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AM Can Produce Extreme Properties

100

1.0 mm

(J. Michael, SNL)

• 304L Stainless Steel

111

101

0.8

0.7

0.6 -

0.5

0.4 -

0.3

0.2 -

0.1-

0.0

2 kW X-Hatch
(Edge)3.8 kW

Parallel-Hatch
(Edge & Center)

Greater
initial yield
stress

Wrought
(Edge)

Wrought
(Center)

Less elongation

10 20 30 40 50 60 70 80 90

Strain

(J. Carroll, SNL)



High Thermal Gradients Produce High Residual
4 I Stresses
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AM Materials Exhibit Higher Dislocation
51 Density

Brown et al. 2017, Met Trans A
Table III. Microstructural Parameters Determined from DLPA

Sample T/C geometry Applied Strain XA (nm) p X1014 (1/m2)
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2.4 (2)
1.2 (1)
1.5 (1)

Can we predict the higher yield
caused by increased dislocation

density?

(c)DED GND
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(d) Forged GND

Smith et al. 2018, JOM
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6 I Thermal Approach

Pre-meshed part is initialized
.11 Il• _I_• II . ,

wriri inaeuve elements._
baseplate elements are active.

Laser heat source is scanned
according to input path

Elements are activated by a
thermal conductivity increase
once they reach melt
temperature

Conduction, convection, and
radiation are considered.

Temperature (K)
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7 I Solid Mechanics Approach

Pre-meshed part is initialized
with "inactive" elements.
Baseplate elements are active.

Thermal output file is read at
every time step to provide
temperatures

Elements are activated once
they reach melt temperature

Residual stress builds as
elements contract upon cooling
and build thermal strain J
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8 I Bammann-Chiesa-Johnson (BCJ) Material Model

• Temperature and history-dependent viscoplastic internal state variable model

• Stress is dependent on damage 0 and evolves according to

16- =
E 1-0 a+E (I- — (P)( — 13)(" )

• Flow rule includes yield stress and internal state variables for hardening and damage

(  ae1 0 K
f sinhn   1)P Y

• Statistically stored dislocations are represented by isotropic hardening variable K

k1 k2
K = cessdsbIl(0)Vpssds Pssds —-Ls + —Lfl — Rd(9)Pssdsp

• The isotropic hardening variable K evolves in a hardening minus recovery form.

11
K = K — + (H (0) — Rd(0)K) r,

11

• Geometrically necessary dislocations are represented by a misorientation variable
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(Bammann et al. 1993, Brown and Bammann 2012)



91 Incorporating porosity as initial damage

Void Growth 

Pre-existing voids captured by void growth

(* = 
2 . 1 — — 0'1+1 

sinh [2 (2m 1) b
3 EP (1 27-rt + 1 a,

:
30 prn

EHT = 10.00 kV WD = 18.8 rnrn Signal A = SE2 Width = 670.9

Void Nucleation 

Fine scale voids (< 1p.m) indicate nucleation

4 J1 T

= riep , 31 + IV2

27 J2 2

*Fractography taken from 3rd Sandia Fracture Challenge
EHT = 10.00 kV WD = 18.8 rnrn Signal A = SE2 Width = 57.081.1m



10 I LPBF High Throughput Dogbone Example

Process 
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Structural Model
(Scan path, laser
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Initial dislocation
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11 1 Thermal and Structural Results
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Significant Tensile and Compressive Residual
I12  Stresses Remain
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Model Captures HigherYield but Under-
13 I Predicts Stress
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Porosity Distribution is Directly Mapped to
14 1 Mesh
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151 Tensile Results with Porosity
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16 I Laser Parameter Study

Running a parameter study over 3 levels of laser power and scan velocity,
for a total of 9 runs.

This will result in a matrix which we can use to do a main effects study
and also compare with data from the ProX machine

Initial step toward model validation

Scan Velocity (m/s)

1.05

1.4

1.75

Laser Power (W)

100 110 125



17 1

/A> DAKOTA
Optimization

Uncertainty Quantification
Parameter Estimation
Sensitivity Analysis  J

Response QolsInput Parameters
Laser power, scan

velocity

pre-
process

Model

Simulation
Interface

post-
process

Max temperature, von
Mises and axial stress

fields, density
♦



181 Correlation Results
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• Laser power is positively correlated to maximum temperature and density,
• Scan velocity is negatively correlated with temperature and density, and
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Yield Strength Predictions are Lower Than i
19 I Experimental Results

Boxplot of Yield Strength from Model (left) and Experiment (center and right)
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I Max Temperature, Stress, and Density Appear to
20 I Show Higher Correlation to Scan Velocity A
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211 Conclusions

■ Tensile specimen has been simulated to investigate P-
S-P-P relationships

■ Initial higher yield and decreased hardening is predicted
■ Yield predictions are too low, possibly due to incorrect high

temperature assumptions

■ Residual stress is predicted

■ Damage variable provides a way to directly map defects
to performance simulations

■ Laser parameter study demonstrates initial step toward
qualification

■ Rich data set which shows some overall main effect
trends that are as expected



I Future Work — Property Prediction

■ Refine material model at high temperatures with near
melt Gleeble test data

■ Run more realizations of porosity for UQ (only 1 shown)

■ Simulate full dogbone

■ Simulate heat treatments

■ Predict microstructure for crystal plasticity comparison



23 1

Questions?



SNL Modeling Work

Codes 
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Powder Spreading
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Powder Behavior
Mark Wilson
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Part Scale Thermal & Solid Mechanics 
Kyle Johnson, Kurtis Ford, Mike Stender,
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251 Example: Full Tube Forming Process
Step 1
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SDVI9
SNEG, ltralion - -I 01
11.99: 75%)

91.19881-01

(b) Elongation of the tube by die

Figure 7.19. Second drawing simulation presenting von Mises stress (left, in Psi) and the equivalent plastic strain

Figure 7.7. Tube forming simulation showing the plastic equivalent strain progression from sheet to tube. (sDv19, right) progressions. At this process, tube was significantly deformed due to small radius of the die.

H. Cho, Y. Hammi, D.K. Francis, T. Stone, Y. Mao, K. Sullivan, J. Wilbanks, R. Zelinka, and M.F. Horstemeyer. ICME book (in progress)
H. Cho et al., "Finite Element Model for Plymouth Tube Processing using Internal State Variables", ICME 2015.



I Model Showed Good Agreement at Each Step
26 I in Process
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I Performance: Higher Yield Captured in 304L SS
27 I Upon Reloading
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Process Setting Effects on Properties (Laura
I Swiler) .1.
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291 Thermal Modeling in Aria

OT
  pCpv. VT

Radiation and 
Convection 

cy T4 4)
r )

h,(71 T )

v® Hv

Conduction 

kVT

Element Status

Inactive LENS

K Value
(W/(m * K))

0

Inactive Powder
Bed

Active

Powder Property
(< 1)

Bulk Property

Volumetric 
Gaussian Laser
Heat Source 

begin laser heating
Activation Temperature = 1698
power = 2000
beam diameter = 4.2
efficiency = 0.4
path function = path
depth direction = -z
distribution = gaussian
source type = activation_hemisphere
spatial influence factor = 1.2
add volume block 40

end



Part During Process

30 I Material Addition in Aria
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