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2 1 Outline

Objective:
Use experimental data to inform predictions

» Introduce thermal battery

» Calibration

Experiment and Simulation
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3 I Thermal Battery - UQ

Uncertainty sources
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4 1 Sensitivity Analysis
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Calibration: Bayesian Implementation

Bayes’ Theorem to find Posterior

P(D|@) = P(0)

P(O|D) =

° Find values of theta that are
most probable given the data

Assumptions
> Independence of 5 features

o Model bias is 0 mean with known variance

Solving for posterior
> Markov chain Monte Carlo (MCMC)
> Samples from chain approach posterior distribution
o Particle filter (PF)
o Particles weighted based on likelihood scores
° RBasily parallelizable

> Sample-based Bayesian methods require many model
evaluations

> Replace computationally expensive physics model with
efficient surrogate model

P(6|D) < P(D|B) * P(O)
« P(D|0) = L(O)

PDF

Notional 1-D Likelihood

——Error Distribution
0
. =
o yobs_ysim(gl)
® yobs_y (Y

sim' 2

@

Error

N
L) = 1_[ \/ﬁew <_%((yobs,i = ¥sim (9)) - O)T Iy ((yobs,i - ysim(e)) - 0))
i=1

Current Implementation of PF

7 calibration 5 output Samples: 10 Resampling 40 cores

parameters  variables million  algorithm 20 ~30hrs

PT resampling algorithm I

iterations

° Relationship to genetic algorithm
> Selection — keep best performing parents

> Crossover — keep combinations of best performing

parents

> Mutation — make random changes to some of the parents



6 1 Calibration: Posteriors
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Calibration: Calibration Fit in Feature Space

Calibrated features align well with the experiments used for calibration
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g I Calibration: Calibration Fit in Trace Space

Accuracy
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Validation: Metric

Validation metrics

o Can be difficult to boil validation down to a
single metric value

> Especially for time-dependent outputs

> Accumulated model reliability metric 12

C () = 5 Zot [ 2 ()]

° Ik(tq) _J)Lif Ye(tq) h Y,;k)(tq)| = g(tq)
0, otherwise

Threshold, &(t4)

° 3 * Max(€measurement)

' Ao, Hu, Mahadevan 2017
2 Neal, Hu, Mahadevan, Zumberge 2018
(under review)
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Validation: Results

Posterior shows higher reliability than prior
Variability over initial temperatures

Variability over space

Accumulated Reliability (Prior)

Accumulated Reliability

Temperature Low Med High
Prior 0.374 0.294 0.321
Posterior 0.763 0.431 0.422

Accumulated Reliability (Posterior)

Calibration
Location

Validation

Location =y

(previous slide)
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11 I Rollup: Combining Calibration and Validation

Weighted combination of posterior and prior; weights obtained from validation
> f(81D¢, DY) = P(G)f (8ID) + P(G")f (8)
o D¢ _ calibration data, DV — validation data, G — event that model is reliable
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PDF

Prediction Battery: QOls

Reduced uncertainty in propagating roll-up parameter distributions
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Conclusions & Future Work

Conclusions
o Calibration using feature extraction was successtful
° Selection of bias tolerance has large impact in rollup
> QOI predictions are bimodal due to weighting of prior & posterior

On going work
> Present at IMAC XXXVII
> Submit to MVUQ best paper competition

Future work
> Explore other methods of Bayesian calibration with field data
> More information could possibly be extracted from experimental data

o Consider non-zero mean and correlated model bias in calibration
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Questions?

kneal@sandia.gov
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Last Year

Fit a mathematical function to the temperature trace
Performed calibration in coefficient space

Large calibration fit uncertainty

Fitting Polynomial Regression
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Calibration: Correlation of Posterior
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18 I Calibration: Comparing Traces of MAP and Prior Nominal
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Calibration: Checking Feature Space
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Calibration with Model Error Calibrated




21 I Calibration: Posterior Model Parameters
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Calibration: Posterior Error Terms
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23 | Calibration: Calibration Fit of Features
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MCMC Workshop
Bayesian Calibration with Field Data




25 I Outline

Objective: use experiment data
to calibrate model parameters

—> thereby reducing

» Field outputs
» Thermal battery current work uncertainty in predictions

» Introduction to Bayesian calibration

Predicted QOls
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Bayesian Calibration

Bayes’ Theorem
> Use observations to update beliefs

Posterior

> Find values of theta that are P(6|D) =

most probable given the data

P(@|D) < P(D|6) = P(8)

Uncertainty sources
> Aleatory — irreducible, naturally varying
°  Measurement noise
> Epistemic — reducible, lack of knowledge
> Model parameter uncertainty (calibration)
° Model bias

Likelihood (case 1):

o

obs = Ysim T €meas
° Measurement noise: i.i.d. with N(0, 52)

Posterior LikeliQood Prior
\\ X -
(A |3y - PELAPAD)
P(B)
AN
P(D|6) * P(0) Data

P(D)

« P(D|6) = L(8)

Notional 1-D Likelihood

——Error Distribution
0

meas
® yobs_ysim(el)
yobs—ysim(ez)

PDF

N

L() = 1_[ m/lﬁ exp (— ;7 ((yobs,i ~ Ysim (9)) - 0)2>

i=1

Error
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Bayesian Calibration Cont’d

Likelihood (case 2):

o

obs — Ysim + €Emeas T 5model
o Model error can take on different forms

> Kennedy O’Hagan Framework

° Treat model error as a Gaussian random
process with unknown mean and covariance

Likelihood (case 3):
> Multiple output quantities

o Covariance matrix of errors needed

Solving for posterior
> Markov chain Monte Carlo (MCMC)
> Samples from chain approach posterior distribution

o Particle filter (PF)

o Particles weighted based on likelihood scores
o FRasily parallelizable

> Replace computationally expensive physics model with efficient surrogate model

——Error Distribution
14
ag
o yobs—ysim(el)
oY y.. (6,)

obs Ysim" 2

PDF

|

1 1 0 2
Py exp <_ ﬁ ((YObs,i — Ysim(0)) — M) >

N
L(0,1,0) = 1_[
i=1

Error

PDF

Error 2 Error 1

L(O,n0)= ﬁmexp (— % ((yobs,i - ysim(e)) - ﬂ)T x,t ((yobs,i - ysim(e)) - ﬂ)) i
i=1
{

Current Implementation of PF

17 5output Samples: 10 Resampling 50 cores

° Sample-based Bayesian methods require many model evaluations calibration  variables ~ million  algorithm 10 ~11hrs
parameters iterations



28 I Field Quantities

Experimental Data from a Single Test
12 Thermocouple Locations

0.5
_ ) 0.41 R
Spatially and temporally varying outputs
> High dimensional output space £ o3
S 02|
=
L]
F 017
0
-0.1 - - -
0 0.05 0.1 0.15 0.2
Time
2 main challenges
Building surrogate models Constructing likelihood function
> Gaussian process, polynomial chaos, ANN, etc. > High dimensional joint pdf
° Inputs are RVs and outputs are random > Need correlation for error covariance matrix

processes/ fields
° Include time/space as an input
° Build separate surrogate for each location

> Decomposition / dimension reduction technique



29 I Current Efforts on Thermal Battery

Simulation Data (High)

0.55
—Trace -
0.5F * Value at Peak
. * Value at 0.02196
Feature Extraction 0.45 f —Slope at 0.02196
* Value at 0.15196
° 3 temperature values and 2 slopes 0.4 X —Slope at 0.15196

Temperature
(=
w
(¥a)

Decompose the trace

0.3
° Through a mathematical function/coefficients or through PCA 0.25 |
eigenvectors/eigenvalues -
0.15 ‘ ‘ ‘ ‘ ‘
Dakota 0 0.05 0.1 0.15 0.2 0.25 0.3

Time

> Stepwise parameter identification then discrepancy estimation Fittlig Exponentlalsand Power Models

Estimate model bias state

0.4
) DAKO l A _SX;irvatlon
7 | — 2
3 ) Explore and predict with confidence. | 72);:/erl
[ power2

o Then covariance matrix is known 03 r

Temperature

> Combined parameter identification and state estimation is a challenge
0.25
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