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3 Chromium segregation is prevalent in AM of stainless steels
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4 I Mechanism for solute segregation
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• Resultant microstructure is dependent
upon the relationship between
temperature gradient and solid-liquid
interface velocity (G/R)

• Typically columnar-dendritic occur at the
extents of the melt pool (largest
temperature gradient) with equiaxed at
surface

• Solute trapping — Diffusion limited
process where cooling rates are sufficient
to solidify into a non-equilibrium state
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51 Multi-scale model of SLM process
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Model parameterization
•Heat capacity:

•Conductivity:

•Electron-phonon coupling: ge—p

•Damping coefficient: = 7p-1-

•Material approximation FecirCraisNio.1

Tp

•Source intensity

•Spatial damping

•Absorptivity

•Source geometry

Ce
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Similar to experiment, the SLM model also segregates chromium
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6 Structural properties

Crystalline

Cooling rate = 0.89 (K/ps)

Non-crystalline

Cooling rate = 0.027 (K/ps)

Only chromium atoms are shown

• Melt-quench procedure is
performed with a linear
temperature ramp to 300K

• Utilize a common neighbor
analysis to identify crystalline
structu re

• Slower cooling rates develop
increasing amounts of
structure, with small
percentages of interstitial
structure (grain boundaries)

• Chromium is observed to
localize oval regions that grow
with lower cooling rates

• Diffusion limited process
consistent with a solute
trapping



7 Structural properties (cont.)
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• Slower cooling rates develop
increasing amounts of crystallineSing e crystal
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— — Single crystal
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• Decreasing rates show increases in
density towards single crystal values
(dashed lines). Experimental range
is highlighted in grey.

• Use radius of gyration as a measure
of chromium rich regions



8 Elemental solidification
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• Elemental, time dependent solid
fraction indicates a chromium rich
liquid phase

2000 • Simulation is significantly
undercooled with melt
temperature of 304L SS — I 700K

1500

cL) • MD potential provides segregation
1000 la: properties as expected from rapid

(L)
solidification process
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• Simulation shows that changes in
cooling rate can give rise to

0 variations in structure and solute
segregation

• Can we systematically study grain
size and segregation effects on
material properties?
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10 Elemental segregation of chromium

Fe Ni Cr

• Assign atom types
probabilistically according to
weight percentage Feti7Cr018N* 2

• The location of chromium atoms
are preferentially placed on grain
boundaries with a given
probability (P)



Elastic properties of single crystal

• Stress/pressure tensor is calculated, making
small strain perturbations about equilibrium
configurations

• Properties are a function of the MD potential,
average results of tensor over a linear range of
stress response

• Pure elemental moduli are in excellent
agreement with experimental values, however
the SS alloy is a different story

Property Single crystal Experimental

Density (g/cm3) 8.09 +/- 0.0006 7.85 - 8.06

C11 (GPa) 286.26 +/- 0.10 190 - 203

C12 (GPa) 172.84 +/- 0.05 132 - 135

C44 (GPa) 140.09 +/- 0.13 111 - 122

Bulk Modulus (GPa) 210.58 +/- 0.18 134 - 151

Poisson ratio 0.38+/-0.0001 0.265-0.275
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12 Elastic properties
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• Averages and error bars are
determined from the 6E strain
dependence of the MD potential

• Similar behavior for both
probabilities of segregation is due
to same crystalline structure

• Rule-of-mixtures should apply.
Texture plays an important role
here

• Segregated systems (squares)
show lower C11 values relative to
homogeneous polycrystalline alloy
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13 Elastic properties (cont.)

160

140

120

ill 100

4 80

60

40

20

T
, 41 wig

101e- PE

Prob = 0.0
- ❑ Prob = 1.0

5 10 15

[110]

[100]

220

Tc3'
200

C.)

[100]

(6) eINS'e

1411213

110]

- -
Experimental

0- . 180 EtE"
E

1\11 0 Prob = 0.0
160 Prob = 1.0

[111]

[111] 140 Experimental -

20 25 5 10 15 20 25

Grain size (nm) Grain size (nm)

• Segregated systems show lower C44 and Bulk moduli values relative to
homogeneous polycrystalline alloy

• Again, softening behavior is observed in both shear and compression

•



14 Mechanical properties

• Von Mises stress determined from 7

dynamic uniaxial tension simulations 6
cd

• Yield stress indicates trending behavior 
5

with increased grain size and chromium F7_,1 4

segregation lg.') 3

2

• Increase in yield stress and flow stress
with grain size is suggestive of inverse
Hall-Petch type behavior
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15 Summary

• Atomistic molecular dynamics simulations are performed, modeling a single
"laser" pass within a powder bed fusion process for a 304L SS. Chromium
segregation is observed during solidification.

• Softening of the segregated alloy is observed with increased Poisson ratio and I
decreased moduli.

• Grain size dependence, along with yield and flow stress shows increasing
trends providing evidence of inverse Hall-Petch behavior.

• Microstructure and solute segregation are coupled through cooling rate, but
have independent effects on final material properties.

• Potentially tune part performance, modifying microstructure and segregation
properties through their cooling rate dependence.
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