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What is Cyber Resilience?

Increasing calls for cyber resilience:
PPD-21

EO 13636 — among others

DOD DSB Task Force on Cyber Deterrence (February 2017)

DHS & DOE Quadrennial Reviews
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But how do we achieve it in a measurable way?
Quantitative

Efficacy and performance of option A vs option B vs option C?

Informally, cyber resilient systems are able to execute required
ii. 

mission parameters despite an hostile cyber-threat environment.



4 I Case Study: Load Frequency Control (LFC)

LFC provides secondary regulation of
generation with respect to system frequency
error
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Source: H. Bevrani "Robust Power System Frequency Control, 2nd Edition," 2014.
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Modeling the System

General form:

±(t) = Ax(t) BO) + w(t)

y(t) = Cx(t) Du(t) v(t)

Where's the Cyber?
Not obvious where the connection between cyber action and control system dynamics occurs

short:
o A cyber attack will modify the structure of the control system

This will affect the performance of the control system 



6 I Measuring Cyber Impact

Security vs Resilience metrics
Loss to system security vs loss to system ability to provide service

Cost to system security - Impact Sub Score (ISC)
o Sub-component of the Common Vulnerability Scoring System (CVSS)
o Each impact component is graded as {None': 0, Tow': 0.22, 'High': 0.56}

ISC = 1 — [(1 — ImpactcOnf) x (1 — Impact-Integ ), X (1 — Impact )1f J

Cost to system performance - Systemic Impact (SI), Total Recovery Effort (TRE),
Recovery Dependent Resilience (RDR) [Biringer et al, 2013]

3 100 10D

SI(3,2)- AC E?(t, sn)dt — AC E?(t, sl)dt]
4,1

[3 100 10D

T R.E (sn) = E ui2(t,,n)dt u2(t,s1}dtl
i=i 0 0

RDR(s„) = Sgsn) +TRE(s7,)



7 Scenarios

Scenario Scenario Type Definition
Simulation
Modification

1 Baseline No Degradation None

2 Loss of Availability, Low
Denial of Service to Communications

Network, Communication Latency / Time
Delay

Time Delay = 8 Seconds

3 Loss of Availability, High
Denial of Service to Communications

Network, Communication Latency / Time
Delay

Time Delay = 24
Seconds

4 Loss of Integrity, Low
Jamming of Signals, Addition of zero-

mean, Gaussian white noise
Pn = 0.25

5 Loss of Integrity, High
Jamming of signal, Addition of zero-mean,

Gaussian white noise
Pn = 0.75

6
Loss of Confidentiality +

Availability, Low
Loss of Generation capability, tripping of

relays / disabling generators
CA 2 Loses 1 Generator

7
Loss of Confidentiality +

Availability, High
Loss of Generation capability, tripping of

relays / disabling generators
CA 2 Loses 2 Generators

8
Loss of Confidentiality +

Integrity, Low
Measurement signals manipulated for

secondary control loop (LFC)
Zero out ACE

measurement in CA 2

9
Loss of Confidentiality +

Integrity, High
Measurement signals manipulated for

secondary control loop (LFC)
Flip sign of ACE

measurement in CA 2



8 I Scenario Results

A few points to look at:

RDR vs. ISC

° Scenario 7 vs. Scenario 9
0 Loss of generation vs. flipped signal

Scenario 4 vs. Scenario 5
° Noisy signals

SI and TRE give insight on type of
impact
Scenario 4 and Scenario 5

Scenarios SI TRE RDR ISC

1 0.000 0.000 0.000 0.00

2 0.096 0.102 0.198 0.22

3 0.617 0.673 1.290 0.56

4 0.003 0.100 0.103 0.22

5 0.011 0.297 0.308 0.56

6 0.281 1.489 1.770 0.3916

7 2.213 5.729 7.942 0.8064

8 2.103 1.573 3.677 0.3916

9 269.378 187.315 456.693 0.8064



9 Scenario I : Baseline

Some cost from regulation of system under normal conditions
Step load change at t = 10 seconds

No degradation from a cyber attack
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10 Scenario 7: Lose Generation, High

Control Area 2 loses generator 1 & 3

CA 2 unable to recover until the attack ends (Loss of Controllability)
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I11 Scenario 8: Signal Manipulation, Low

Adversary has managed to zero out ACE signal to LFC

CA 2 is again unable to recover until end of attack (Loss of Observability)
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12 I Scenario 9: Signal Manipulation, High

The measurements fed into the LFC for CA 2 have their sign flipped

CA 2 drives away from desired operating condition
Area Control Error
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Conclusion

In this work, we've shown an approach to quantifying
cyber resilience in a controls system

• How to represent a cyber event within a set of dynamic equations
• How to measure impact to the control system performance
• Differences between measuring impact to security and resilience

• Formally characterizing cyber event classes as discrete transitions to
the state space (such as in Hybrid Systems)

• Demonstrate and apply to various control systems with real-world
examples



14 1

Thank You!





16 I Loss of Availability

Communication delays (such as from DDOS)
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N otice nonlinear behavior

o After a certain point increases in latency start to affect the performance more and more (excessive phase lag)

o Even further, resilience costs from latency starts to plateau

•



17 I Loss of Integrity

This case injects zero mean, white noise (Gaussian) into the measured signals used by the LFC, with
varying levels of signal power
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While SI increases very, very slowly, the controller must work a lot harder to accomplish its goal
(TRE much larger than SI)

Controller is robust to this attack, but this comes at a cost of greatly increased control effort



18 Scenario 2: Latency, Low

Time delay = 8 seconds
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19 Scenario 3: Latency, high

Time delay = 24 seconds

Notice the added low frequency oscillation in the output (representative of phase lag)
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20 I Scenario 4: Noise, low

This case uses measurement noise power = 0.25

Note that the noise does not appear directly in the area control error. This is because this is
measurement noise. It does however greatly affect the control output.
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21 I Scenario 5: Noise, High

This case uses measurement noise power = 0.75

Larger power for "jamming' signal results in more variation to control output and more control
effort, but the system performance is still mostly unaffected

0.1

c 0(1)
0

-0.1

Area 2 Generator Positions

0 
<

0.2

0

-0.2

Area Control Error

I-

10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 1 0

0.1 0.2

cNi
CSJ

c 0w
0

<
<3

0

-0.1 -0.2
0 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

0.1 0.2

cn co
a) 
c 0
0

<
c.)

0

-0.1 -0.2
0 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Time (seconds) Time (seconds)

SI TRE RDR ISC

0.011 0.297 0.308 0.56



22 I Scenario 6: Lose Generation, Low

Control Area 2 loses generator 1

Notice Generator 3 struggling to cover load. Also, both CA 1 and CA 3 are supplying power to CA 2
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23 I Observability and Controllability

Observability and Controllability are control concepts regarding an ability to observe and control the
system states.

Loss of sensors and actuators can thus be shown to have an effect on either of the two
o We see rank(ctrb(A,B)) and rank(obsv(A,C)) affected in scenarios 6-9

With our approach here, we are able to measure how Observability and Controllability change due to
a cyber attack
. And can leverage other control theoretic constructs and tools as needed



24 I Disabling generation (Scenarios 6 and 7)

For Control Area 2, loss of generation has following results:

Ex. CA 2:
• Rank of ctrb == 9

Drop Generator 1 (scenario 6)
Rank of ctrb == 9

Drop Generator 1 & 3 (scenario 7):
O Rank of ctrb == 0

O Loses all ability within CA 3 to control system

O Note: Tertiary Control has Generator 2 set as backup, not used in base case. If operator enables Generator 2 then rank of ctrb would return
to 9

This shows that even with some generation, we can somewhat control frequency (but perhaps not adequately, see ACE / other
measures)

•



25 I Signal Manipulation (Scenarios 8 and 9)

When measuring system states, we say a system is fully observable iff we can observe all the state
variables

Ex. CA 2:

O Rank of obsv == 9

Scenario 8 (Zero out ACE measurement signal):

O Rank of obsv == 8

o Zeroing out ACE measurement modifies C, resulting in a system that is no longer fully observable

Scenario 9 (Flip ACE measurement signal):

O Rank of obsv == 9

c Flipping sign still modifies C but the matrix is still full rank. It does not see the change to measurement logic


