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2  Outline

Introduce thermal battery

`)-'Calibration

• Feature extraction

➢ Validation
6 Time dependent

Roll-up

Prediction of QOIs

Intricacies: 
Calibration with field data
Multi-level system

Objective: 
Use experimental data to inform predictions
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3 Thermal Battery - UQ

Uncertainty sources

0 Aleatory - irreducible, naturally varying

• meas - measurement noise

• -manufacture - manufacturing parameters

° Epistemic - reducible, lack of knowledge

• x - input conditions, controllable nominal value with
epistemic uncertainty

°material - model parameter (calibration)

6rnodel - model bias
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4 Sensitivity Analysis

Features
First Order Sobol Indices
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5  Calibration: Bayesian Implementation

Bayes' Theorem to find Posterior

• Find values of theta that are
most probable given the data

Assumptions

• Independence of 5 features

• Model bias is 0 mean with known variance

Solving for posterior

• Markov chain Monte Carlo (MCMC)

Samples from chain approach posterior distribution

• Particle filter (PF)

P AD) =
P(D)

P(D119) * P(19)

P AD) oc P(D119) * P(19)

oc P (D = L(19)

Notional 1-D Likelihood
—Error Distribution
0

Yobs Ysim(a1)

Yobs—Ysim(g2)

  r — 

Error

N
1 1

L(19) =  e xp (— 2 — ((..v v 
SIM 
( .0 )) _) Iy 1 ((.31 obs,i sim(0)) — 0))

i_1 (27)k lEl

urrent Implementation of PF

0 Particles weighted based on likelihood scores 7 calibration 5 output Samples: 10 Resampling 40 cores

0 Easily parallelizable parameters variables million algorithm 20
iterations

-301-irs

Sample-based Bayesian methods require many model
evaluations

Replace computationally expensive physics model with
efficient surrogate model

PF resampling algorithm
- Relationship to genetic algorithm

O Selection — keep best performing parents

• Crossover — keep combinations of best performing
parents

• Mutation — make random changes to some of the parents



6 Calibration: Posteriors

Particle filter shows
convergence

° Negligible improvement
in likelihood score from
iteration 1 to 20
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7  Calibration: Calibration Fit in Feature Space
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8 Calibration: Calibration Fit in Trace Space
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9 Validation: Metric

Validation metrics

o Can be difficult to boil validation down to a
single metric value

Especially for time-dependent outputs

o Accumulated model reliability metric 1,2 T
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10 Validation: Results

Posterior shows higher reliability than prior
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Variability over space
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11 Rollup: Combining Calibration and Validation
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12 Prediction Battery: Q01s
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13 Conclusions & Future Work

Conclusions
. Calibration using feature extraction was successful
. Selection of bias tolerance has large impact in rollup
. QOI predictions are bimodal due to weighting of prior & posterior

On going work
. Present at IMAC XXXVII
. Submit to MVUQ best paper competition

Future work
. Explore other methods of Bayesian calibration with field data
. More information could possibly be extracted from experimental data

. Consider non-zero mean and correlated model bias in calibration
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16 Last Year

Fit a mathematical function to the temperature trace

Performed calibration in coefficient space

Large calibration fit uncertainty
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17 Calibration: Correlation of Posterior Samples
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18 Calibration: Comparing Traces of MAP and Prior Nominal
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19 Calibration: Checking Feature Space
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Calibration with Model Error Calibrated



21 Calibration: Posterior Model Parameters
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22 Calibration: Posterior Error Terms
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23 Calibration: Calibration Fit of Features
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MCMC Workshop
Bayesian Calibration with Field Data



25 Outline

➢ Introduction to Bayesian calibration

➢ Field outputs

Thermal battery current work
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26 Bayesian Calibration

Bayes' Theorem
Use observations to update beliefs

Posterior
• Find values of theta that are

most probable given the data
P(eID)

P (OW)

Uncertainty sources
• Aleatory — irreducible, naturally varying

Measurement noise

Epistemic — reducible, lack of knowledge
Model parameter uncertainty (calibration)

Model bias

Likelihood (case 1):

o Yobs = Ysim E me as

• Measurement noise: i.i.d. with N (0 , 62)

Posterior

P 10) * P (0) 

P (D)

a P (D 10) * (0)

a (D lt9) = L(e)

Notional 1-D Likelihood

Likelihood Prior

P A B) = 
P(BLA)P(A)

P(B)

—Error Distribution
- 0

▪ ameas

• Yobs-Y sim(01)

• obs-Y sim((12)

L(9) =

N

exp (— 
2a2

1

Data

((Yobs,i sirn (e))

Error



27 Bayesian Calibration Cont'd

Likelihood (case 2):

o Yobs = Ysim + Emeas 8model
Model error can take on different forms

• Kennedy O'Hagan Framework
• Treat model error as a Gaussian random

process with unknown mean and covariance

Likelihood (case 3):
O Multiple output quantities
o Covariance matrix of errors needed

LL-

Error

`o_

—Error Distribution

-

• If obs-Ysim(81)

• Yobs-Ysim(82)

N
1

a) = 1 exp ((y b • — y • 09)) — 
02i=1

20_2 s,/ sum

Error 2Solving for posterior
Markov chain Monte Carlo (MCMC)

L (0, it, a) — ,i(27,-1)k 1E1
 exp(— ((Yobs,i ysim(0)) au) Ey 1 ((Yobs,i ysim(e)) ett))

o Samples from chain approach posterior distribution

Particle filter (PF)
• Particles weighted based on likelihood scores

• Easily parallelizable

• Sample-based Bayesian methods require many model evaluations
o Replace computationally expensive physics model with efficient surrogate model

Error 1

Current Implementation of PF

17
calibration
parameters

5 output Samples: 10 Resampling 50 cores
variables million algorithm 10 -11hrs

iterations



28 Field Quantities

Spatially and temporally varying outputs
0 High dimensional output space

T
e
m
p
e
r
a
t
u
r
e
 

2 main challenges 

Building surrogate models

Gaussian process, polynomial chaos, ANN, etc.

° Inputs are RVs and outputs are random
processes/fields
O Include time/space as an input
O Build separate surrogate for each location
O Decomposition / dirnension reduction technique

0.5

0.4

0.3

0.2

0.1

Experimental Data from a Single Test
12 Thermocouple Locations

-0.1  
0 0.05 0.1

Ti me
0.15 0 2

Constructing likelihood function

0 High dimensional joint pdf

Need correlation for error covariance matrix



29 Current Efforts on Thermal Battery

Feature Extraction

3 temperature values and 2 slopes

Decompose the trace

Through a mathematical function/coefficients or through PCA
eigenvectors / eigenvalues

Dakota

Stepwise parameter identification then discrepancy estimation

DAKO TA 
Ark Explore end predict with =Adam.

Estimate model bias state

Then covariance matrix is known

Combined parameter identification and state estimation is a challenge

Simulation Data (High)
0.55

0.5

0.45

a)
's 0.4

a) 0.35

cv 0.3

0.25

0.2

0.15
0

0.4

0.35

a) 0.3

0.25

0.2
0

—Trace
*Value at Peak
*Value at 0.02196
—Slope at 0.02196
*Value at 0.15196
—Slope at 0.15196

0.05 0.1 0.15
Ti me

0.2 0.25

Fitting Exponentials and Power Models

 01:13

— Observation
—expl
—exp2
—powerl
—power2

power2: 
Y = atb + c

0.05 0.1

Time

0.15 0 2


