Thus, this case also does not require additional specification.

4 Syntax Additions

This section describes the syntax of our proposal. We update the syntax of the
taskgroup construct to:

#pragma omp taskgroup klause[b] clause]...] new-line
structured-block

where clause is:

reduct ion ( reduction-identifier: list)

We also modify the reduction clause description to cover taskgroup regions. Once
the scope of a reduction is defined, we must identify tasks within the taskgroup
that participate in the computation. Thus, we extend the clauses allowed on a
task construct to include:

in_reduction (reduction-identifier : list)

We add a section for the in_ reduction clause and modify the description of
the reduction clause to specify the semantics of references to the list items that
we discussed in the previous section. The section on the in_ reduction clause
includes this restriction:

1 This case may involve multiple private copies due to support for untied tasks.
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— The task to which the in_reduction clause is applied on a list-item must be
closely nested in a taskgroup region to which a reduction clause is applied
on the same list-item.

5 Evaluation

This section compares the performance of our prototype implementation of our
proposed taskgroup reduction with manual implementations that Figure 1 shows.

5.1 System environment

We obtained our results on MareNostrum III and the Knight system located at
the Barcelona Supercomputing Center. Each Marenostrum III node contains two
8-core Intel Xeon E5-2670 CPUs running at 2.6 GHz with 20MB L3 cache and
32GB of main memory organized as two NUMA nodes. Each Knight node in-
cludes an Intel Xeon Phi coprocessor with CO silicon and board version COPRQ-
7120 (61 cores at 1238095 Khz, 16 GB of GDDR Memory at 5.5 GT/sec, 300W
TDP), driver v3.4-1, MPSS v3.4 and flash v2.1.02.0390).

Applications on Marenostrum and Knight were compiled using the Mer-
curium source-to-source compiler v1.99.82 (using GCC v4.7.2 and Intel(R) C
Compiler 15.0.2 as the back-end/native compiler respectively). In both cases
the compiler optimization level was -03, and the parallel runtime used in all
experiments was based on the Nanos++ RTL v0.9a3.

5.2 Benchmark descriptions

Array Sum: This algorithm takes a single array of N integers as an operand and
computes the sum of its elements. We create a task for each TS elements.

Dot Product : The dot product algorithm is a simple operation on two vector
operands of N elements. The result is the sum of the products of their compo-
nents. We create a task for each TS elements.

NQueens: This application computes the number of placements of N chess queens
on a NxN chessboard such that none of them can attack any other. This im-
plementation uses a Branch and Bound algorithm following a recursive pattern,
taskified and using the final clause to control task granularity.

Unbalanced Tree Search (UTS) : This benchmark computes the number of
nodes in an implicitly defined unbalanced tree [6]. The program begins with
a single tree node and an initial seed that is used to generate a sequence of

2 mcxx 1.99.8 (git 538d492)
3 nanox 0.9a (git master 10f6134)
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Fig. 5: Array Sum and Dot Product benchmarks results

pseudo-random numbers. For each node, the next value in the sequence is used
to sample a parameterized probablity distribution to determine the number of
children for a given node. This algorithm creates an unpredictably unbalanced
workload that makes the use of a cut-off value in the final clause difficult.

5.3 Performance results on Intel Xeon processors

In this section we evaluate the performance of our proposal against the perfor-
mance of manual versions of the benchmarks on Intel Xeon processors.

Figure 5 shows the performance results of the Array Sum and Dot Product
benchmarks. Both benchmarks exhibit similar behavior in which performance
drops levels off with higher thread counts. In this case, scalability is limited by
memory bandwidth. In Array Sum, bandwidth saturation starts with 12 threads
(with a lOx speed-up), while for Dot Product this effect becomes visible with
6 threads (reaching a speedup of 5x). These two different phases (scale and
saturate) have a counterpart in the relative performance (the green dashed line
in the figure). For all thread counts with Array Sum, the performance reaches at
least 94% of the performance of the manual version. For larger thread counts, the
differences between the implementations become smaller because task execution
time shifts towards the computation as the algorithm saturates the memory
bandwidth and reduces the importance of reduction performance. For the Dot
Product benchmark, the relative speedup is between 95% and 100%. For both
benchmarks, gains in maintainability and portability easily compensate for the
slight differences in relative performance.

Figure 6 shows the results for the NQueens benchmark. For this applica-
tion we have implemented two versions: one that reduces over a global variable
(subfigure a) and another that reduces over a local variable (subfigure b). We
explore these two versions primarily because the global version only registers
one reduction in the whole program while the local version registers a new re-
duction at each recursive level. When reducing over a global variable, speedup
is essentially linear and relative performance is close to 100%. When the reduc-
tion is performed over a local variable, we compare our proposal against two
different manual versions. The first one is the regular transformation presented



10 J. Ciesko, S. Mateo, X. Teruel, X. Martorell et al.

N=15, using final clause, 15000 tasks, baseline: rnanual_reduction with 1 thread N=15, using final clause, 15000 tasks, baseline: manual_reduction with 1 thread
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Fig. 6: NQueens benchmark results
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Fig. 7: Unbalance Tree Search benchmark results

previously whereas the second version optimizes the code when in a final task.
The problem with the regular transformation is that we are still allocating, in-
tializing and reducing an array of NUM THREADS elements even if we are
going to use just one element. Thus, the optimized versions makes use of the
omp_in_final() runtime service to avoid this extra overhead. Despite compar-
ing our proposal against the manual optimized version, the scalability and the
relative performance of our version is still better.

Figure 7 shows the results of executing the UTS benchmark with configura-
tions that vary the number of created tasks from 50k to 1M tasks. All configura-
tions achieve essentially linear speedup (subfigure a), and relative performance is
between 96% and 99% for programmability issues again more than compensate.

5.4 Performance results on Intel Xeon Phi coprocessors

In this section we evaluate the performance of our proposal against the perfor-
mance of manual versions on a Intel Xeon Phi coprocessor.

Figure 8 shows that our approach scales slightly better than the manual ver-
sion of Array Sum. The relative performance line shows that the performance of
our proposal is at least 10% better than the performance of the manual version
in almost all cases. While not shown in the figure, the exceptions is when we use
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Fig. 8: Array Sum benchmark results on Xeon Phi
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all 60 cores and more than 2 threads per core, in which case our approach un-
derperforms and does not scale well due to cache problems and more contention
when we increase the number of threads.

Figure 9 shows the results of the NQueens benchmark on the Xeon Phi. For
the global version of the NQueens, the scalability and the relative performance
between our approach and the manual version are identical. For the local version,
the scalability and the relative performance of our proposal is equivalent to the
manual optimized version and far better than the nonoptimized one.

6 Conclusions and Future Work

In this paper we have presented a proposal to support task-parallel reductions
in OpenMP that extends the taskgroup and task constructs with reduction and
in_ reduction clauses. We find that the taskgroup construct provides a conve-
nient data environment for reductions and the scope of the reduction is clearly
defined by the deep synchronization at the end of the taskgroup region. The
in_ reduction clause for the task construct associates tasks with a reduction de-
clared in a taskgroup construct. This approach does not impact barriers or other
task synchronization constructs. We explored implementation options to sup-
port nested taskgroups and untied tasks, which demonstrate that implementors
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can explore a range of implementations and optimizations. Our performance re-
sults demonstrate that the approach incurs little overhead compared to manual
versions currently required and it may provide small performance benefits in
some specific cases like recursive benchmarks. Most importantly, it significantly
reduces boilerplate code that programmers must currently use to implement
reductions manually.

In the future, we continue our work in this area by conducting more analysis
and evaluation. Apart from that, we plan to provide a draft of the OpenMP
specification to the OpenMP committee.
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