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31 Chromium segregation is prevalent in AM of stainless steels
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4§ Mechanism for solute segregation
. * Resultant microstructure is dependent
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Model parameterization &
=Heat capacity: Ce pe
=Conductivity: Ke
) Material
sElectron-phonon coupling: ge—» properties
=Damping coefficient: % = Yo+ s
=Material approximation Fey7Crq.13Nig 3
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Similar to experiment, the SLM model also segregates chromium




6 I Structural properties
* Melt-quench procedure is

; Y performed with a linear
Crystalline Non-crystalline
temperature ramp to 300K

Cooling rate = 0.89 (K/ps) Cooling rate = 0.027 (K/ps)

ey
-

* Utilize a common neighbor
analysis to identify crystalline
structure

* Slower cooling rates develop
increasing amounts of
structure, with small
percentages of interstitial
structure (grain boundaries)

* Chromium is observed to
localize oval regions that grow
with lower cooling rates

 Diffusion limited process
consistent with a solute

trapping

Only chromium atoms are shown




Structural properties (cont.)
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Slower cooling rates develop

increasing amounts of crystalline

Decreasing rates show increases in
density towards single crystal values
(dashed lines). Experimental range
is highlighted in grey.

Use radius of gyration as a measure
of chromium rich regions




8

Solid fraction

Elemental solidification
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Elemental, time dependent solid
fraction indicates a chromium rich
liquid phase

Simulation is significantly

undercooled with melt
temperature of 304L SS ~1700K

MD potential provides segregation
properties as expected from rapid
solidification process

Simulation shows that changes in
cooling rate can give rise to
variations in structure and solute
segregation

Can we systematically study grain
size and segregation effects on
material properties?
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Elemental segregation of chromium

Assign atom types
probabilistically according to
weight percentage Fey7Crq.18Nig 12

The location of chromium atoms
are preferentially placed on grain
boundaries with a given
probability (P)




11 | Elastic properties of single crystal

» Stress/pressure tensor is calculated, making
small strain perturbations about equilibrium
configurations

* Properties are a function of the MD potential, Se
average results of tensor over a linear range of D—
stress response 4 AN
* Pure elemental moduli are in excellent
agreement with experimental values, however
the SS alloy is a different story /
Density (g/cm3) 8.09 +/- 0.0006 7.85 - 8.06 N
C4y (GPa) 286.26 +/- 0.10 190 - 203
de o
Cs, (GPa) 172.84 +/- 0.05 132 - 135 —
C.4 (GPa) 140.09 +/- 0.13 111 - 122 /
Bulk Modulus (GPa) 210.58 +/- 0.18 134 - 151

Poisson ratio 0.38+/-0.0001 0.265-0.275




Poisson ratio

12 | Elastic properties
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Single crystal orientation
orthogonal to applied
strain in [100]

Averages and error bars are
determined from the d¢ strain
dependence of the MD potential

Similar behavior for both
probabilities of segregation is due
to same crystalline structure

Rule-of-mixtures should apply.
Texture plays an important role
here

Segregated systems (squares)
show lower C,, values relative to
homogeneous polycrystalline alloy




13 1 Elastic properties (cont.)
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* Segregated systems show lower C,, and Bulk moduli values relative to
homogeneous polycrystalline alloy

* Again, softening behavior is observed in both shear and compression
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Mechanical properties

Von Mises stress determined from

dynamic uniaxial tension simulations

with increased grain
segregation

Yield stress indicates trending behavior

size and chromium

Increase in yield stress and flow stress

with grain size is suggestive of inverse
Hall-Petch type behavior
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Summary

Atomistic molecular dynamics simulations are performed, modeling a single
“laser” pass within a powder bed fusion process for a 304L SS. Chromium
segregation is observed during solidification.

Softening of the segregated alloy is observed with increased Poisson ratio and
decreased moduli.

Grain size dependence, along with yield and flow stress shows increasing
trends providing evidence of inverse Hall-Petch behavior.

Microstructure and solute segregation are coupled through cooling rate, but
have independent effects on final material properties.

Potentially tune part performance, modifying microstructure and segregation
properties through their cooling rate dependence.




