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Motivation

High-dimensional
blue-noise sampling is usetul
but hard to generate

8-100D: approximate 8D: proof-of-concept
Delaunay Graphs path tracing
(Voronoi neighbors)

Social proof of utility:
Bridson SIGGRAPH 2007
cited 200 times

23D: find a path in
robot configuration space 10 -

100D: adaptively explore
black-box function
to find global minimum
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3 I Motivation - Maximum
domain-to-sample
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Goal: algorithm to produce point distributions

Requirements

v'Output: blue-noise, uniform-random except
v"No points too close Minimum

v'No big gaps sample
separation
v Algorithm

v"Memory & time scales to high dimensions (e.g. 20D)

v'Locally adaptive, general domain shapes

v'Confidence: provable output quality
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4 | What’s wrong with the algorithms we already have!?

SimpleMPS guarantees saturation

runtime & memory = O(n)

divide domain into cubes

while dcubes, and cube diagonal > machine precision
do (A(d) X #cubes) times:

pick a cube

pick sample from cube

if distance(sample, prior samples) > r

accept sample
discard cube
refine cubes

discard covered cubes

SimpleMPS, “A Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions,” Eurographics 2012.



5 | What’s wrong with the algorithms we already have!?

SimpleMPS guarantees saturation ... but doesn’t scale by dimension, d. &
runtime & memory = O(nd%/?)

Problem: cube poorly approximates sphere
Exponentially worse as dimension increases
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SN O H V(cube) = 1 V(cube) = 1 V(cube) =1 V() =1
a | V(sphere) = 1 V(sphere) = 0.785... V(sphere) = 0.523... V(s) — 0

Any algorithm that constructs (an approximation of) remaining sample space
is doomed to be exponential-in-d

SimpleMPS, “A Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions,” Eurographics 2012.



6 | What’s wrong with the algorithms we already have!?

Bridson 2007* scales
rung memory = O(dn?)

Bridson 2007* pseudocode

do

prior = randomly pop Front
do

pick sample from volume of

(r,2r) annulus of prior

accept sample
add sample to Front
until 30 consecutive rejections

until Front is empty

1f distance (sample, all samples) > r

30+ depending

on dimension

*Modified: no background grid, no exponential-in-d complexity.

Bridson 2007, "Fast Poisson disk sampling in arbitrary dimensions." SIGGRAPH '07 sketch.
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7 I What’s wrong with the algorithms we already have!

Bridson 2007* scales ... but doesn’t guarantee saturation @

runtime & memory = O(dn?)

Trivial
1 one annulus

Unknown

outside all annuli?

Bridson 2007, "Fast Poisson disk sampling in arbitrary dimensions." SIGGRAPH '07 sketch.




8 | Proposed Spoke-Darts algorithm

Spoke-Darts scales
runtime & memory = O(dn?)

Spoke-Darts

mod from Bridson

do

prior = randomly pop Front
do
pick sample from radial line through
(r,2r) annulus of prior
1f distance (sample, all samples) > r
accept sample

add sample to Front

until 12 consecutive rejections| 12 same for all

dimensions

until Front is empty

Spoke-Darts for High-Dimensional Blue-Noise Sampling, TOG 72:2, SIGGRAPH 2018.



9 I Proposed Spoke-Darts algorithm

Spoke-Darts scales ... and guarantees saturation ©

runtime & memory = O(dn?)

Proved
probabilistic bound

outside all annuli!

Spoke-Darts for High-Dimensional Blue-Noise Sampling, TOG 72:2, SIGGRAPH 2018.



i Suppose there exists a void
o I Proof of saturation R

Spoke-Darts scales ... and guarantees saturation

One disk
Missed 12 times, so area R is probably small,
Probability of 12 misses = M(1-R) = (1-R)'2< e(12R)



11 | Structure of saturation guarantee

Magic values for dimensional independence |
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12 I Output Saturation in Practice = better than Bridson Bridson
: : — |
one dimension “for free” P
Theory: Beta = constant & Spoke-Darts
i
Practice: Beta increases and narrows with d /
(@))]
o

* Narrowing consistent with theory
2 3 4 5

Sample to its Farthest Voronoi Vertex Distance

Sample to its Farthest Voronoi Vertex Distance
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Pairwise distances
between samples

Fourier Transform, 1d
integral over angle by radius

Fourier Transform

power

4t

Dart Throvsiring

N @

0 20 40 6.0 8.0 10.0 120
frequency

Dart throwing images from
Blue Noise Sampling

with Controlled Aliasing,
TOG 32:3,2013.

Sharp spike at radius!
13 I Output Randomness — Blue noise  (annuliinner-radius)

us

3
o Bridson 2007
2nd discontinuity
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14 I Output Randomness — Blue noise

Eliminate spike
° Post-processing optimization* = expensive, 2d
°> Sample non-uniformly

> By spoke-length? Uniform by swept volumer Worse!
o Any sharp local rule — global discontinuity &

Good idea

° 1., max domain-point-to-sample distance

° 1. min sample-to-sample distance

Bad idea
? 1:free — I:cover = le

° Traditional goal of Maximal Poisson-disk Sampling]

° Serves no purpose

* Blue Noise Sampling with Controlled Aliasing, TOG 32:3, 2013.

RP frequency

frequency

RDF distances

Spoke-Darts

200 400




15 I Output Randomness — Blue noise

6
Eliminate spike — we solved in 2012 © > Two-spokes mimic Two-radii o
i , g 4 Spoke-Darts
o TTwo-radii : Tree * fover ° 1st spoke, trim by large green IS
° Small blue ;.. minimum sample separation ° 2nd spoke, trim by small blue E o
o Large green r_ .. maximum domain-to-sample = -
> Unique coverage: accept only if covers white 0 o > 4
g 1 S
c
(]
>
o
covers £ 0.5
hite :
0
@) 200 400

frequency

T Variable Radii Poisson-Disk Sampling, Canadian Conf. on Comp. Geometry (CCCG) 2012.



16 I Output Randomness — Blue noise

Eliminate spike
o TTwo-radii : tre. # Tegper
° Small blue r, . minimum sample separation
° Large green r_ .. maximum domain-to-sample

> Unique coverage: accept only if covers white

T Variable Radii Poisson-Disk Sampling, CCCG 2012.

> Two-spokes mimic Two-radii

° 1st spoke, trim by large green
° 2nd spoke, trim by small blue

RDF distances

Spoke-Darts
2 4
i il
200 400




17 I Output Randomness — Blue noise

Eliminate spike
o TTwo-radii : tre. # Tegper
° Small blue r, . minimum sample separation
° Large green r_ .. maximum domain-to-sample

> Unique coverage: accept only if covers white

T Variable Radii Poisson-Disk Sampling, CCCG 2012.

> Two-spokes mimic Two-radii
° 1st spoke, trim by large green

° 2nd spoke, trim by small blue

RDF distances

Spoke-Darts

-/\/\
200 400




18 I Output Randomness — Blue noise

Eliminate spike > Two-spokes mimic Two-radii

o TTwo-radii : Tree * fover ° 1st spoke, trim by large green

° Small blue r, . minimum sample separation

° 2nd spoke, trim by small blue

° Large green r_ .. maximum domain-to-sample

> Unique coverage: accept only if covers white

T Variable Radii Poisson-Disk Sampling, CCCG 2012.

RDF distances

Spoke-Darts




19 I Output Randomness — Blue noise

Eliminate spike > Two-spokes mimic Two-radii

o T Two-radii : Tree * fover ° 1st spoke, trim by large green

° Small blue r, . minimum sample separation

° 2nd spoke, trim by small blue

° Large green r_ .. maximum domain-to-sample

> Unique coverage: accept only if covers white

T Variable Radii Poisson-Disk Sampling, CCCG 2012.

o

RDF distances

IN

Spoke-Darts




20 I Output Randomness — Blue noise

Eliminate spike > Two-spokes mimic Two-radii

o T Two-radii : Tree * fover ° 1st spoke, trim by large green

° Small blue r, . minimum sample separation

° 2nd spoke, trim by small blue

° Large green r_ .. maximum domain-to-sample

> Unique coverage: accept only if covers white

T Variable Radii Poisson-Disk Sampling, CCCG 2012.

o

RDF distances

IN

Spoke-Darts




21 I Output Randomness — Blue noise

Eliminate spike > Two-spokes mimic Two-radii

o T Two-radii : Tree * fover ° 1st spoke, trim by large green

° Small blue r, . minimum sample separation

° 2nd spoke, trim by small blue

° Large green r_ .. maximum domain-to-sample

> Unique coverage: accept only if covers white

T Variable Radii Poisson-Disk Sampling, CCCG 2012.

RDF distances

Spoke-Darts
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Output Randomness — Blue noise

Pairwise distances
between samples

Fourier Transform, 1d
integral over angle by radius

Fourier Transform

power

p—

—

MPS (One-Radii) 8* =1
Two-Radii 8% = 2

Eliminate spike:
solved 2012 for low-d

2. 4 0.0

1;30 360 |51|10 750
frequency

RDF distances

RP frequency

frequency

0.5

Flat spectrum
no spikes

Two-Spokes 5* = 4

Eliminate spike:
solved 2018 for high-d
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RDF distances
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23 | Application: Approximate Delaunay Graph

Trim line-spokes to find “significant” neighbors in Voronoi diagram

3d rendering of 8d graph
ificant neighbor




24

Application: Global Optimization

DIRECT = DIviding RECTangles
° Divide space by rectangles

° Refine large rectangles with
small sample values

Opt-Darts
> Divide space by Voronoi cells (zzplicit only)
o Refine large cells with small sample values

> Approx. Delaunay graph defines “large” cells

> Spoke-darts selects refinement sample

Opt-Darts: 5-25X speedup over DIRECT
° Increasing speedup with d

> Rectangle bad approximation of Voronoi cell

> More-random sample patterns

DIRECT

Opt-darts

n=41




Mitsuba ray tracing

Application: Rendering ° 4D = 2 screen X 2 lens
> 16 samples per pixel

Spoke-darts
comparable to alternatives

Stratified Low discrepancy




Mitsuba ray tracing

Application: Rendering > 8D = 2 sky-emitter X 2 screen X 2 X 2 bounce
° 256 samples per pixel

Spoke-darts
comparable to alternatives

Stratified Low discrepancy




Path = robot: under table to up
book: table to shelf

27 | Application: Motion Planning

S

23d = degree of freedom robot

> Non-uniform: joint angles and room dimensions

Pre-sample configuration space with spoke-darts
> Explore paths in parallel, avoid redundant searches

> Order of magnitude speedup

I D e



28 | Conclusions

Free software

* SpokeDartsPublic on github
https://github.com/samitch/SpokeDartsPublic

CCRLN

Center for Computing Research
@ Sandia National Laboratories

Recommendations
Two-radii
Quality blue-notse ind < 5
Spoke-Darts

Blue-noise d = 5

Linear scaling by dimension
Guaranteed saturation

1
K_;VO-Spokes

Better spectrum: no spike
0.5 New standard for quality blue noise

Open problems
* Faster than O(d n?) time?

* Our experiments had r_ .. = 2 ;.

CONEE
* Spectrum effects for other ratios?
* Prove non-trivial saturation-bound on Bridson 20077

* Does saturation matter for high-d rendering,
other “Graphics” applications ?




Backup slides

e S aa— I
Spoke-Darts



» | Runtime = O(dn*), best one can hope for

d

* Linear scaling is perfect: primitives are O(d)

n2

* Finding neighbors in high dimensions expensive
* Each of n samples, find neighbors

* Fach of n may have nneighbors

* Finding them quickly still won’t prevent n?
Spoke-Darts = Bridson 2007 due to simple primitives
* Is point in sphere
* Trim segment by sphere

Runtime( Two-Spokes ) > Runtime( One-Spoke )

* mostly due to 2 X radius of annulus, many more neighbor disks
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31 | Spectra by d
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