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Abstract—We present techniques for characterizing bandwidth
and congestion characteristics of supercomputer High-Speed
Networks (HSN). By utilizing a link-level perspective, we gain
generality over analyses which are tied to specific topologies. We
illustrate these techniques using five months of a Blue Waters pro-
duction dataset consisting of network utilization and congestion
counters. We find that: i) execution time of the communication-
heavy applications is highly correlated to network stalls observed
in the network topology and increase in application runtime can
be as high as 1.7x with nominal increase in stalls, ii) heterogeneity
in the available link bandwidth in the network can lead to back-
pressure and congestion even when the network is not under-
provisioned , and (iii) links connected to I/O nodes are no more
likely to observe congestion during operational hours than any
other link in the system.

I. INTRODUCTION

Modern supercomputers contain 10s of thousands of compute
nodes connected by a High Speed Network (HSN). While
the technologies, topologies, and routing characteristics vary
from system to system, they all have two common limiting
characteristics: 1) finite bandwidth and 2) greater than zero
latency. Because of these limiting characteristics they all
exhibit performance impacting congestion under some common
application and I/O communication scenarios. Understanding
the performance impacting scenarios on a large scale system
running production workflows can be very time consuming
and often attribution for any particular performance degrading
congestion event is impossible.

In this paper we present some technology, topology, and
routing policy independent techniques for characterizing band-
width and congestion characteristics of supercomputer HSN.
The prerequisites for using these techniques are the ability
to synchronously capture and store appropriate HSN and 1/O
performance metrics. This paper provides a methodology for
assessing the degree to which concurrent use of HSN resources
by multiple consumers impairs communication between compu-
tational and storage elements of a supercomputer. As described
in the paper, the fidelity of collection will impact the degree
to which the behavioral characteristics can be resolved. The
examples and use cases presented utilize data and application
information from the National Center for Supercomputing
Applications (NCSA) large scale Cray XE/XK system Blue
Waters.

The rest of this paper is organized as follows: Section II

introduces the problem and deployment details of the Blue
Waters system. The types of data being collected as well as de-
rived data definitions are presented in Section II-D. Section III
provides evidence of impact of congestion on the run times of
some benchmark applications. System wide characterizations
are presented in Section IV followed by comparisons with
congestion close to LNet routers in Section V. A topology
independent visualization is presented in Section VI. Related
work followed by conclusions are presented in Sections VII
and VIII, respectively.

II. BACKGROUND

Central to a supercomputers’ performance is its High Speed
Network (HSN) which enables high bandwidth, low latency
communication between all of its computational and storage
elements. There are a wide variety of network technologies
and topologies currently being deployed on supercomputers.

Degradation in HSN performance due to oversubscription of
its resources is commonly referred to as network congestion.
In this paper we focus on the Cray Gemini based network of
the National Center for Supercomputing Applications (NCSA)
Blue Waters system. The approaches presented, however, are
generally applicable to all HSN technologies and topologies
for which applicable data can be acquired in a synchronized
and periodic fashion.

A. Cray XE/XK Gemini Networks

Blue Waters is built on the Cray XE/XK compute platform
which employs the Cray Gemini [1] network router Application-
Specific Integrated Circuits (ASIC) as its fundamental HSN
building block. The Blue Waters Gemini Network is a 3D
Torus of dimension 24x24x24. Blue Waters is comprised of
27,648 nodes and utilizes a Lustre parallel file system for high
performance storage.

On the Cray XE/XK platform, four compute nodes are
packaged on a blade. Each blade contains a pair of Gemini
ASICs. Each Gemini ASIC consists of 48 tiles each of which
provides a bi-directional 3 bit link to a tile on another Gemini
ASIC. Each bit in this case is referred to as a “lane” and a
tile link is functional as long as at least one “lane” is active.
The 3-dimensional torus network utilizes aggregates of Gemini
tile links to form “directional links” in each of 6 directions,
X+/-, Y+/-, Z+/-, in the torus. We will henceforth refer to these
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“directional links” as d-links. An individual tile-to-tile link will
be referred to as a t-link.

The maximum bandwidth for a particular d-link is dependent
on the t-link type (e.g. electrical vs. optical have different
signaling rates) in addition to the number (n) of t-links of which
the d-link [2] is comprised. X and Y d-links have an aggregate
bandwidth of 9.4 GB/s (564 GB/min) and 4.7 GB/s (282
GB/min) respectively. Z d-link aggregates are predominantly
15 GB/s (900 GB/min) but 1/8 of them are 9.4 GB/s (564
GB/min). Traffic is directionally-routed first in X, then Y, and
finally Z dimensions. The shortest path, in terms of hops, in +
or - is chosen for direction with a deterministic rule to handle
tie breaking. A credit-based flow control mechanism is used [3]
both within and between Gemini router ASICs to prevent data
loss.

B. Network Congestion

In data networks, congestion is typically characterized by a
decrease in a data stream’s throughput, increase in the latency
of its constituent components, or both, due to the offered load
along its path exceeding the capacity of the network to handle
it. The Cray Gemini network utilizes hop by hop credit based
flow control to prevent data loss. Data buffered and queued
to be transmitted from one network element to another, for
which there are insufficient credits at the time it would be sent,
results in a credit based “stall”. Such a stall between elements
within a Gemini ASIC is called an “inq stall” and between
two t-links is called a “credit stall” (See Figure 1). Henceforth
we denote a time interval as T; with units in nano-seconds and
time spent stalled over a time interval as 7;; with units also
in nano-seconds.

Definition 2.1: Average Time Stalled (T,) for any link with
N tiles over a time interval (73) is:
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In this work we characterize congestion, using “credit stall”
and “inq stall” metrics, as Percent Time Stalled in the following
way:

Definition 2.2: Percent Time Stalled (Pr,) utilizes the
average time spent stalled over all n tiles of a link of interest
over T;

Pr, =100 * T}, /T; 2)
Note that a “link” in the context of equations 1 and 2 can refer
to a d-link, a t-link, or a link internal to a Gemini ASIC. We
address the use of inter-/intra-router Prg as an indication of
congestion severity in Section III.

Congestion in the HSN may result from a variety of causes
including:

o Applications that use one-sided programming models such
as PGAS (Partitioned Global Address Space) [4] and
SHMEM (Shared Memory) [5] which performs all-to-all
or all-to-one communication

« File system utilization patterns in an application

o Failure of network lanes and links causing either a
decrease in available bandwidth or a change in application
traffic patterns
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Fig. 1. In a credit-based flow control scheme, when a source router cannot
send data to another router and needs to wait to send data until it has sufficient
credits, it is referred to as credit stall. Likewise, within the router, when data
cannot be transferred from input buffers to output buffers, it is referred to as
ing-stall.

In extreme cases this congestion degrades system performance,
and can cause the system to take action to protect itself and
may even cause application runs to abort.

Because of the distributed nature of the network elements, an
application’s traffic may transit routers not physically associated
with its node allocation and be in competition for network
resources being used concurrently by other applications. The
credit-based flow control can cause buffer depletion related
backpressure, manifest as stalls, to spread backwards along
communication paths. There is insufficient source attribution
information available from the network performance counters
for direct diagnosis of the root cause of a particular congestion
occurrence. Finally, the combination of directional-order rout-
ing rules combined with the mismatch in directional bandwidth
can itself cause network congestion.

C. Network Utilization

Another quantity of interest is the bandwidth utilization.
Definition 2.3: Percentage bandwidth utilized (F,,) for any
d-link over a time interval (7;) is:

Py, =100 = ((BC. — BCy,)/T3))/ 3)
(BWi—tink) * (Ni—tinks))
Where BC,. = current d-link byte count, BC), = previous d-
link byte count, BW;_j;»r = t-link bandwidth in (B/s), and
Ni_1inks = number of t-links in a particular d-link.

Note that the number of application data bytes injected into
the HSN is not the same as the number of bytes transiting
the network as a result of that injection. This is due to the
automated hardware data compression performed upon injection
into the network; experiences on the impact of this compression
were reported by Pedretti et al [2]. An interesting artifact of this
is that the same application network communication patterns
may cause different levels of HSN traffic/congestion depending
on how well the data being injected compresses.

D. Data Sources

On Blue Waters, HSN performance counter data as well as a
variety of other node and system resource utilization informa-
tion (e.g., Lustre file system and RDMA bytes read and written)
are periodically sampled and stored, in a common database,
for analysis using the Lightweight Distributed Metric Service
(LDMS) monitoring framework [6]. The HSN performance
counter data is sampled using Cray’s gpcdr [7] kernel module.
Sampling of all data is performed, synchronously across all



nodes, at 60 second intervals. Synchronization is performed in
order to provide coherent snapshots across the whole system.
Note that clock skew is not accounted for in the node clock
based synchronization.

The HSN related information is utilized for gaining an
understanding of how congestion levels are driven by d-link
bandwidth utilization. While gpcdr provides raw information
on how much time was spent in stalls or how many bytes
crossed a d-link, translating these into percent of time spent
in stalls (Prs) or percent of d-link bandwidth utilized (Pj,,)
requires the additional information and processing described
in Sections II-A, II-B, and II-C.

III. IMPACT OF CONGESTION IN BLUE WATERS NETWORK
ON HPC BENCHMARKS

Application runtimes may be severely impacted by a
seemingly small degree of network congestion along its
communication paths (i.e., Prs ~ 10 — 15%). Accurate
detection and response to congestion can therefore, result in
substantial performance improvement. In this study, the baseline
runtimes of the applications launched by Blue Waters users (i.e.,
in the absence of failures or network congestion) was not known.
Therefore, to estimate the impact of congestion on application
runtime, we ran two representative HPC applications in
production on 256 Blue Waters nodes:

o PSDNS [8] : PSDNS is a highly parallelized application
code used for performing direct numerical simulations
(DNS) of three-dimensional unsteady turbulent fluid flows,
under the assumption of statistical homogeneity in space. It
solves partial differential equations using Fourier pseudo-
spectral methods which requires multiple FFTs to be
taken in three directions per time step, resulting in
communication-intensive operations due to transposes
involving collective communication among processors.
We configured PSDNS to run for 300 time steps.

e AMR [9]: AMR is mesh restructuring algorithm for
adaptive mesh refinement computations. The parallel
mesh restructuring algorithm operates in terms of near-
neighbor communication among individual blocks, and a
single synchronization-only collective. Meshing occurs at
discrete time steps. We configure AMR to run for 2,200
time steps.

For both applications a time step is equivalent to one iteration
in the application. Allocations and workload mix, and thus
contention conditions, were subject to natural production
variance.

Figure 2 shows the boxplot of the compute time for each time
step labeled as “Iteration Runtime” (on y-axis) for each run of
the application. Comparing the boxplots of the different runs
of the same application allows us to compare the distribution
of the iteration times. Minimum and maximum iteration time
(in seconds) across five runs were respectively ~ 9.7 and 16
seconds for PSDNS and ~ 0.2 seconds and 10 seconds for
AMR. While all iterations may not be the same (in terms of
required compute resources) in an application run, we expect
their distributions to be the similar across runs. Variations in
the distributions can indicate possible HSN congestion during
the application runs. We also compare the total application

runtime. Minimum vs. Maximum total run times (in minutes)
were 41 vs. 70 for PSDNS and 59 vs. 93 for AMR.

In order to determine the relationship between Prg values
and application performance impact, ideally we would use the
values along each of the application’s communication paths
when communication is occurring. Since the communication
occurrences cannot be resolved at the fidelity of collection,
as an approximation we consider the Prg on d-links directly
associated with the application’s topology. The correlation
value between the application runtime and stall was found to
be 0.87 for PSDNS and 0.96 for AMR.

PSDNS run(1) and run(3) suffered an average Pr, of 11%
and 8% respectively while AMR run(2), run(3) and run(5)
suffered an average Prs of 12%, 7% and 11% respectively.
Less than 4% Prs was observed for all other runs.
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Fig. 2. Boxplot of iteration time for [a] PSDNS code and [b] AMR
code running on 256 nodes

A. Summary and Insights

The benchmarks results demonstrate that even at marginal
congestion levels (Prs of 12% in our benchmark runs), the
slowdown of the application was observed to be as high as
1.7X with a corresponding loss of 123 node-hours. For large-
scale applications, congestion and corresponding application
slowdown can in practice be much larger therefore leading to
loss of large amounts of computational node-hours.

Further, our results show strong correlation between values
of Pr, values and application runtime, thus justifying our
choice of this metric to analyze the dataset in the rest of the

paper.

IV. SYSTEM-WIDE LINK-LEVEL CHARACTERIZATION
RESULTS

We studied five months of a Blue Waters production dataset
(January 2017 - May 2017) to characterize (a) the overall
network injection and ingestion rate, (b) the d-link-level
utilization and, (c) stall characteristics.

A. Traffic Injection and Ingestion Rates

Figure 3(a) and Figure 3(b) show the complementary CDF
(CCDF), i.e., 1 — CDF, of the sum of traffic injection
(from nodes to the network) and ingestion (from network to
nodes) by all nodes during measurement periods, where each
measurement period is sixty seconds, across the whole study
period. The complementary CDF is used to analyze the tail
distributions of a metric and is used to ask how often a random



variable is above a particular level. Both ingestion and injection
rates are linear in log-scale indicating that applications ability
to use the Blue Waters network bandwidth across the d-link
exponentially decreases with an increase in both ingestion and
injection rates.
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Fig. 3. Node Traffic Statistics

B. Link utilization statistics

Characterization at the d-link level gives insights into
congestion effects that result from differences in directional
bandwidth, application communication, patterns and from
the directional aspects of the routing rules (described in
Section II-A). Figure 4 shows the CCDF distribution of traffic
(in terms of number of packets) and load (in terms of % of
the d-link bandwidth utilized) across d-link-minutes in the
study period (i.e., a d-link used for a minute). In this figure a
higher CCDF value along the y-axis for a particular Packet-Per-
Minute (PPM) value PP M, along the x-axis means that more
d-link-minutes (i.e., measurement samples) were observed to
attain values greater than PPM,,. As can be seen in Figure
4(a), the PPM probability PPM > x is always higher for
d-links in the ‘Z’ direction and lower for “Y’. This may be
expected, since ‘Z’ is the final direction in the routing rules
and hence cannot be stalled waiting on additional directional
changes. In addition, there is a potential mismatch and possible
downgrade in bandwidth affecting d-links in the ‘X’ direction
since ‘Y’ has half the number of t-links that ‘X’ has, despite
the potentially higher bandwidth of some of the ‘Y’ t-links.
As a result, ‘Y’ can become a bottleneck which reduces the
PPM in the ‘X’ direction.

Figure 4(b) shows the relatively low d-link bandwidth
utilization seen in this study in which only 11% of Z’,
2.7% of °Y’, and 7.5% of ‘X’ d-links experienced bandwidth
utilizations of greater than 5%. The percentage of d-links that
use higher amounts of bandwidth decreases exponentially with
increasing bandwidth. For example, a CCDF value of around
10~* ~ 107° is observed for achieved bandwidth utilization of
more than 50%. For a fixed utilization (up to 30%), the number
of d-links that achieve this utilization is highest along d-links
in the ‘Z’ direction, followed by those in the ‘X’ direction, and
‘Y’ direction. However, there are more ‘Y’ d-link minutes that
achieved utilization greater than 40% compared to ‘X’ and ‘Z’
direction. The reason for the difference can be attributed to
limited available bandwidth for d-links in Y’ direction.

C. Link stall statistics
Figure 5 shows the CCDF distribution of percent time spent
in inqg- and credit-stalls (Pr,) per d-link-minute. A higher

directional (X, Y, or Z) CCDF value for a particular Prs (Prs,)
implies more d-link-minutes spent at Pr, values greater than
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Fig. 4. D-Link utilization statistics.

Prs,. The percent of time stalled waiting on buffer credits
for both the inq and credit cases, for any given point on the
x-axis (in Figure 5) are seen to be highest for ‘X’ (up to
about 75%). This is consistent with expectations because of
directional-order routing and directional bandwidth differences.
This observation is in alignment with observations of higher
stall counts in ‘X’ for known traffic injection levels [2].

In comparing the CCDF values for both inq and credit
related Pr, in Figures 5(a) and 5(b), the CCDF for inq tends
to be higher than for credit. For example, the percent of d-
link-minutes with inq Prg greater than 10% in ‘X’-dir is 4.1%
whereas the corresponding credit CCDF value is 3.1% !. This
is because the packets are first routed internally within the
router and then on the d-link. The resource (buffer) contention
within the router is higher because of inbound packets (coming
from different directions) competing for buffers within the
router while the outbound packets (leaving the router) wait for
the buffers to be free on the receiving end (i.e., in the next
router) along this d-link (see Figure 1).
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Fig. 5. d-link Stall Statistics

Table I presents the correlation between d-link utilization
and stall values which indicates a moderate positive correlation
between the two. Note that the measurements were taken
at a sixty second granularity which averages out bursty
utilization and stall values associated with the d-link. The
moderate positive correlation is expected because stalls on the
d-link increase with increasing traffic. The increase in traffic
corresponds to a higher occupancy of the buffers on the routers
and thus a decrease in available credits for additional traffic.
After a certain threshold Pr, value, further increases in stall
rates severely decreases the network traffic flow. Due to the
granularity of data sampling, we were unable to capture this
threshold value. We do, however, show the coarse grained
linear relationship between the two metrics.

It is difficult to see the difference between 4.1% and 3.1% in the figure
due to the log-scale representation of CCDF



TABLE I
PEARSON CORRELATION COEFFICIENT BETWEEN Link UTILIZATION AND
CONGESTION
Direction | Credit | Inq
X 0.60 0.52
Y 0.50 041
Z 0.66 0.65
8004 10°
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(a) Boxplot of maximum I/O
rate across all nodes

(b) PDF of average I/O Rate across
all nodes

Fig. 6. 1/O Statistics

D. Summary and Insights

Differences in the available link bandwidth along ‘X,
‘Y’, and ‘Z’ directions lead to significant differences in an
applications’ ability to inject/ingest data into/from the network
due to congestion (caused by back-pressure along the path)
along these directional paths. In general, the ‘X’ direction
suffers the highest congestion due to directional-order routing
and bandwidth limitation in the ‘Y’ direction.

Moreover, our results indicate that the network is not under-
provisioned as only a few links (~ 7% of the measurement
samples) use more than 5% of the available bandwidth. How-
ever d-links do occasionally attain more than 50% bandwidth
utilization (tail utilization in Figure 4(b)). The resolution of
the datasets hides any bursty traffic that is sustained for less
than a minute thus making it difficult to quantify the effects
of bursty traffic on congestion and application runtime.

V. CHARACTERIZING LNET CONNECTED LINKS

This section characterizes the role of LNet nodes in network
congestion. To facilitate this research question, we first charac-
terize the I/O behavior of the Blue Waters system, followed
by comparing the probability of d-link congestion around the
LNet nodes with that seen in d-links associated with non-LNet
nodes in Blue Waters. There are 576 LNet nodes in the Blue
Waters system distributed evenly in the network.

A. Blue Waters I/O Characteristics

Users of the Blue Waters system submit a variety of jobs
with different network and I/O access behaviors. Figure 6(a)
shows a boxplot of maximum I/O (read + write) and Figure 6(b)
shows the probability density function (PDF) of average 1/O
per node per minute across all nodes of the system. Although,
there are nodes in the network which do very heavy I/O at any
given time in the system, even during the 5% of the period of
study with the heaviest I/O, the average rate never exceeded 1
GB/min (less than 0.4% of the slowest d-link in the network).

B. Link Stall Statistics

Next, we compute the CCDF metric for Prs of ‘inq’ and
‘credit’ for the X, Y, Z d-links that are directly connected to the
routers of the LNet node. The CCDF metric is compared with

the Prs of ‘inq’ and ‘credit’ stall metrics computed for all of
the d-links (Figure 5) of Blue Waters as shown in Figure 7 and
8. It can be seen from the figure that LNet-connected d-links
are no more likely to get congested than any other d-link in any
direction in the network. However, there is a higher probability
that a non-LNet-connected d-link is more susceptible to tail-end
congestion (high stall values) as compared to LNet-connected
d-links. We further confirmed this observation by randomly
sampling 576 nodes of the Blue Waters system thirty times
and calculating ks-statistics to find if there are any observable
difference between the Blue Waters non-I/O node connected
d-links versus I/O-node connected d-links. The p-value for
ks-statistics was found to be 0.8. Therefore, we cannot reject
the null hypothesis that the distributions of the two samples
are the same. The result, however, should not be generalized
to bursty traffic patterns and needs additional correlation study
between bursty I/O traffic and the likelihood of congestion on
the d-links. The ks-test statistics generally fail to differentiate
the tail-ends of distributions and can mask the presence of
rare-events.

C. Summary and Insights

The metrics used for characterizing the role of LNet nodes
in d-link congestion show that on average, LNet-connected
d-links are no more likely to congest than any other d-link in
the network. However, the presented result is for the average
case and we cannot rule out the possibility of congestion due
to short burst traffic or due to sustained (greater than or equal
to 60 seconds) high-bandwidth data transfer (e.g., tail-end of
the distribution in Figure 6).

VI. CONGESTION EVOLUTION VISUALIZATION

We can use the d-link data values to create visualizations
that can help us to understand system utilization over time or
congestion evolution.

Visual representations must provide information in a manner
in which the desired information is easily understood. Networks
seek to minimize the number of hops between endpoints
and thus are multi-dimensional. This multi-dimensionality
does not lend itself to simple visualizations. As a result,
many visualizations which seek to capture the full topology
are difficult to read and attempts to simplify this through
reduced dimensionality (including projections) or dropping
links can result in a representation perhaps even more difficult
to understand (e.g., projections and slicing of a 5D torus
in [10]).

For evolution, time is a significant variable and attempts to
capture both time and space put significant limitations on the
ability to provide simple visualizations. Attempts to capture
only space require time for a human to look at a sequence of
point-in-time events.

Here, we opt to drop the details of the spatial representation
to emphasize time. We have seen in Section IV-C that congested
d-links are infrequent. Thus a time-focused representation could
enable easier discovery of congestion occurrences, since the
display would be sparse.

For each timestep, we use the topology coordinates to
determine contiguous groups of d-links whose values exceed
some threshold(s) and group these into a feature. Each feature
is characterized by its extent and severity. Since we consider
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each topological direction separately, each feature will be
at most as big as the number of routers in that direction.
Features are extracted from all locations in the torus, so that
the maximum possible number of features at any point in time
is H?;OI (Nrouters;/2), where D — 1 = number of orthogonal
dimensions. For the 3D torus, these are, for example, Y and Z,
if the feature value is stalls in X; for Blue Waters then each
feature will be at most 24 units in size and there will be a
maximum possible 144 features per time step. (In this section
only, we do use topology information to determine contiguous
d-links. We do not, however use any information about routing
nor require a 3D torus)

If a coordinate is in two features in sequential timesteps,
that indicates an evolution of the feature in time. Features
can thus split and merge in the next timestep. Coordinates in
features that do not persist over sequential timesteps will not
be associated with each other (e.g., features at ¢0 and {2 may
comprise the same d-links, but they will not be recognizably
associated unless those d-links also are in a feature at t1).

In our visualization, each individual feature evolution is a
directed acyclic graph, where each feature is a vertex, sized
by its extent in the topology and colored by a value (in this
case the maximum value in a feature), with directed edges
indicating evolution of one feature to another. All other location
information is dropped from consideration. A benefit of a graph
representation is that a variety of techniques exist for graph
comparisons. Graphs are drawn using Graphviz [11].

Multiple individual feature graphs may co-exist in time. We
call any representation, regardless of number of individual
evolving features or timerange, a feature graph and, in the
case where the features represent congestion, a congestion
evolution graph. Such a graph, with detailed examination of

subsections, is shown in Figure 9. Figure 9(a) on the left, in
the black box, is a representation of the congestion over a full
24 hour production day. Time starts at the top at midnight
and progresses downward. Occurrences of congestion based on
Prg of credit stalls in X+, are marked on the right by the red
arrows and labeled by approximate duration; non-congested
occurrences are marked in green. Over this entire day, there
are 3 major times of lasting congestion: at about 2:30 pm (16.5
hours after midnight) lasting for 2.25 hrs, at about 7:00 pm
with 2 graph sections slightly separated in time, and at about
10:00 pm again in two graph sections slightly separated in
time. (There is also a short duration event at about 10:00 am).
This representation provides full day information compactly.

A ~ 1 hour occurrence at about 8:00 pm is outlined in red;
this is enlarged to show more detail in (b) in the upper right
of the figure, also outlined in red. Time increases from top
to bottom; this is too small to resolve in the figure, however
each line presents features at that sampling time, so in this
case they are at one minute intervals. The horizontal layout
is arbitrary with respect to actual topological location and is
determined by Graphviz. Features aligned vertically are only
associated if they are connected, however, in most cases, a
stack of features in a graph is a connected set, and thus does
represent the evolution of overlapping features. Each individual
feature at any given time is uniquely numbered (too small to
resolve in the figure) so that it can be associated with the raw
data for further investigation.

Note that the features, their characteristics, and the graph will
be dependent on the resolution chosen. In this example only
values of Prg >= 40 are included in the graph (legend in the
figure). These are significantly higher values than those evinced
in the variable performance benchmark runs in Section III.
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Fig. 9. Congestion evolution is more clearly seen in representations that favor time over location and is represented more compactly. Prg for credit stalls in
X+ are shown; minimum value for inclusion in the figure is 40 percent. Time increases top to bottom at one minute intervals. Features are sized by extent (in
routers) and colored by value (legend is boxed in black in (b)). Connections indicate persistence of congestion in routers with similar coordinates; all other
location information is deliberately lost. (a) Full day of production data. (b) Expanded feature graph of congestion occurrence marked in red from (a). Blue
boxed timeslice corresponds to the 3D torus representation in Figure 10. Times surrounding this time slice are expanded in (c) to enable examination of some

feature connectivity.

This type of graph can be used to qualitatively assess if
congestion spreads and intensifies — for instance, the increasing
number of regions with time here indicates that congestion is
spreading with smaller intensity (40-50) and in smaller sized
features.

This representation allows the capture of evolution in a single
figure, unlike the literal topology representation in Figure 10 [6]
which shows the slice in time marked by the blue box in the
feature graph. The feature graph time slice, and surrounding
times, have been expanded in Figure 9 (c), in the lower right and
outlined in black. Here, the darkest feature of size 8 represents
the circled values in the wrap around in X at Y=23 and Z=16.
This time slice was chosen since it exhibits the highest value
of Pr,, ~ 85, over the entire day associated with this data.
Additionally, some feature connectivity through time, including
splits and merges can be seen.

All features terminate at the same time after over 1 hour of
continuous congestion when a series of Congestion Protection
Events occur. This is a Cray-provided software mechanism [12]
which seeks to alleviate congestion by throttling injection from
all NICS such that the total injection bandwidth is less than that
which can be handled by a single node. Because of the drastic
nature of this approach, this event is triggered infrequently,
based on certain Cray monitored traffic and stall quantities.
Here we see that the network experienced significant congestion
for at least an hour before the throttling event occurred.
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Fig. 10. 3D torus representation of the timeslice in the Blue box in Figure 9
(from [6]). Within the circles, the 8 values at Y=23 and Z=16 correspond to
the highest value feature in that box. Note that there is no minimum value for
inclusion in this figure. Over 60 such images would need to be viewed to assess
the congestion evolution in Figure 9(b) and 1,440 images for Figure 9(a).

VII. RELATED WORK

There are a variety of approaches in analyzing large-scale
network congestion. Of the works that use network counters
(as opposed to modeling, simulation, or indirect measures such
as an application’s messaging rate), most utilize counters that
are accessible only from within an application’s allocation
(e.g., [2], [13], [14], [15], [16]), due to the complexities and
access issues in collecting global synchronized data. These
works cannot provide the complete network analysis we present
here.



Previous works of the authors utilize global network counter
data in Cray systems (e.g., [6], [17], [18]), but these do not
include a longer-range assessment of link-level congestion, as
is provided here.

Any number of works represent networks as graphs with
vertices connected by edges representing communication. One
work [19] used a model of network traffic rates and studied
congestion control using graphs in which the vertices were
congested links and the edges were the subset of links that data
from each source traverses. A topology-centric visualization
for a 3D torus, with reduced dimensionality views, was
developed by Landge et al [20]. References within include
visualizations based on communication traces and patterns,
application topologies, etc. Some associated authors developed
a topology-centric visualization for a 5D torus, with reduced
dimensionality views [10]. None of these are the type of feature
graph that we are considering here. Our graph representation
is inspired by the feature-based analysis and feature graph
work of Koegler et al. (e.g. [21]), which was without specific
application to network feature evolution.

VIII. CONCLUSION

In this paper we have presented a variety of analysis and
visualization techniques for understanding congestion in a
Supercomputer’s High Speed Network (HSN) from a link
level perspective. We explored its application and I/O driven
origins, and its effects on application performance. We have
provided data and application use cases taken from NCSA’s
large scale (27,648) node Cray XE/XK Blue Waters system.
We have described some of the sampling fidelity based limits
to understanding imposed by the current data sampling period
of 60 seconds.

While the example data and effects were specific to the Cray
XE/XK platform, configured in a 3D Torus topology, and the
Blue Waters system in particular, it is important to note that the
analysis and visualization techniques presented are generally
applicable to any system for which link level data on HSN
bandwidth and congestion related metrics as well as node level
I/O read and write metrics can be made available in a time
synchronized fashion.

The techniques presented use link-level statistics to :

« estimate the relationship between Pr, values and appli-

cation impact

o understand and characterize the distribution of congestion

and its relationship with traffic patterns. E.g., such an
analysis helped to find the relationship between LNet
(I/O) nodes and link-congestion behaviors, i.e., we did
not observe any correlation between LNet (I/O) nodes
and link congestion in our dataset

o develop a time-centric feature-graph-based visualization

for congestion evolution

As follow-on work we plan to increase the data collection
fidelity to try to identify at what level we can discriminate
between network bursts, and corresponding congestion (if
any) associated with file I/O and the normal application
communication driven congestion.
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