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Motivation

Better evaluate community detection algorithms processing
O(Billion)-sized Graphs on HPC resources

• Small-scale state-of-the-art: "LFR"
— Lancichinetti, Fortunato, Radicchi, 2008

— With > 1600 citations, this is a de facto standard

— Generates approximate ground truth to test against

— Has a tunable parameter for community coherence: Il
— Limited scalability: best implementation takes —17hrs to generate

O(1B) edges (Hamann et. al. 2017)

• Large-scale state-of-the-art
— Without a reliable ground truth, parallel algorithms test with

modularity or similar measures
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Typical Comparison Plot

• For Normalized Mutual Information
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Overview

Primary results of this work:

■ We develop a novel method for generating large-scale
graphs with a tunable ground truth community structure

■ We utilize the scalable BTER generator (Kolda et al.,
2014) as a core step

■ Our approach generates large-scale community
benchmarking graphs at a rate of 1B edge/minute on
KNL
— Orders-of-magnitude faster than state-of-the-art
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411,,4' BTER: Block Two-Level Erdös-Réyni
Graph Generator

• Step 0: input degree (nd) and clustering coefficient (cd) distributions

d 1 2 3 4 5 6 7

n d 9 5 4 2 2 1 1

c d 0.6 0.4 0.2 0.1 0.1 0.1
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BTER: Block Two-Level Erdös-Réyni
-00 Graph Generator

• Step 0: Input degree (nd) and clustering coefficient (cd) distributions
• Step 1: With ordered degree sequence, group d + 1 vertices v of degree d(v) >— d into affinity blocks

d 1 2 3 4 5 6 7

n d 9 5 4 2 2 1 1

c d 0.6 0.4 0.2 0.1 0.1 0.1
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BTER: Block Two-Level Erdös-Réyni
Graph Generator

• Step 0: Input degree (nd) and clustering coefficient (cd) distributions
• Step 1: With ordered degree sequence, group d + 1 vertices v of degree d(r) >— d into affinity blocks
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BTER: Block Two-Level Erdös-Réyni
Graph Generator

• Step 0: Input degree (Ttd) and clustering coefficient (cd) distributions
• Step 1: With ordered degree sequence, group d + 1 vertices v of degree d(v) >= d into affinity blocks
• Step 2: Use Erdös-Rényi probability pd = :3F:Ti to create intra-block edges via G(n, p) process
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BTER: Block Two-Level Erdös-Réyni
Graph Generator

• Step 0: Input degree (nd) and clustering coefficient (cd) distributions
• Step 1: With ordered degree sequence, group d + 1 vertices v of degree d(v) >= d into affinity blocks
• Step 2: Use Erdös-Rényi probability pd = .3/c:d to create intra-block edges via G(n, p) process
• Step 3: Create inter-block edges via Chung-Lu process
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Initial Thoughts

• Native p for BTER input

EdED d • nd(1. — = dED d • nd(i) 

EdED d • nd 2m

• Where nd = # nodes of degree d and cd is CC for degree d

• Transform to new clustering coefficient (CC) distribution:

Cd =
( (1 — 119))3

R
• Cd

• This gives a desired goal LFR parameter pg.

• Issue: This can make some cd > 1

June 11, 2018
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Our Implementation for Community
Detection. wBTER = wrapped BTER

How we wrap the baseline BTER process for generating
graphs for community detection benchmarking:

• Treat affinity blocks as ground truth communities

• We have a native p„, based on ratio of inter- to
intra-block edges generated from the original distributions

• Can shift lin to some target goal pg via a Linear Program
solve (to be described) — we use Pyomo and CBC

• Our BTER, implementation: fully-parallelized in
shared-memory with OpenMP/C++
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41Linear Program: Shifting the Native p
of a Graph's CC Distribution

Minimally shift the input clustering coefficient (CC) distribution such
that the output graph has a desired goal pg considering both definitions:

June 11, 2018

1
=

minimize

subject to

output

d

dinter
— ddinter
2M>--; 

nd

E — Pd
E ndfid = N(1 fig)

E dndfid = 2M (1 — 1.1 g)

< Pd < 1
,^ 3
1- id

• pd is G(n,p) probabilities per degree from CC distribution cd, pd = -&d
• Pd is output probabilities to get new CC distribution cd, = 15:(31

• nd is degree distribution, n vertices of d degree
• di„t„ is expected number of inter-community edges for vertex of degree d
• N is number of vertices in graph, M is number of edges
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Experimental Setup
Test System and Test Graphs

Test System: Bowman at Sandia Labs — each node has a
KNL with 68 cores, 96 GB DDR, and 16 GB MCDRAM

Test Graphs:

Network rz rn davg dmax f5

LJ-fp 4.2 M 27 M 18 20 K 18
uk-2002 18 M 261 M 28 195 K 28
Wikilinks 26 M 332 M 23 39 K 170
RMAT_26 67 M 1.1 B 16 6.7 K 8
Friendster 66 M 1.8 B 27 5.2 K 34

Graphs are from the SNAP, Koblenz, and LAW databases.
LiveJournal-fp is a parsed version of LiveJournal from SNAP.
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Shifting Distribution

• Only every 5th value plotted for better visualization
• Generally, distribution is most "accurate" near native p
• Better smoothing of distribution via LP constraints is future work
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44 Hitting Target p
Accuracy of LP for Generating Desired p

• Generation accuracy is comparable to LFR
• Less than 5% error in most instances
• Error is greatest at Iower /I targets
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Generation Time vs. Target p
4Pi- (Left) Time vs p. (Right) Time vs graph scale

• Strong scaling generally good up to 2 threads/core
• Time decreases with increasing p, due to coupon collectors edge

generation scaling - higher CC requires more attempts for each edge
• Generation time a function of scale and complexity (max degree)

• Average —2 minutes for 1.8B unique edges
• Original BTER code: ,4 min. for 1.2B edges on 32 node Hadoop cluster

• Fastest LFR implementation: 17 hours for 1B edges in shared-memory
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A Note on BTER Assortativity

• An issue with our approach so far is the degree
homogeneity of communities

• We propose the following addition:

• Consider intra-comm edge count of each vertex
• Permute community assignments of all vertices with

same count
• Observation: won't affect p, de-homogenizes

communities in terms of degree

• This approach might also be applied to baseline BTER
generation
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Timing Breakdown4•11.
Full wBTER with Community Permutation p=0.5

• Time costs of major
wBTER steps with
community assignment
permutation

• Work Complexity:
d = D„,„,, n = 117, rn = E

June 11, 2018

• LP: expected to scale
as O (d log d)

• EdgeGen: 0(mlogd)
• Finalize: (n m)
• CSR: (n m)
• Swap: (n log n -1- m)
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• LP

• EdgeGen

• Finalize
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II Swap

LP: linear program
EdgeGen: primary BTER phase
Finalize: remove 0-degree vertices & cleanup
CSR: create graph representation
Swap: community degree permutation
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Open: Scaling a Graph Up

• Goal: Make a graph that is 2x the size of an example graph
• Problem: Given a discrete distribution, make it 2x the size, but "looks"

the same

10000 15000 20000
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Effect on counts?

2x the domain

https://stats.stackexchange.com/questions/205503/ 
do-histograms-need-to-be-sorted-to-determine-if-the-data-
follow-a-power-law-dist

Dagstuhl — HP Graph Algorithms Sandia
National
Laboratories



Initial Thoughts

• Change of variables

• Graph generation process

— Run node addition process "twice as long"

— Deliberately do not initially consider densification

Can we scale graphs down too for faster initial debugging/testing?
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Future Work

• Figure out how to do graph scaling (bigger, smaller)

• Better develop LP to reduce noise in output clustering-coefficient
distributions

• Generation methods for hierarchical communities
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