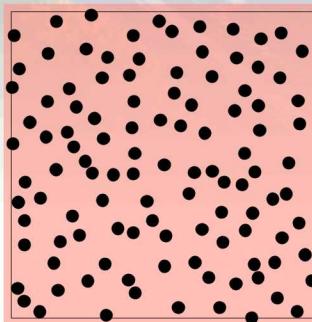
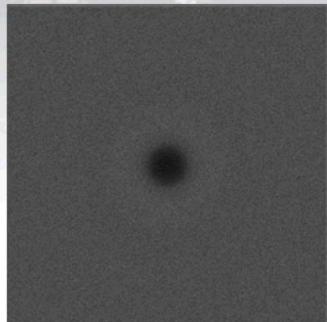
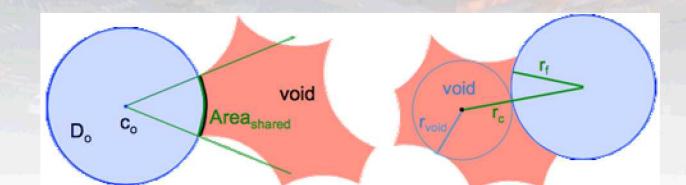


Spoke-Darts for High-Dimensional Blue-Noise Sampling



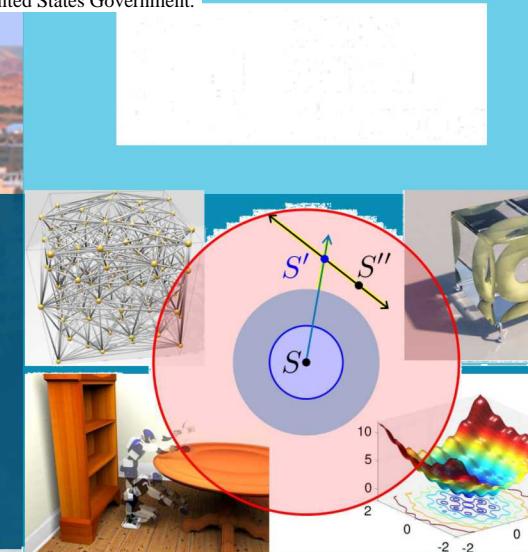
$$m = \lceil (-\ln \epsilon) (\beta^* - 1)^{1-d} \rceil \Leftrightarrow \beta^* = 1 + \left(\frac{-\ln \epsilon}{m} \right)^{1/(d-1)}$$

PRESENTED BY

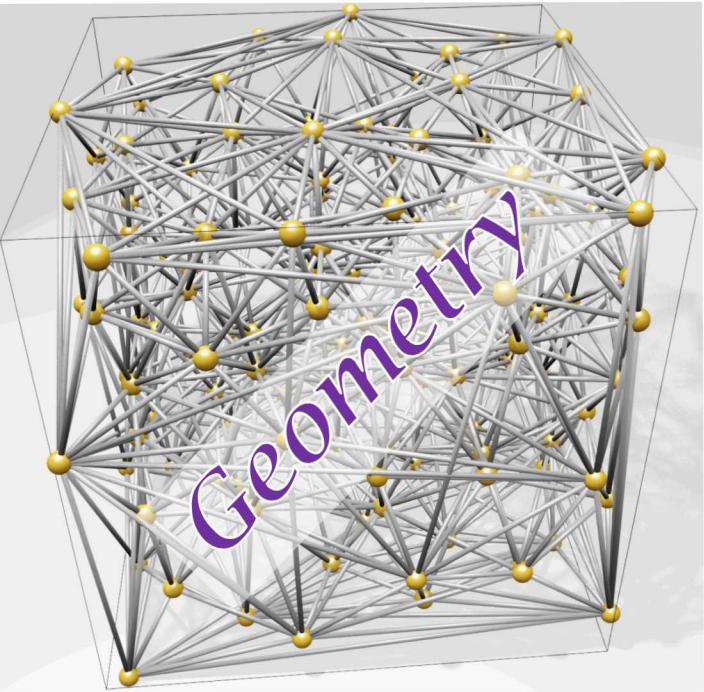
Scott A. Mitchell

ACM TOG 37:2, May 2018

Scott A. Mitchell, Mohamed S. Ebeida, Muhammad A. Awad, Chonhyon Park, Anjul Patney, Ahmad A. Rushdi, Laura P. Swiler, Dinesh Manocha (now UMD), Li-Yi Wei



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Motivation

High-dimensional
blue-noise sampling is useful
but hard to generate

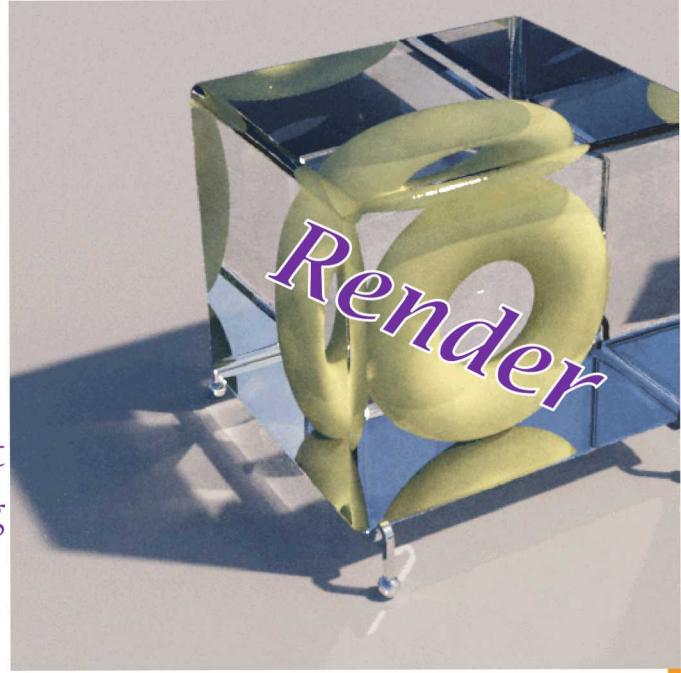
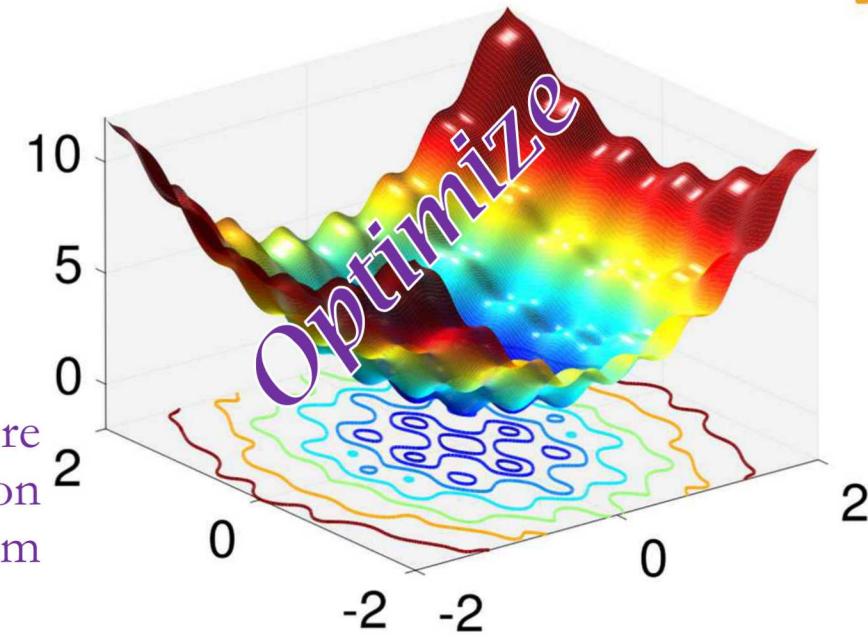
8-100D: approximate
Delaunay Graphs
(Voronoi neighbors)

8D: proof-of-concept
path tracing

Social proof of utility:
Bridson SIGGRAPH 2007
cited 200 times

23D: find a path in
robot configuration space

100D: adaptively explore
black-box function
to find global minimum

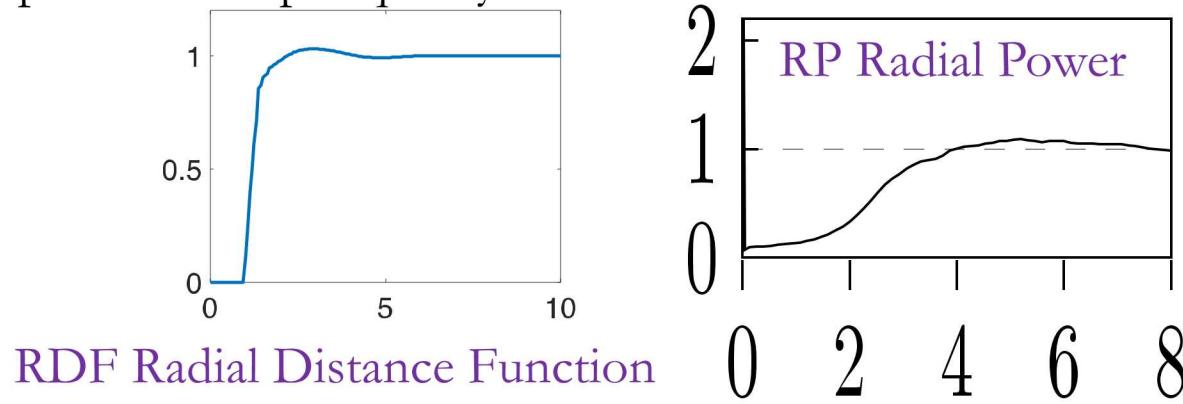


Motivation

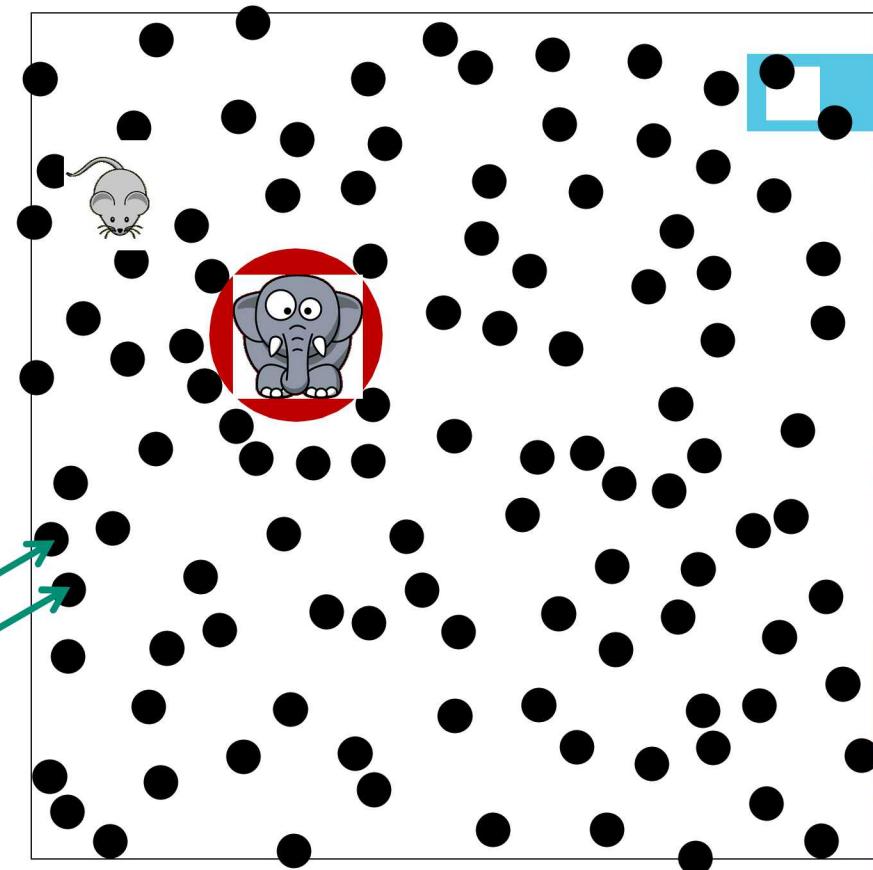
Goal: algorithm to produce point distributions

Requirements

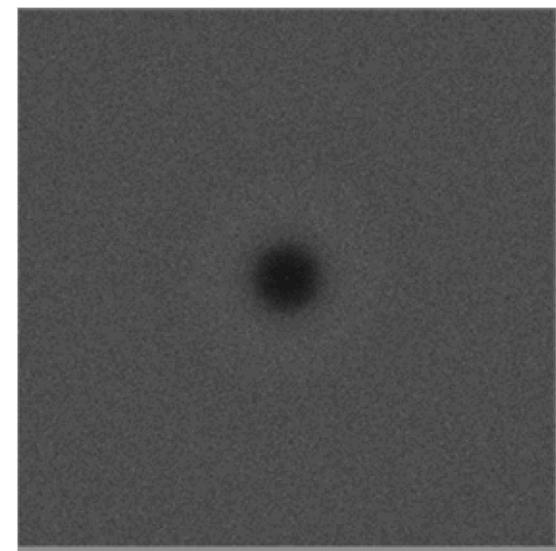
- ✓ Output: blue-noise, uniform-random except
 - ✓ No points too close
 - ✓ No big gaps
- ✓ Algorithm
 - ✓ Memory & time scales to high dimensions (e.g. 20D)
 - ✓ Locally adaptive, general domain shapes
- ✓ Confidence: provable output quality



Maximum
domain-to-sample
distance



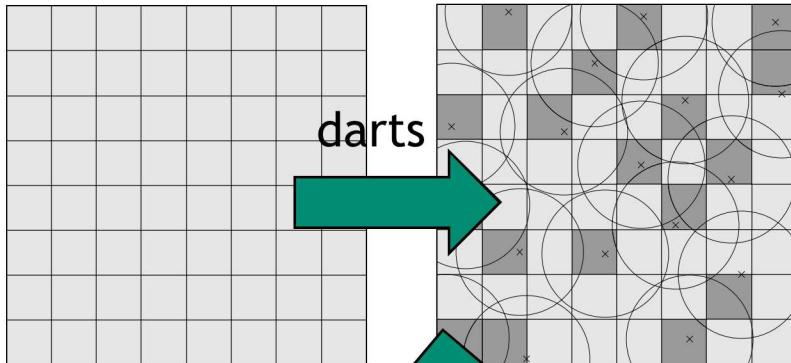
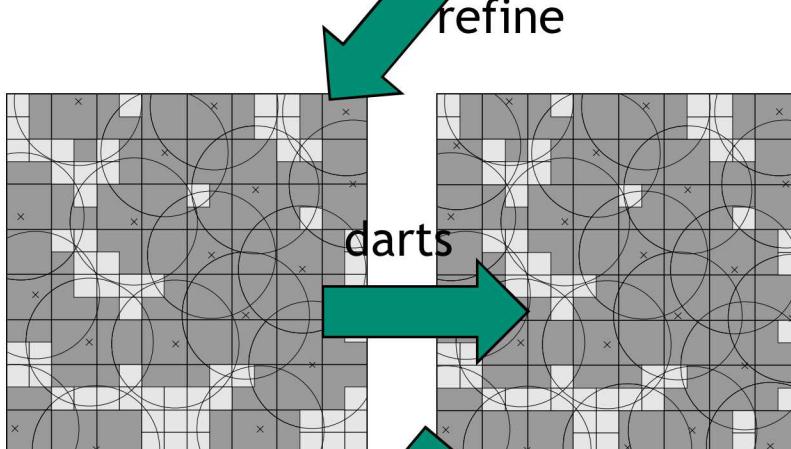
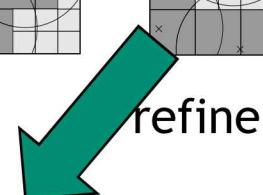
Minimum
sample
separation



What's wrong with the algorithms we already have?

SimpleMPS guarantees saturation

runtime & memory = $O(n)$

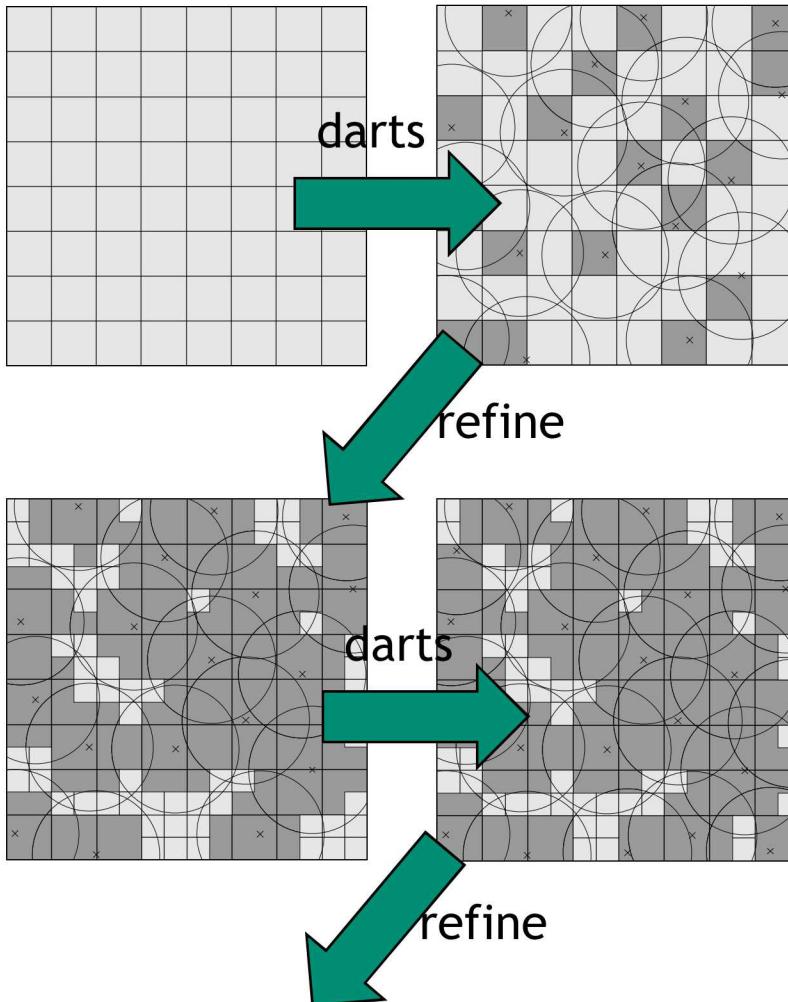


```

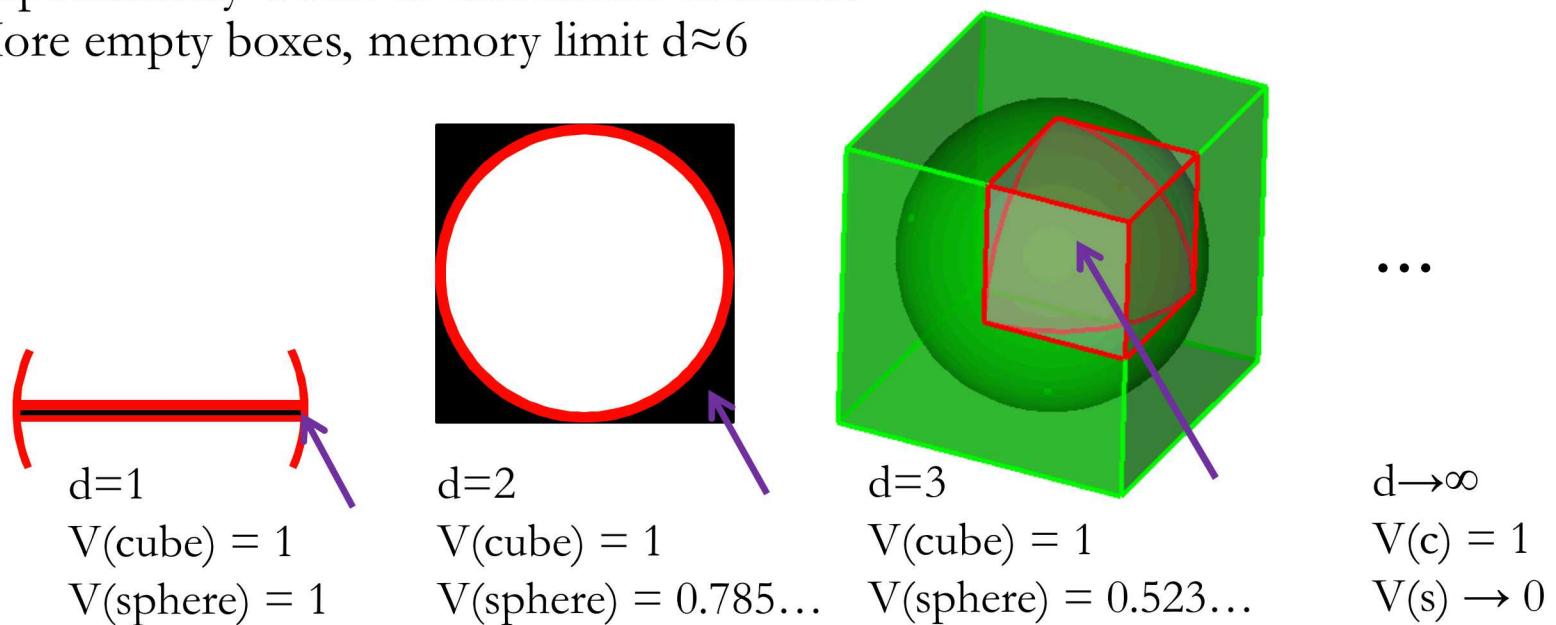
divide domain into cubes
while ∃cubes, and cube diagonal > machine precision
  do (A(d) × #cubes) times:
    pick a cube
    pick sample from cube
    if distance(sample, prior samples) > r
      accept sample
      discard cube
    refine cubes
    discard covered cubes
  
```

What's wrong with the algorithms we already have?

SimpleMPS guarantees saturation ... but doesn't scale by dimension, d . ☹
 runtime & memory = $O(nd^{d/2})$



Problem: cube poorly approximates sphere
 Exponentially worse as dimension increases
 More empty boxes, memory limit $d \approx 6$

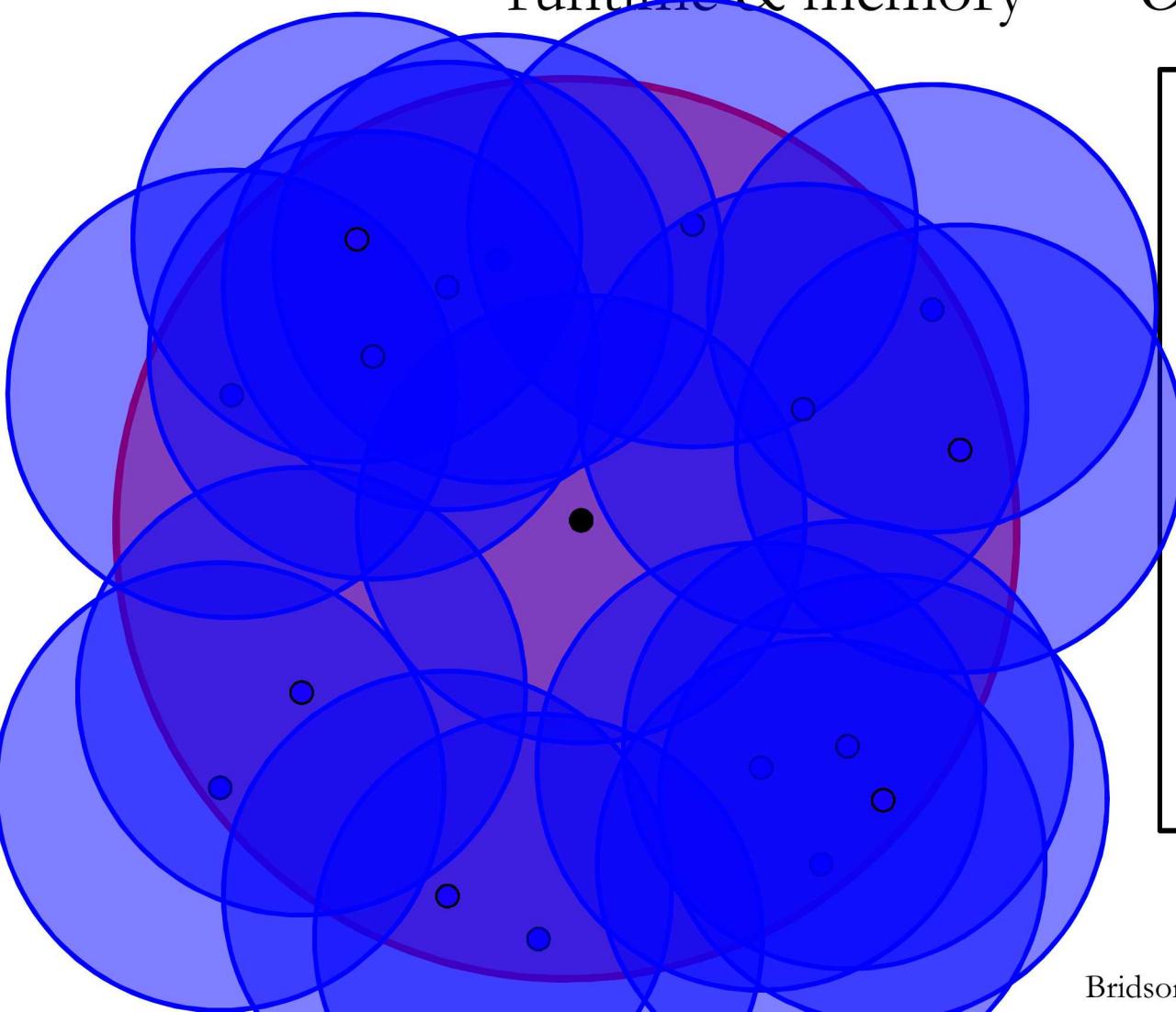


Any algorithm that constructs (an approximation of) remaining sample space is doomed to be exponential-in- d

What's wrong with the algorithms we already have?

Bridson 2007* scales

runtime & memory = $O(dn^2)$



Bridson 2007* pseudocode

```

do
    prior = randomly pop Front
    do
        pick sample from volume of
        (r, 2r) annulus of prior
        if distance(sample, all samples) > r
            accept sample
            add sample to Front
    until 30 consecutive rejections
    until Front is empty
  
```

30+ depending
on dimension

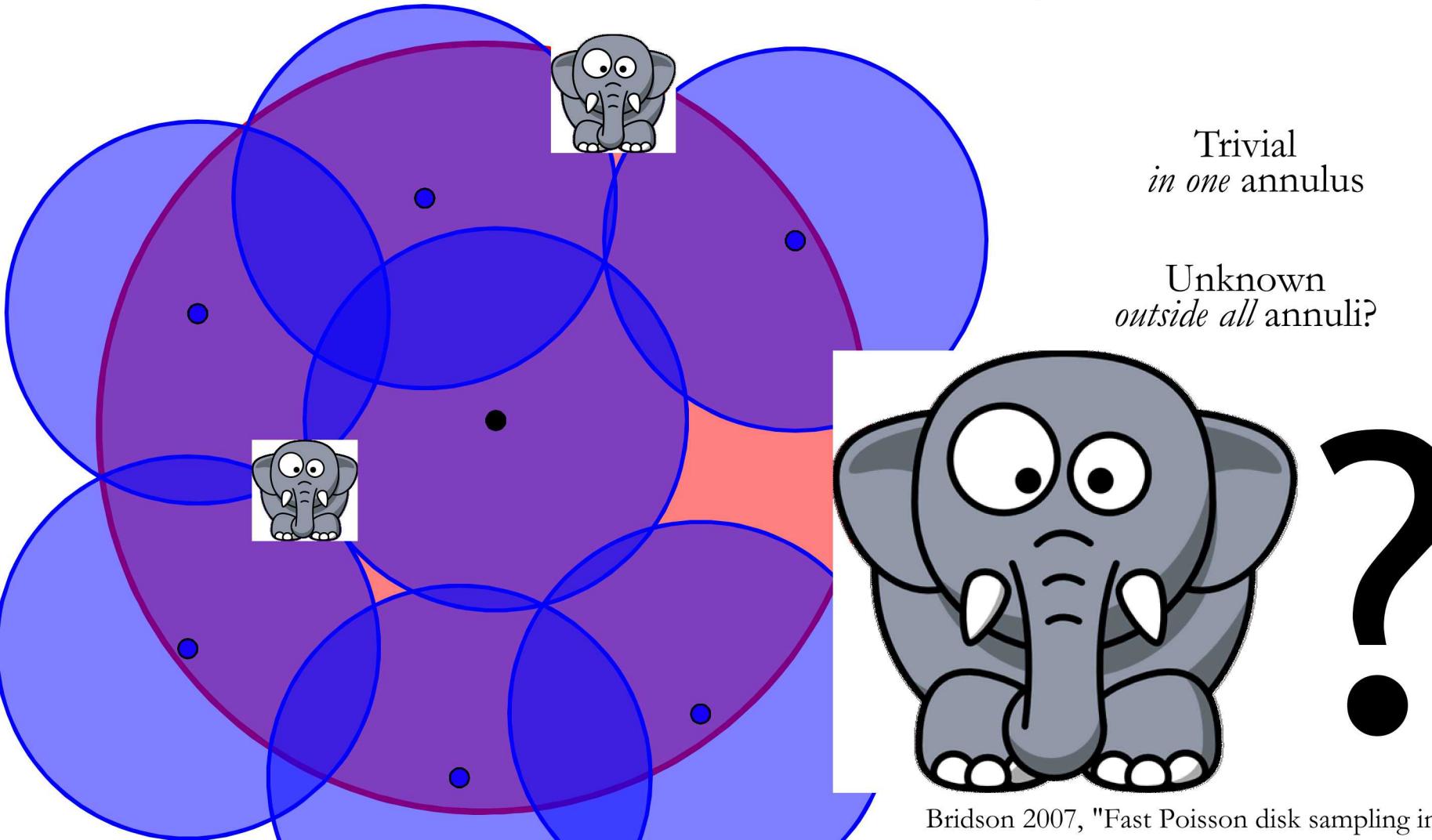
*Modified: no background grid, no exponential-in-d complexity.

Bridson 2007, "Fast Poisson disk sampling in arbitrary dimensions." SIGGRAPH '07 sketch.

What's wrong with the algorithms we already have?

Bridson 2007* scales ... but doesn't guarantee saturation ☹

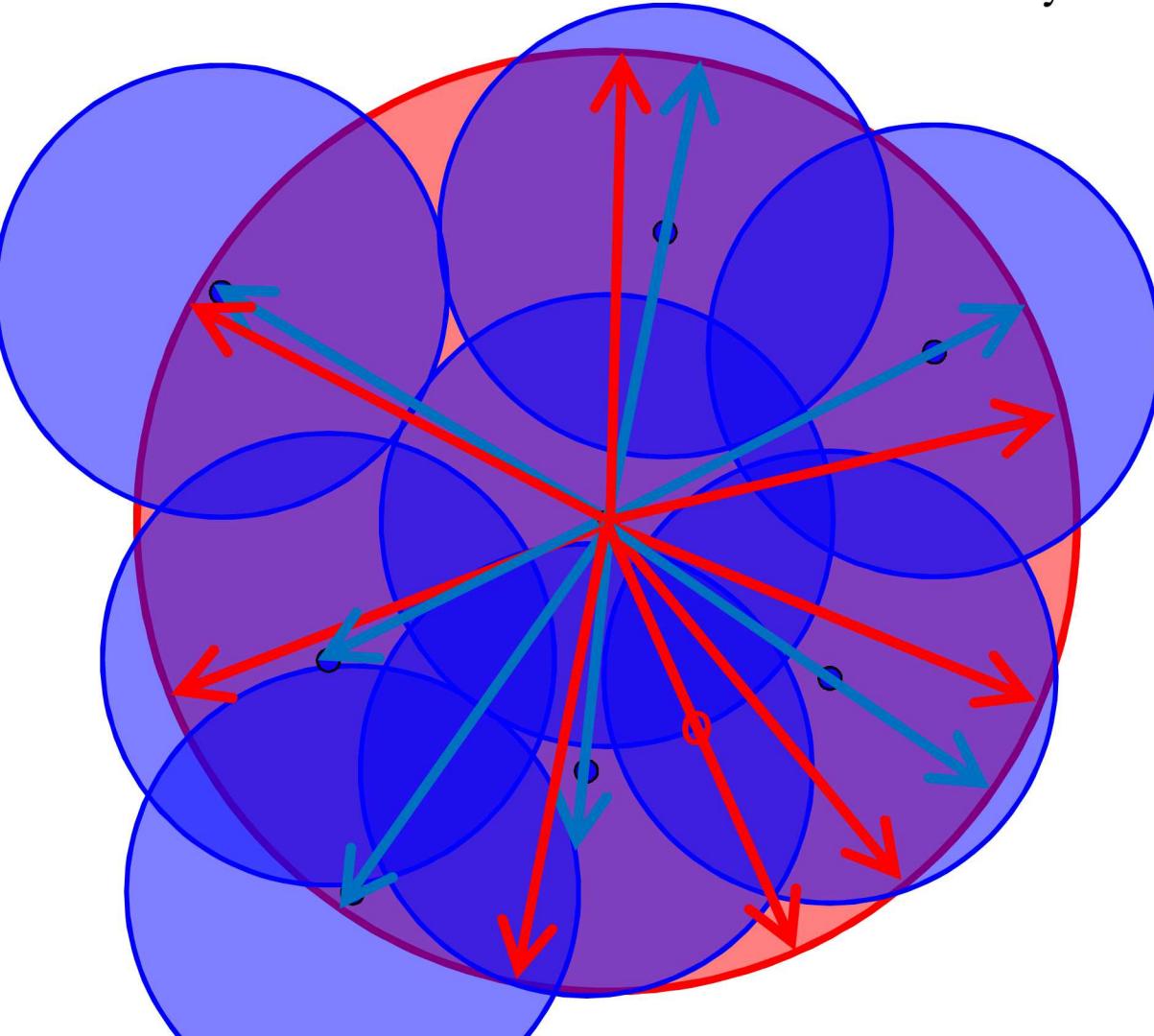
runtime & memory = $O(dn^2)$



Proposed Spoke-Darts algorithm

Spoke-Darts scales

runtime & memory = $O(dn^2)$



Spoke-Darts
mod from Bridson

```

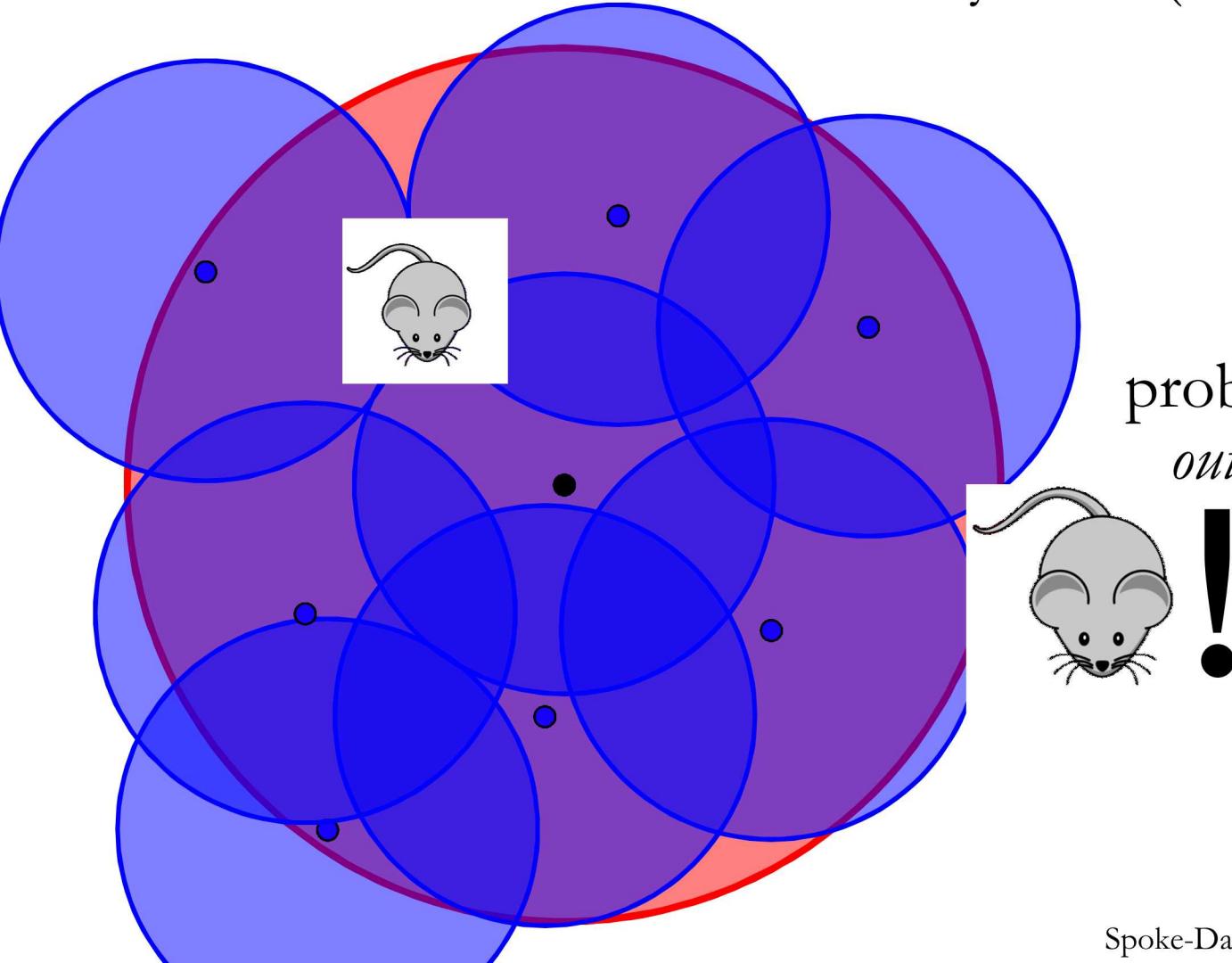
do
  prior = randomly pop Front
  do
    pick sample from radial line through
    (r, 2r) annulus of prior
    if distance(sample, all samples) > r
      accept sample
      add sample to Front
    until 12 consecutive rejections
    until Front is empty
  
```

12 same for all
dimensions

9 | Proposed Spoke-Darts algorithm

Spoke-Darts scales ... and guarantees saturation ☺

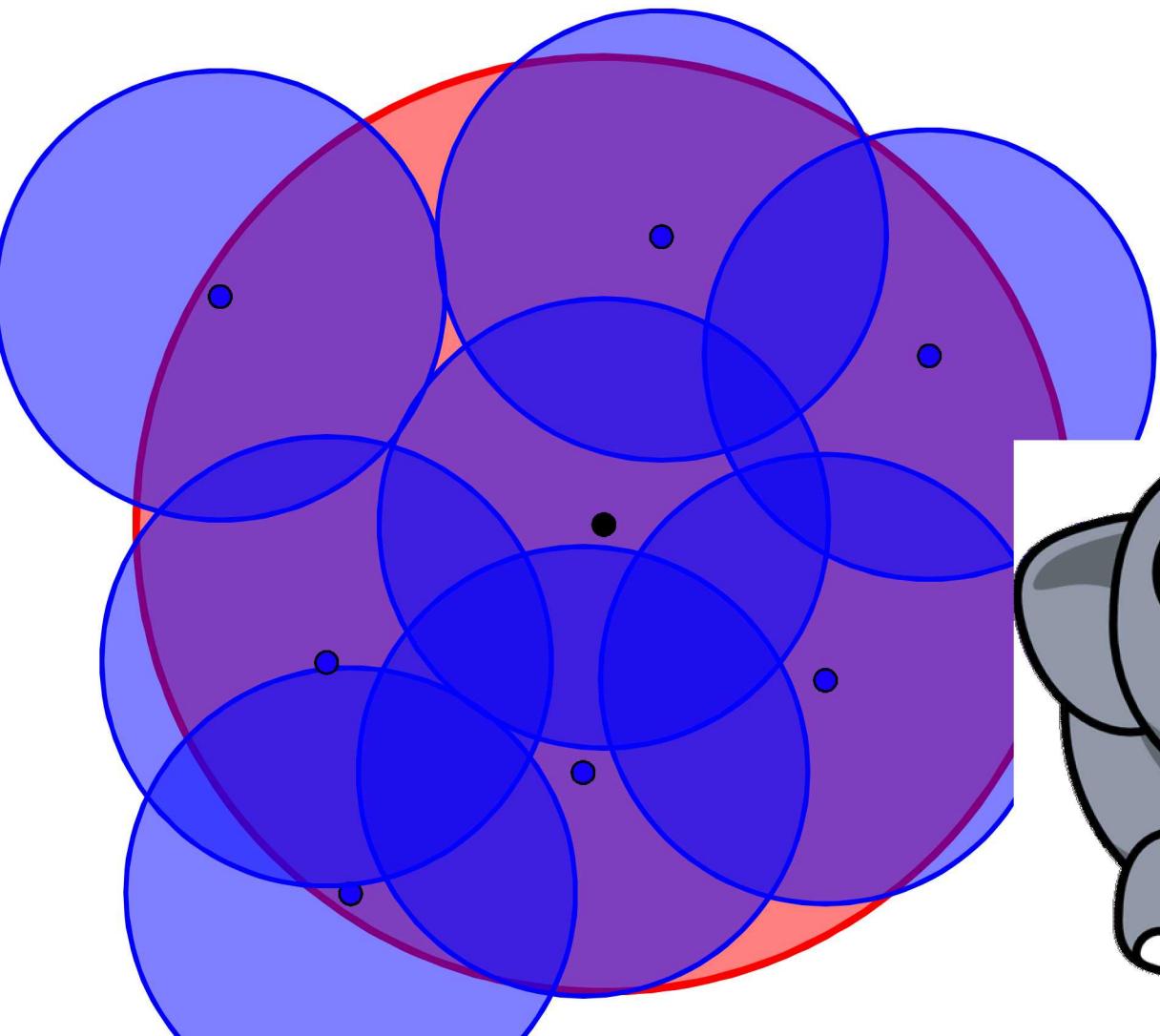
runtime & memory = $O(dn^2)$



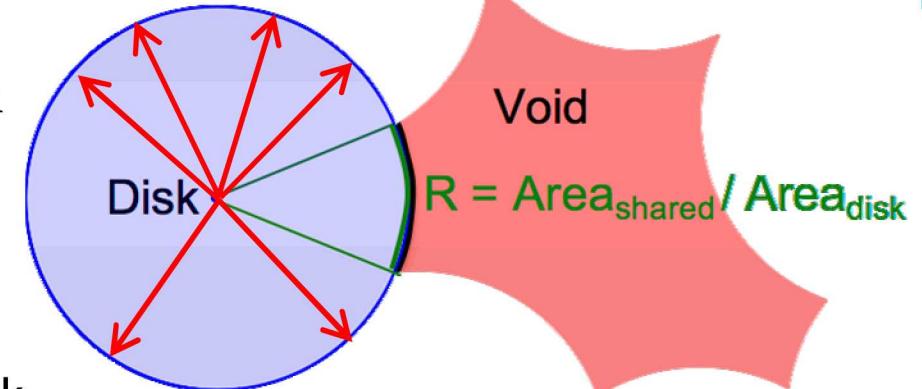
Proved
probabilistic bound
outside all annuli!

Proof of saturation

Spoke-Darts scales ... and guarantees saturation

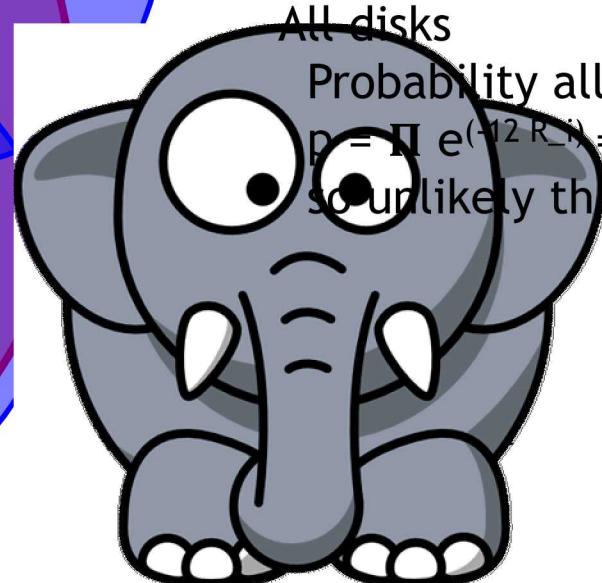


Suppose there exists a void



One disk

Missed 12 times, so area R is probably small,
Probability of 12 misses = $\prod(1-R) = (1-R)^{12} < e^{-12R}$



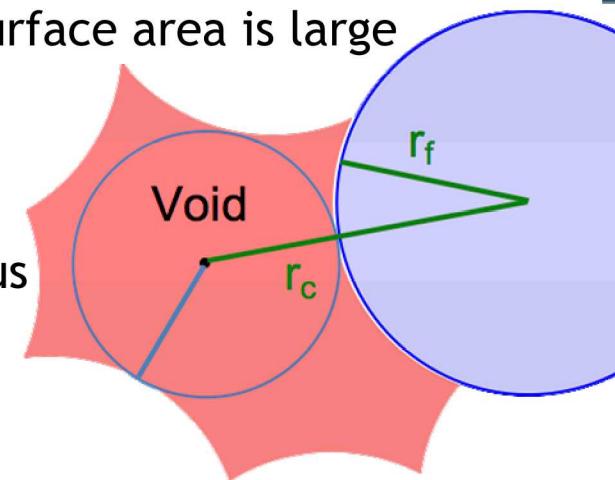
All disks

Probability all missed = product of probabilities

$$p = \prod e^{(-12R_i)} = e^{-12 \sum R_i}$$

so unlikely that the total surface area is large

small void radius



Structure of saturation guarantee

$$m = \lceil (-\ln \epsilon)(\beta^* - 1)^{1-d} \rceil$$

$$\beta^* = 1 + \left(\frac{-\ln \epsilon}{m} \right)^{1/(d-1)}$$

where

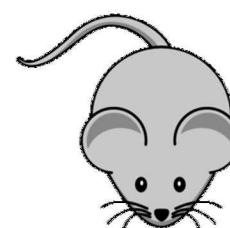
$$\beta^* = r_c/r_f$$

ϵ = chance beta exceeded

m = #misses, failed darts

d = dimension

pick any three



Magic values for dimensional independence

$$\frac{-\ln \epsilon}{m} = 1 \implies \beta^* = 2 \forall d$$

e.g.

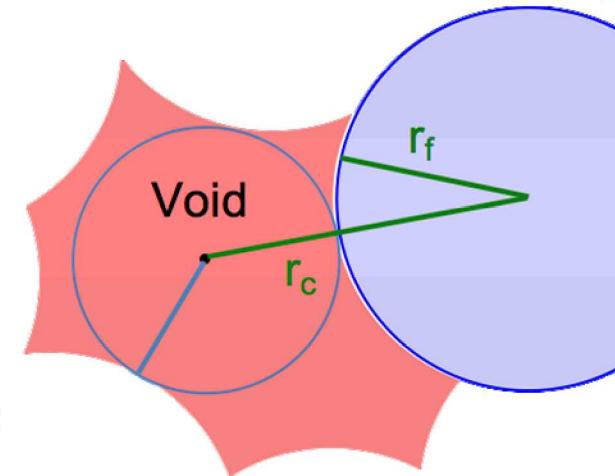
$$m = 12 \implies \epsilon = 10^{-5}$$

probability $1 - 10^{-5}$

that $\beta^* < 2 \forall d$

$$\text{e.g. } m = 14 \implies \epsilon = 10^{-6}$$

$$m = 30 \implies \epsilon = 10^{-13}$$



$$\beta^* =$$

Output Saturation in Practice = better than Bridson

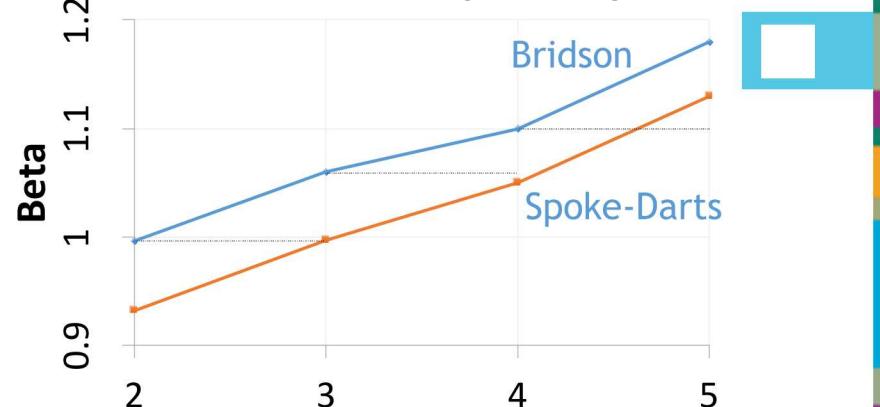
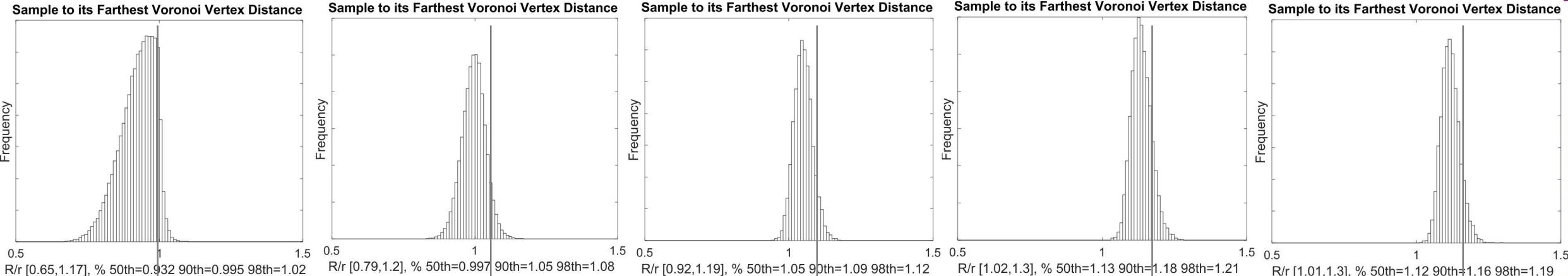
one dimension “for free”

Theory: Beta = constant

Practice: Beta increases and narrows with d

- Narrowing consistent with theory

Median3maxBeta3perSample



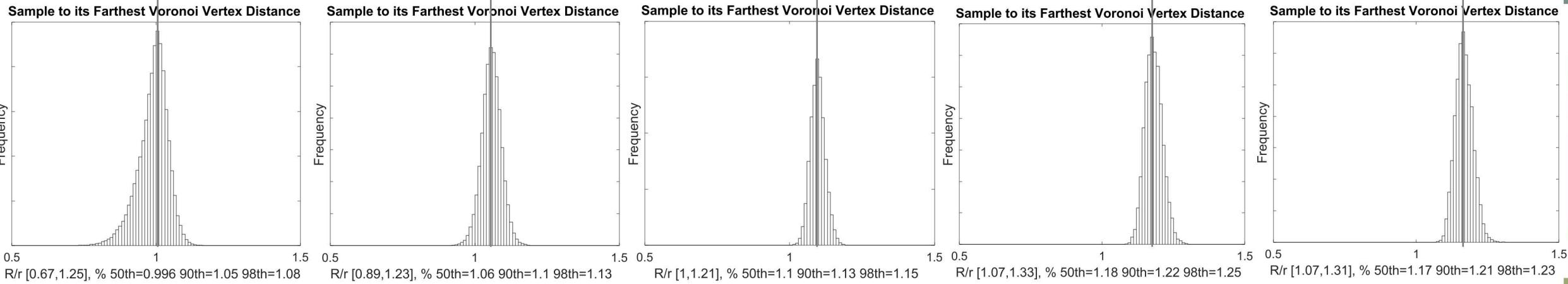
dimension = 2

3

4

5

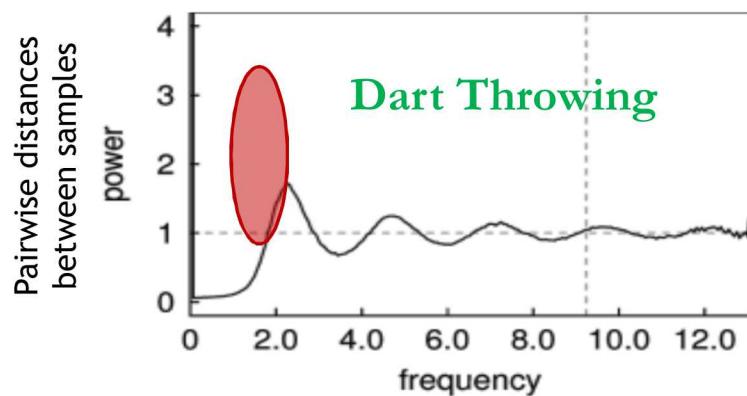
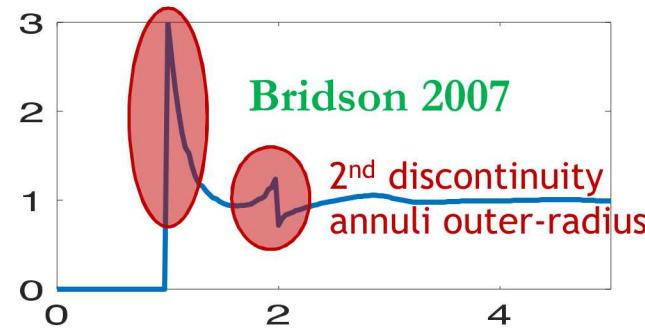
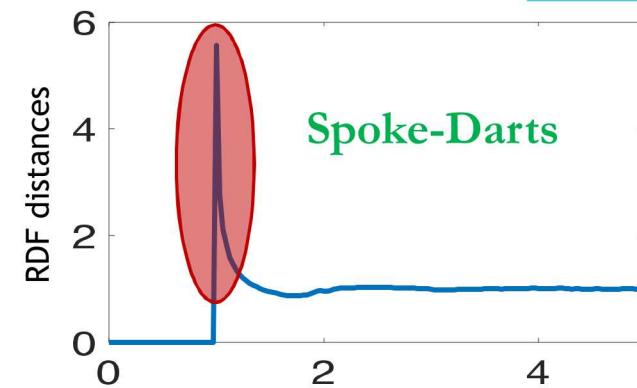
6



Output Randomness – Blue noise

Sharp spike at radius!
(annuli inner-radius)

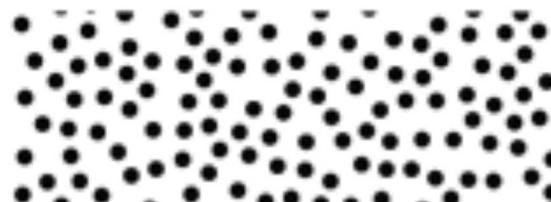
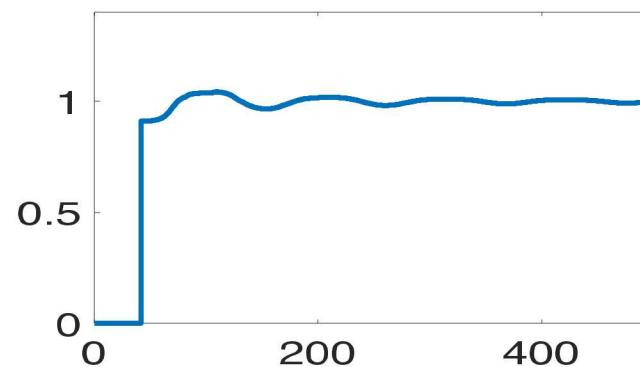
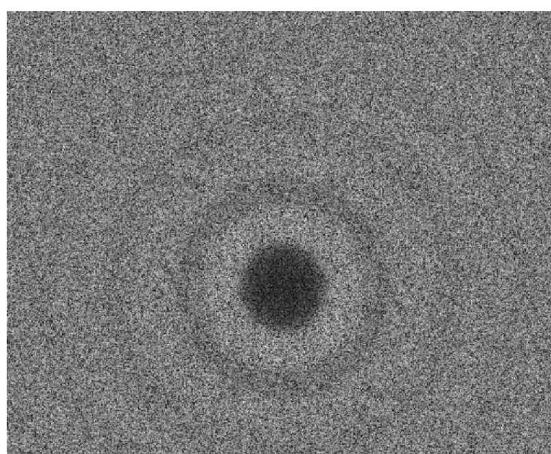
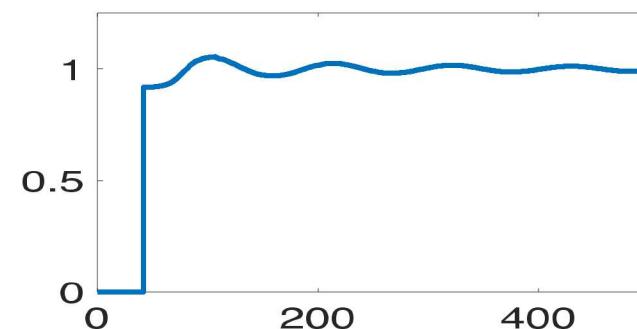
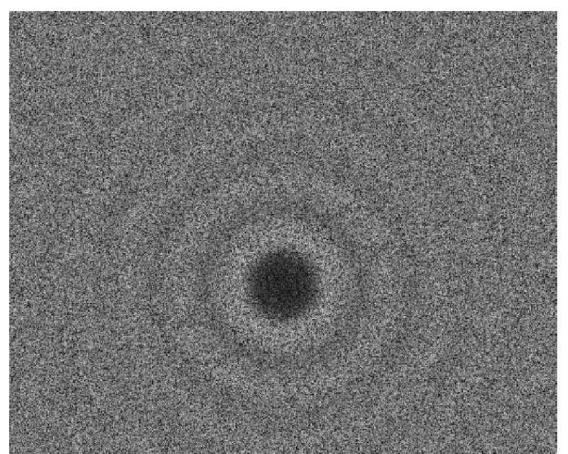
$d=2$



Fourier Transform, 1d
integral over angle by radius

Dart throwing images from
Blue Noise Sampling
with Controlled Aliasing,
TOG 32:3, 2013.

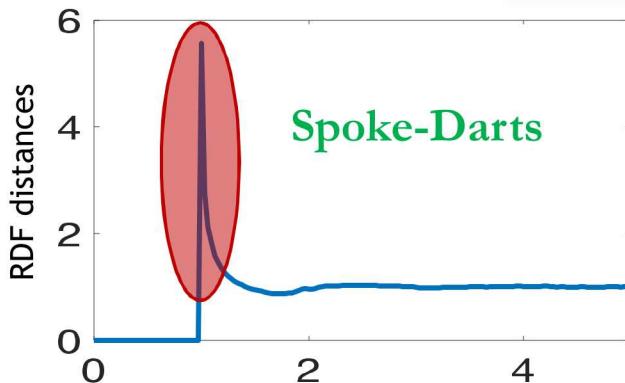
Fourier Transform



Output Randomness – Blue noise

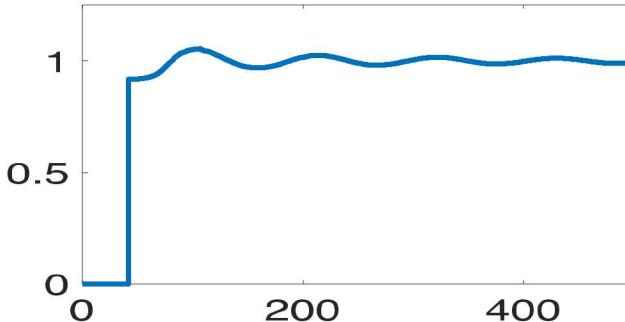
Eliminate spike

- Post-processing optimization* = expensive, 2d
- Sample non-uniformly
 - By spoke-length? Uniform by swept volume? Worse!
 - Any sharp local rule → global discontinuity ☹



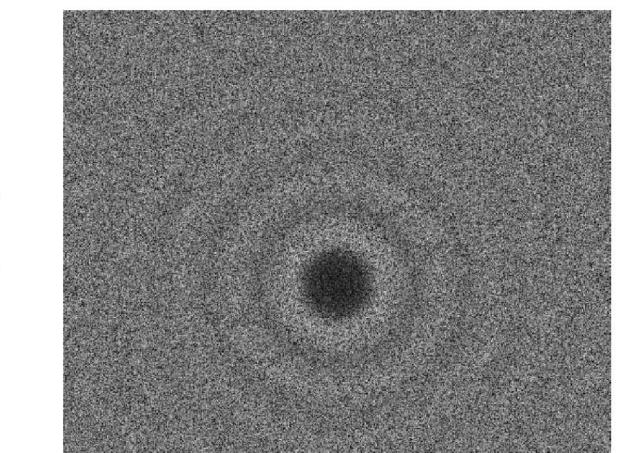
Good idea

- r_{cover} max domain-point-to-sample distance
- r_{free} min sample-to-sample distance



Bad idea

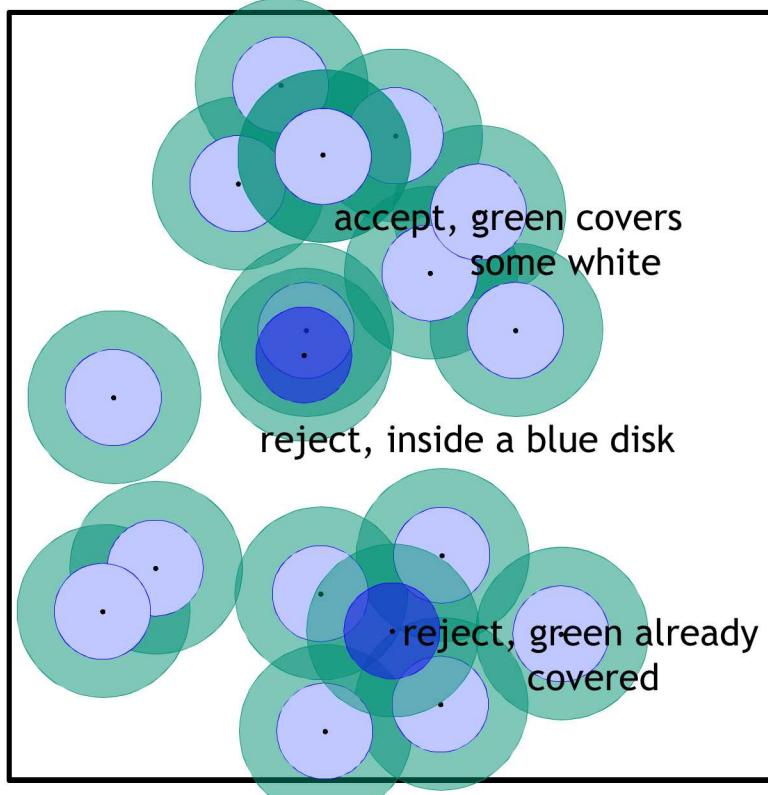
- $r_{\text{free}} = r_{\text{cover}} \Leftrightarrow B=1$
- Traditional goal of Maximal Poisson-disk Sampling!
 - Serves no purpose



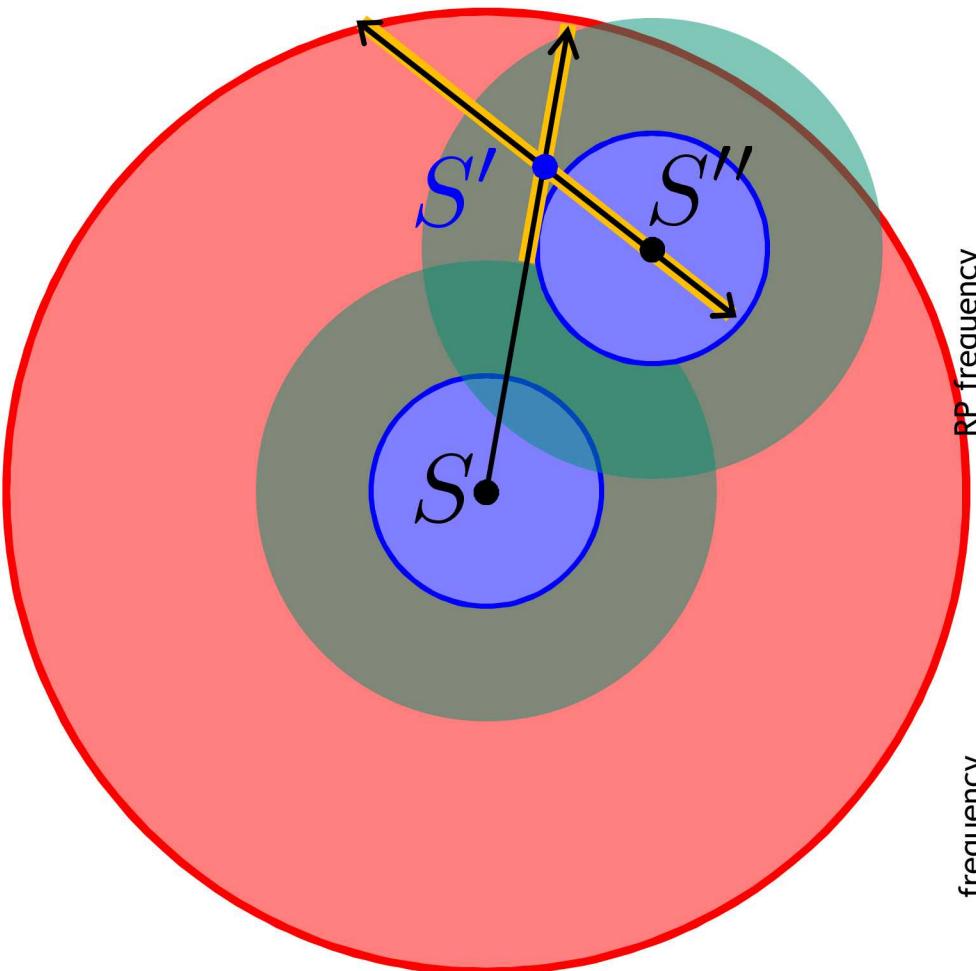
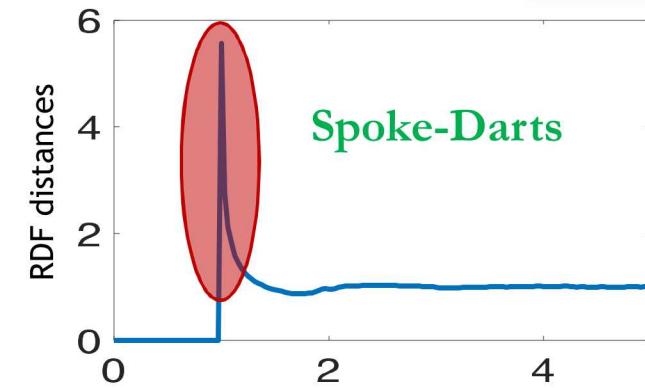
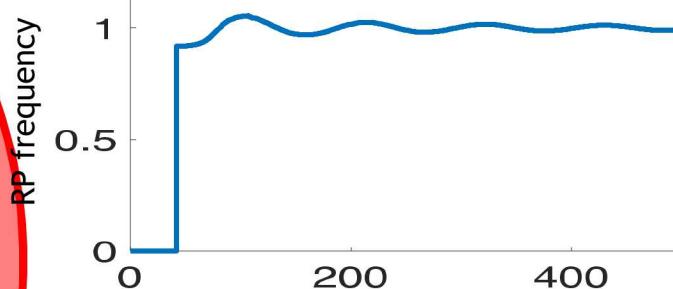
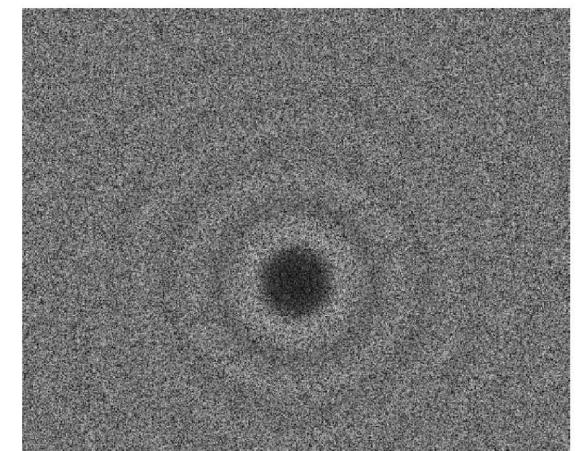
Output Randomness – Blue noise

Eliminate spike – we solved in 2012 ☺

- **†Two-radii** : $r_{\text{free}} \neq r_{\text{cover}}$
- Small blue r_{free} minimum sample separation
- Large green r_{cover} maximum domain-to-sample
- Unique coverage: accept only if covers white



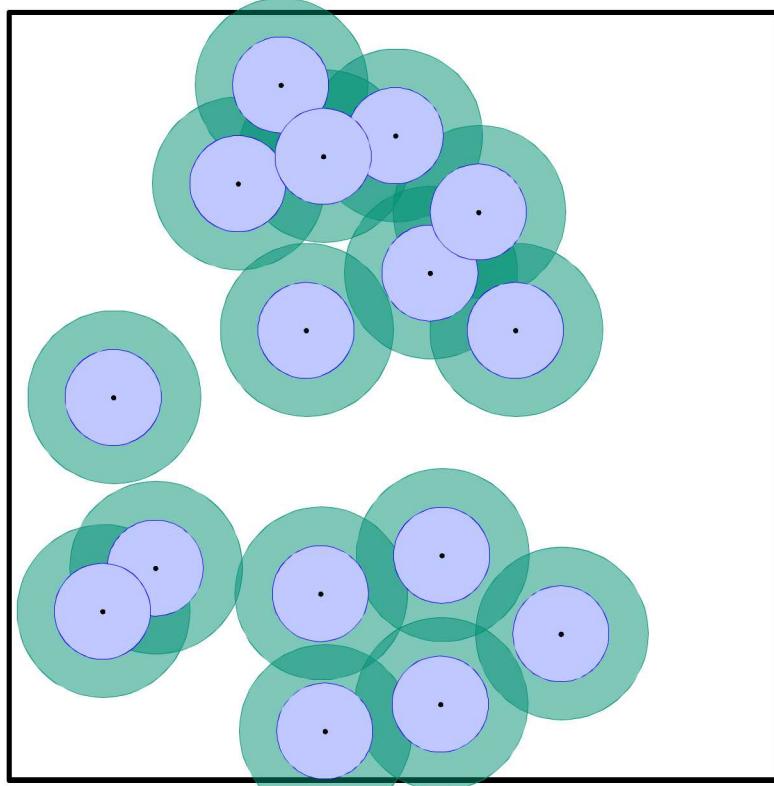
- **Two-spokes** mimic Two-radii
 - 1st spoke, trim by large green
 - 2nd spoke, trim by small blue



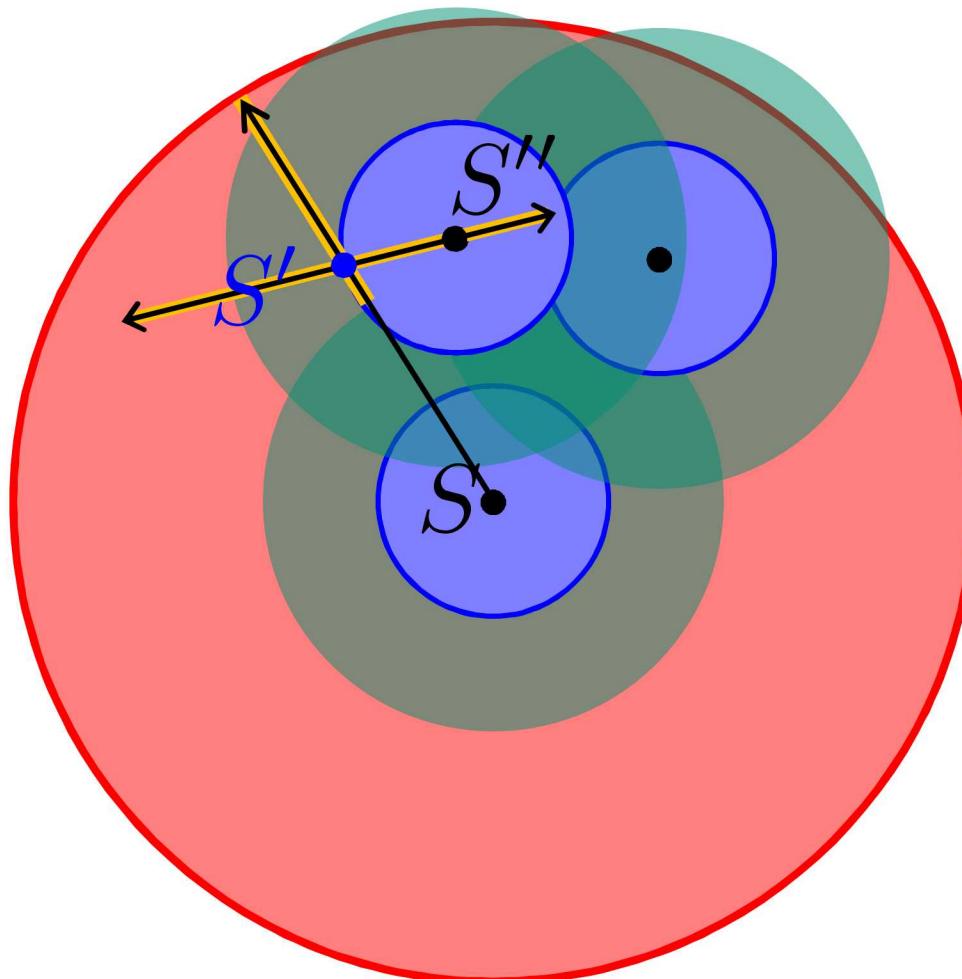
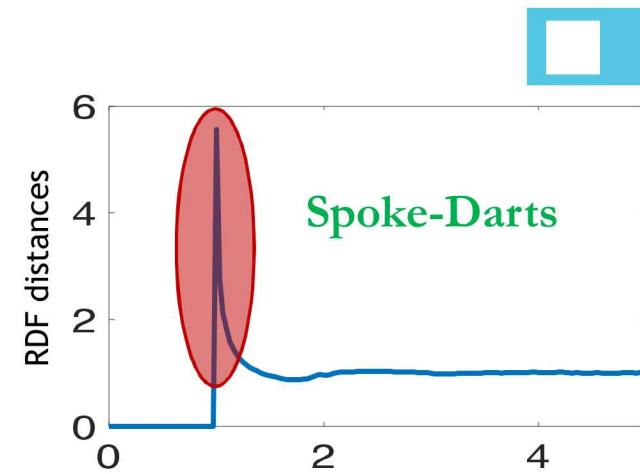
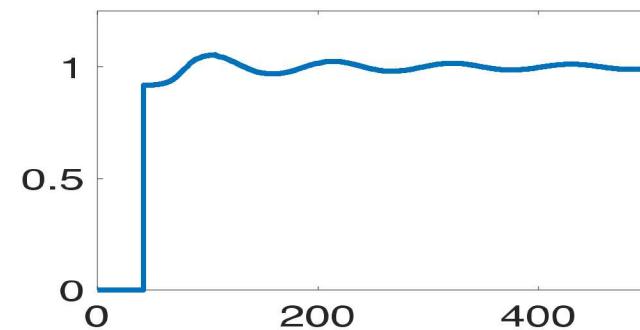
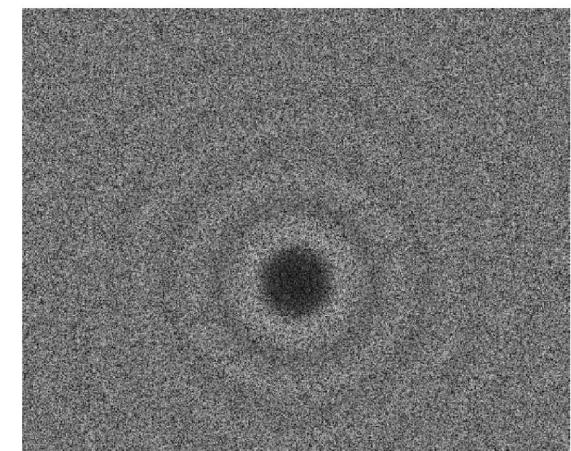
Output Randomness – Blue noise

Eliminate spike

- **†Two-radii** : $r_{\text{free}} \neq r_{\text{cover}}$
- Small blue r_{free} minimum sample separation
- Large green r_{cover} maximum domain-to-sample
- Unique coverage: accept only if covers white



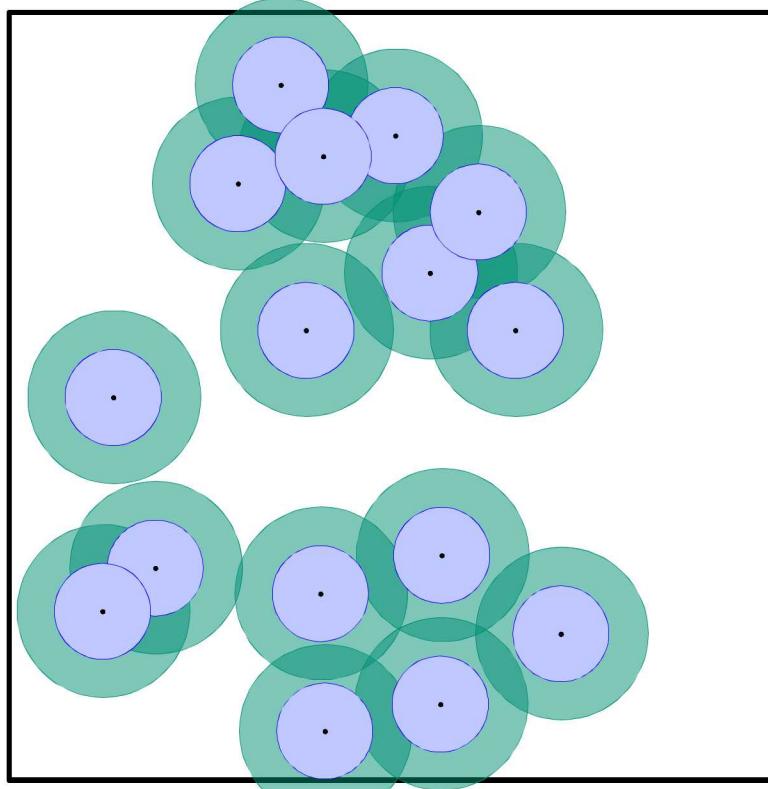
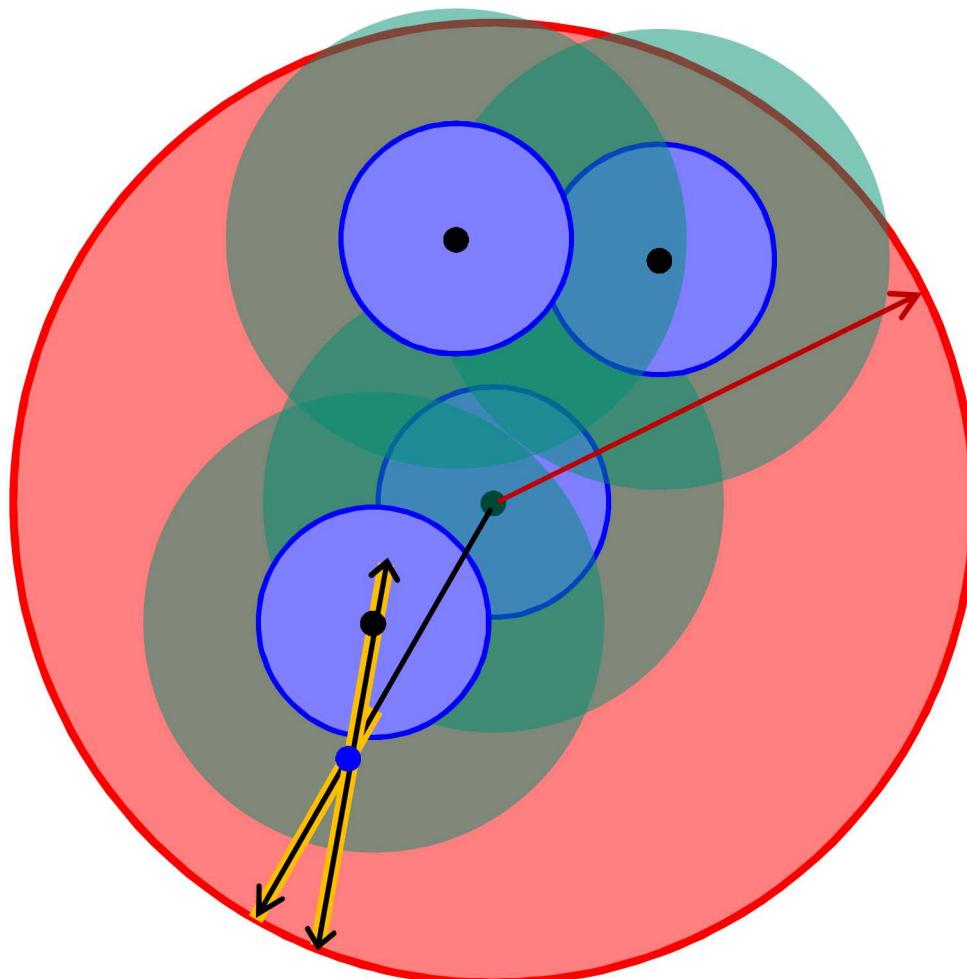
- **Two-spokes** mimic Two-radii
 - 1st spoke, trim by large green
 - 2nd spoke, trim by small blue



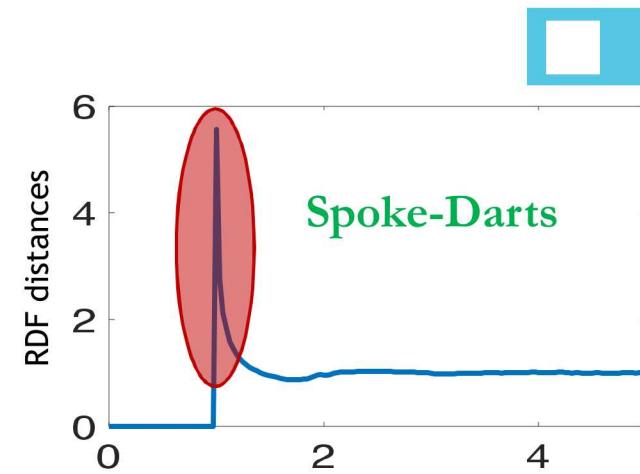
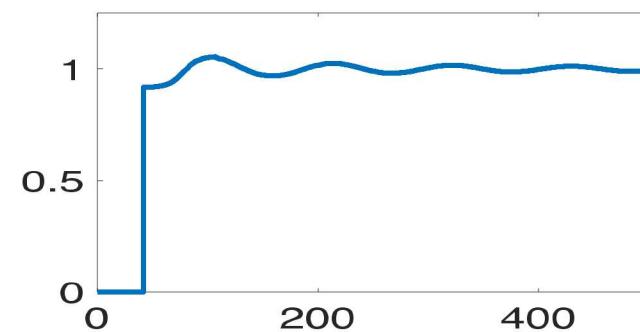
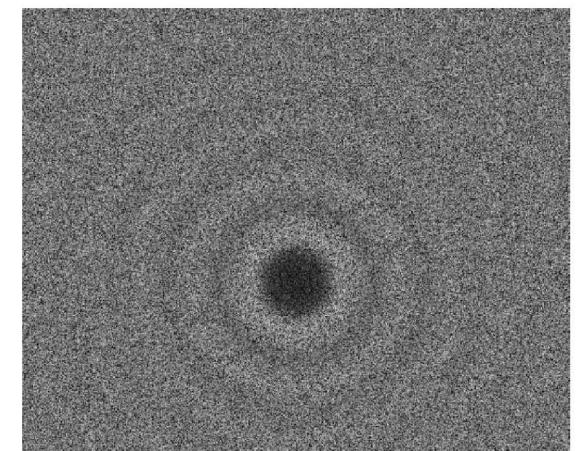
Output Randomness – Blue noise

Eliminate spike

- **†Two-radii** : $r_{\text{free}} \neq r_{\text{cover}}$
- Small blue r_{free} minimum sample separation
- Large green r_{cover} maximum domain-to-sample
- Unique coverage: accept only if covers white



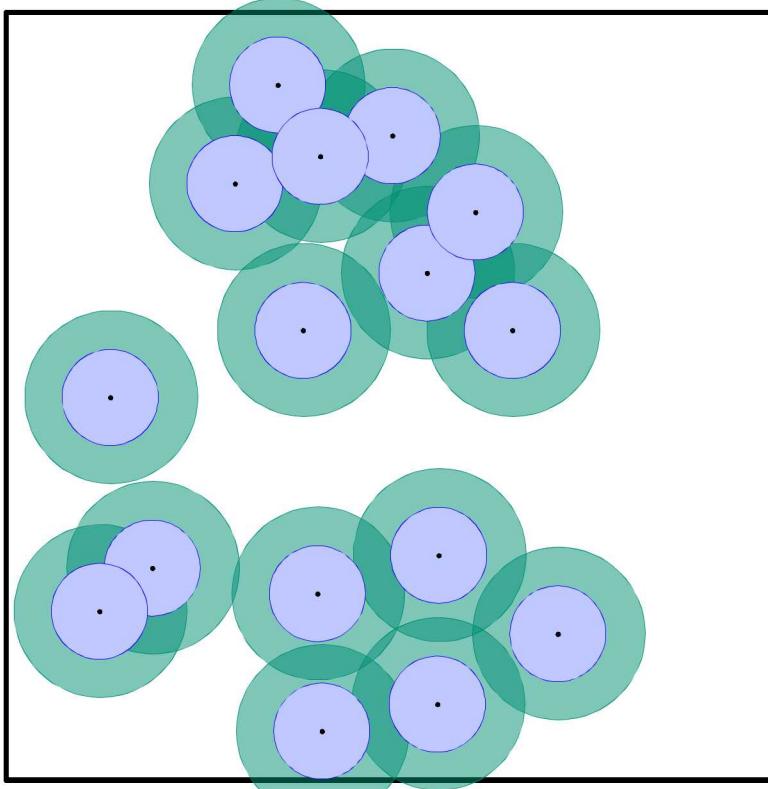
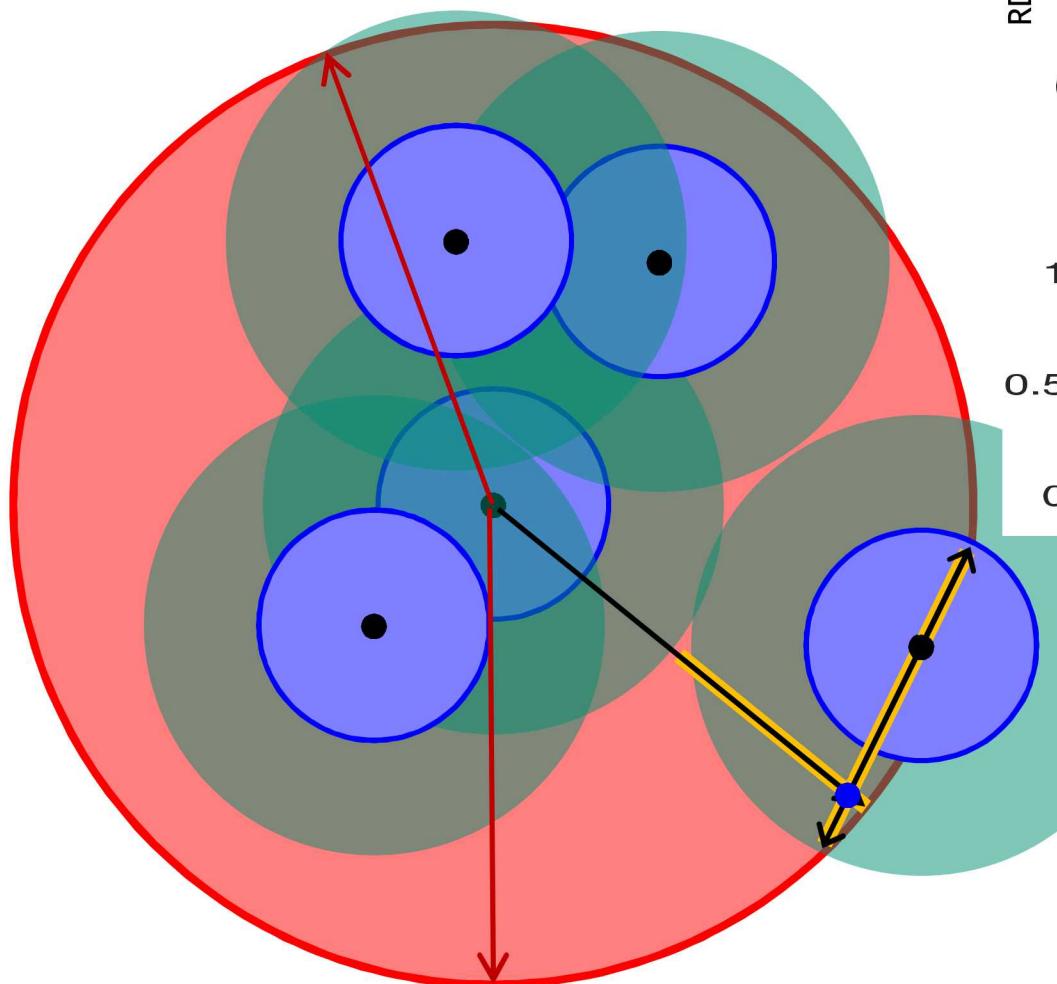
- **Two-spokes** mimic Two-radii
 - 1st spoke, trim by large green
 - 2nd spoke, trim by small blue



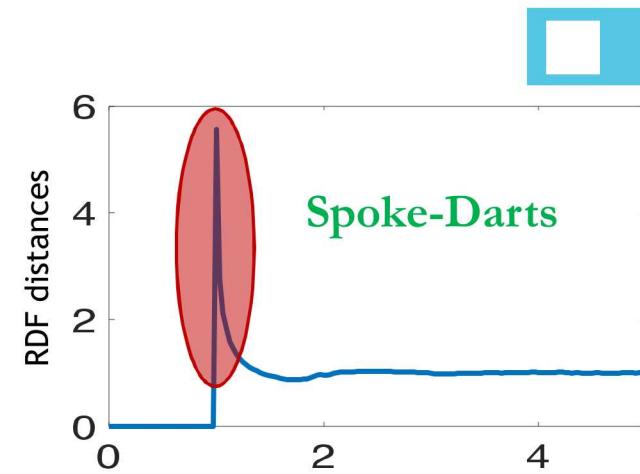
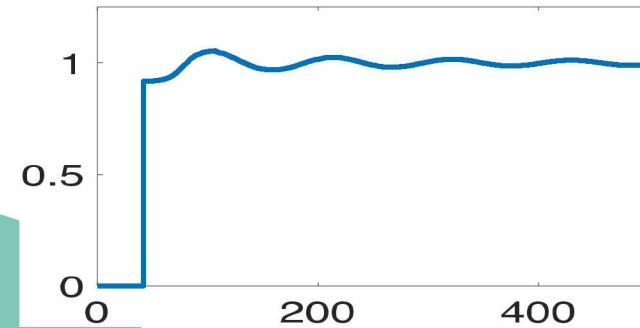
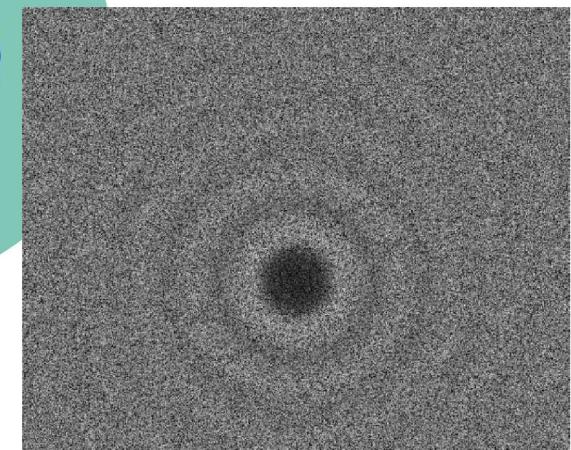
Output Randomness – Blue noise

Eliminate spike

- **Two-radii** : $r_{\text{free}} \neq r_{\text{cover}}$
- Small blue r_{free} minimum sample separation
- Large green r_{cover} maximum domain-to-sample
- Unique coverage: accept only if covers white



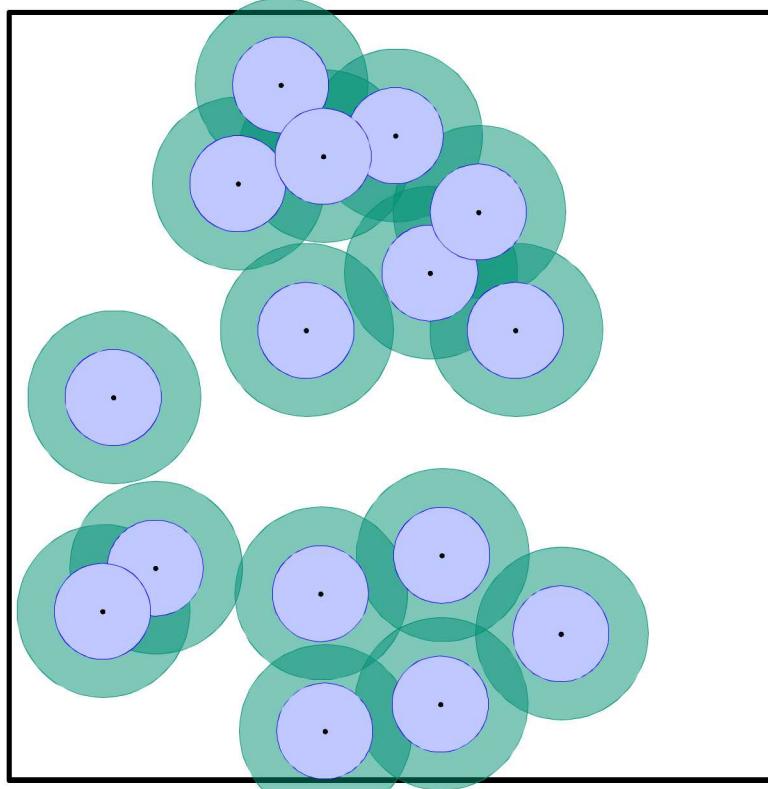
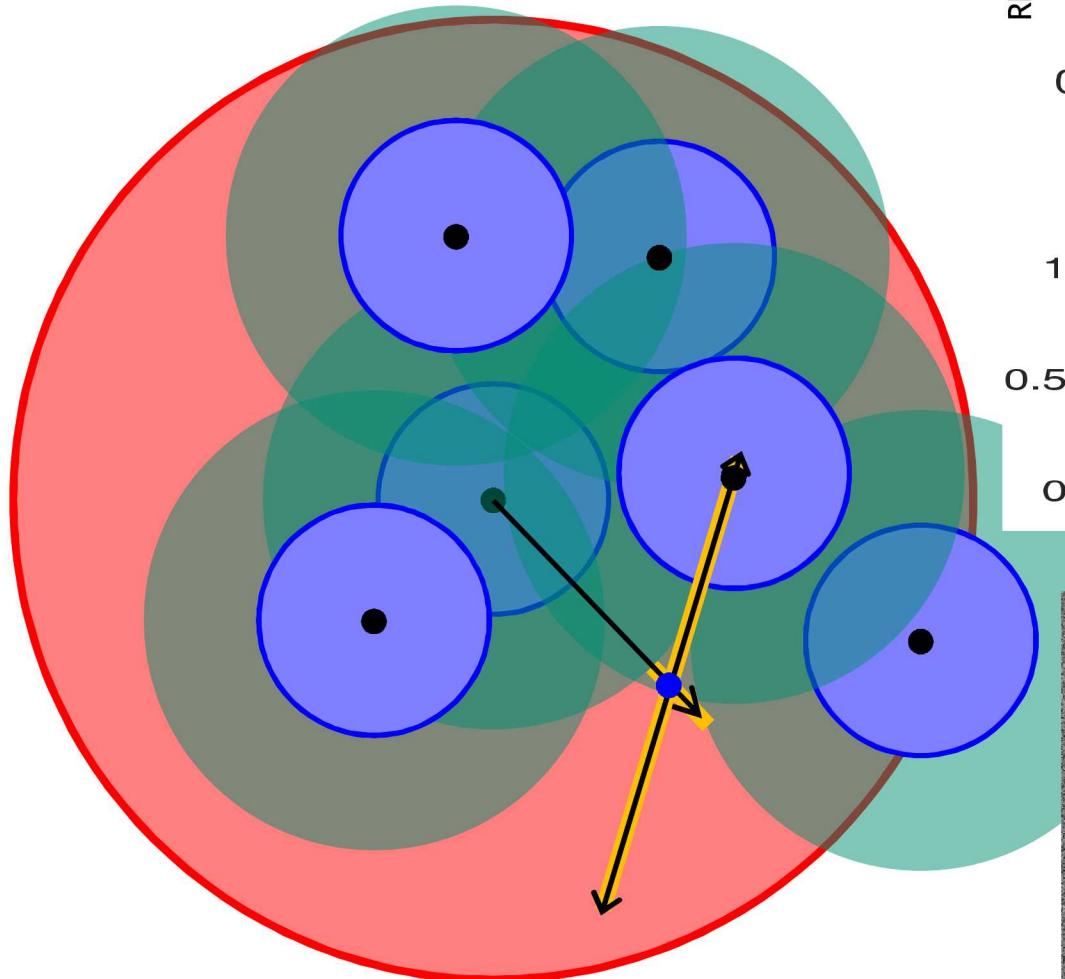
- **Two-spokes** mimic Two-radii
 - 1st spoke, trim by large green
 - 2nd spoke, trim by small blue



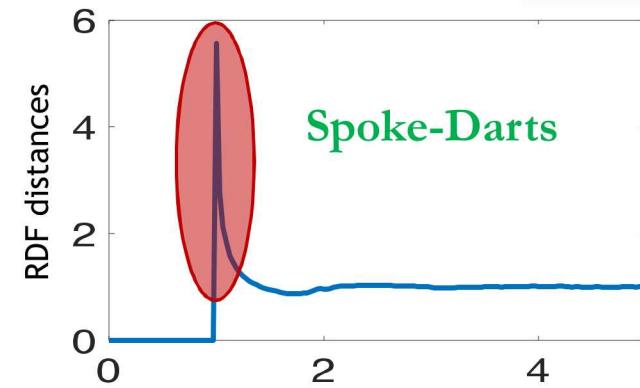
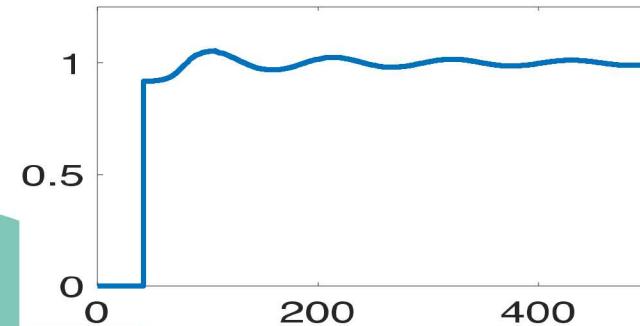
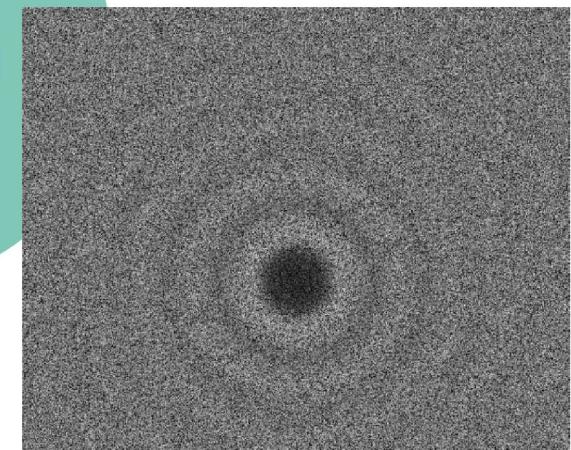
Output Randomness – Blue noise

Eliminate spike

- **†Two-radii** : $r_{\text{free}} \neq r_{\text{cover}}$
- Small blue r_{free} minimum sample separation
- Large green r_{cover} maximum domain-to-sample
- Unique coverage: accept only if covers white



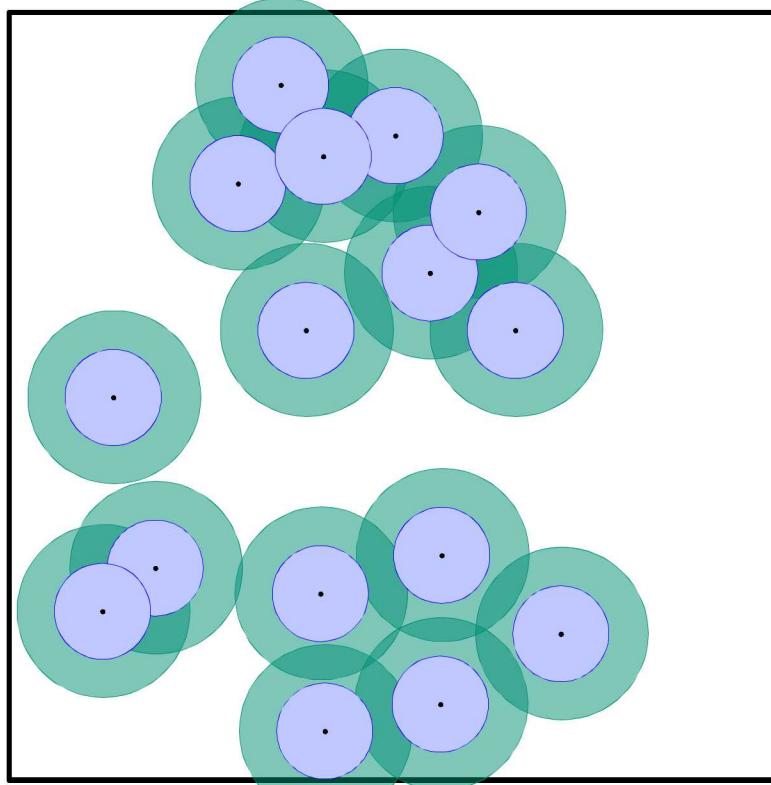
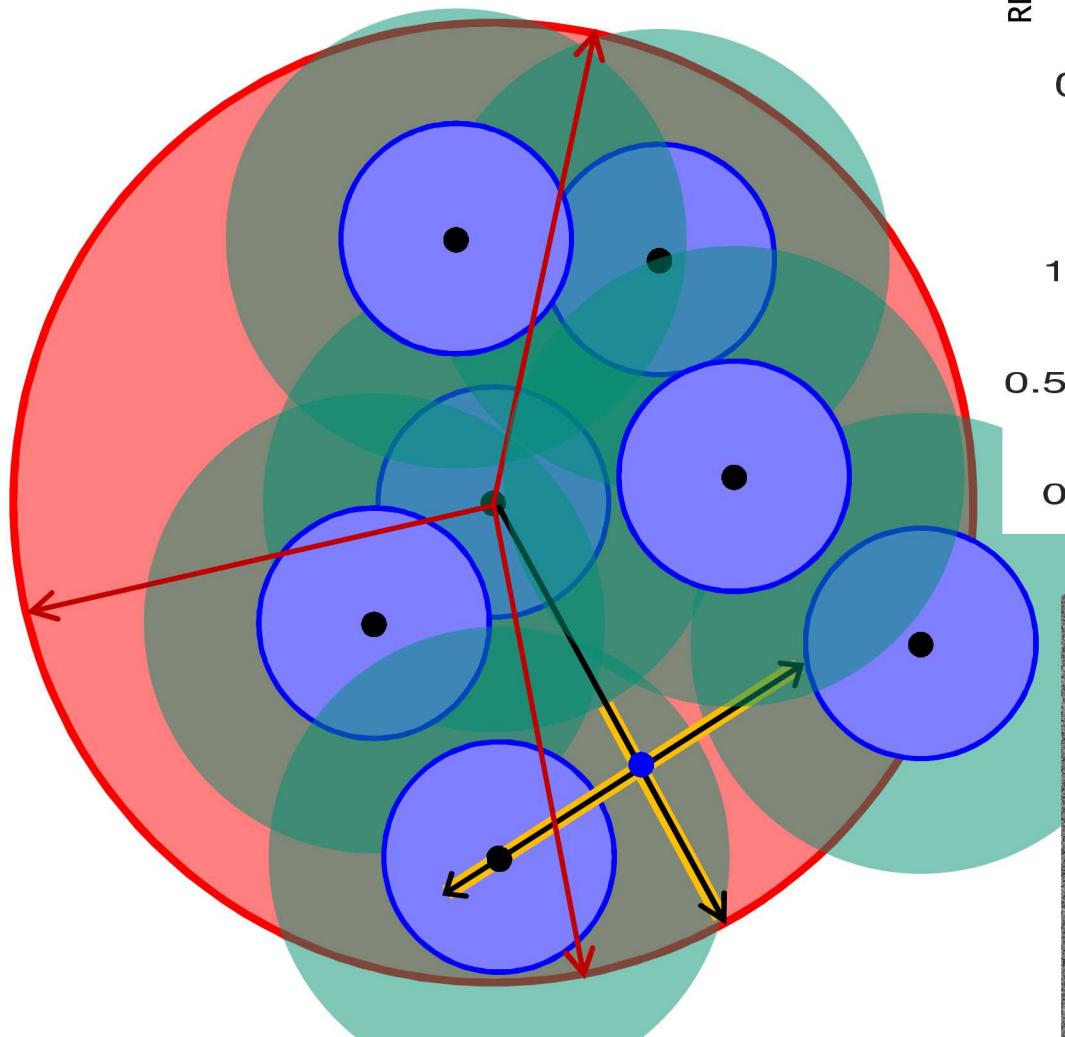
- **Two-spokes** mimic Two-radii
 - 1st spoke, trim by large green
 - 2nd spoke, trim by small blue



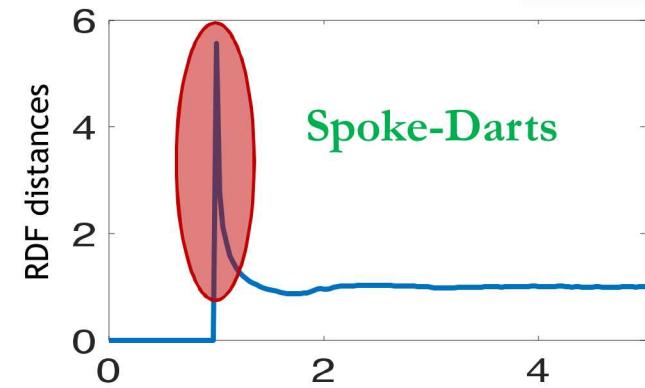
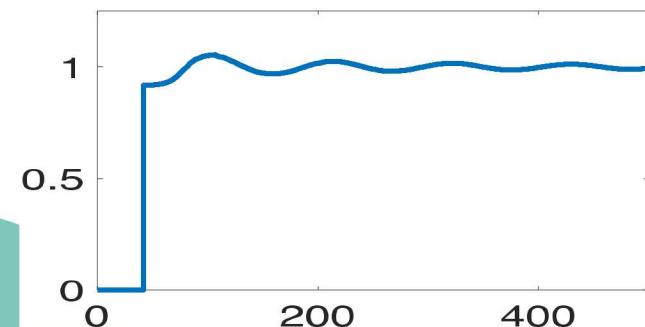
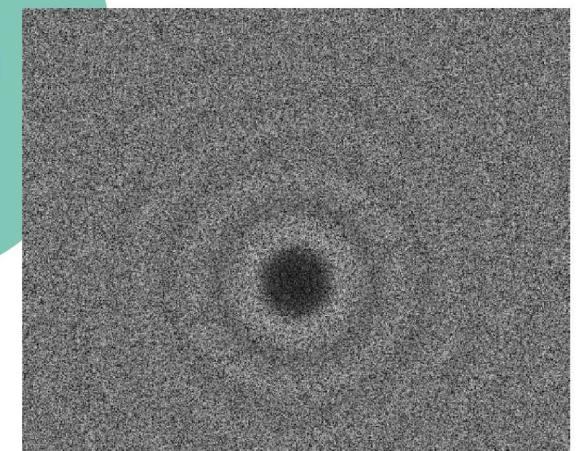
Output Randomness – Blue noise

Eliminate spike

- **†Two-radii** : $r_{\text{free}} \neq r_{\text{cover}}$
- Small blue r_{free} minimum sample separation
- Large green r_{cover} maximum domain-to-sample
- Unique coverage: accept only if covers white



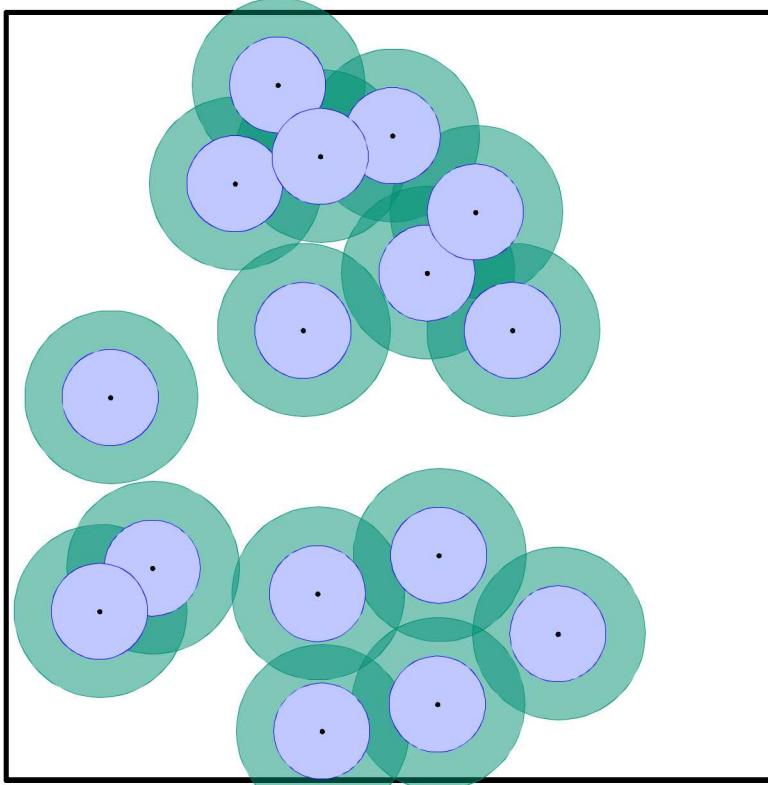
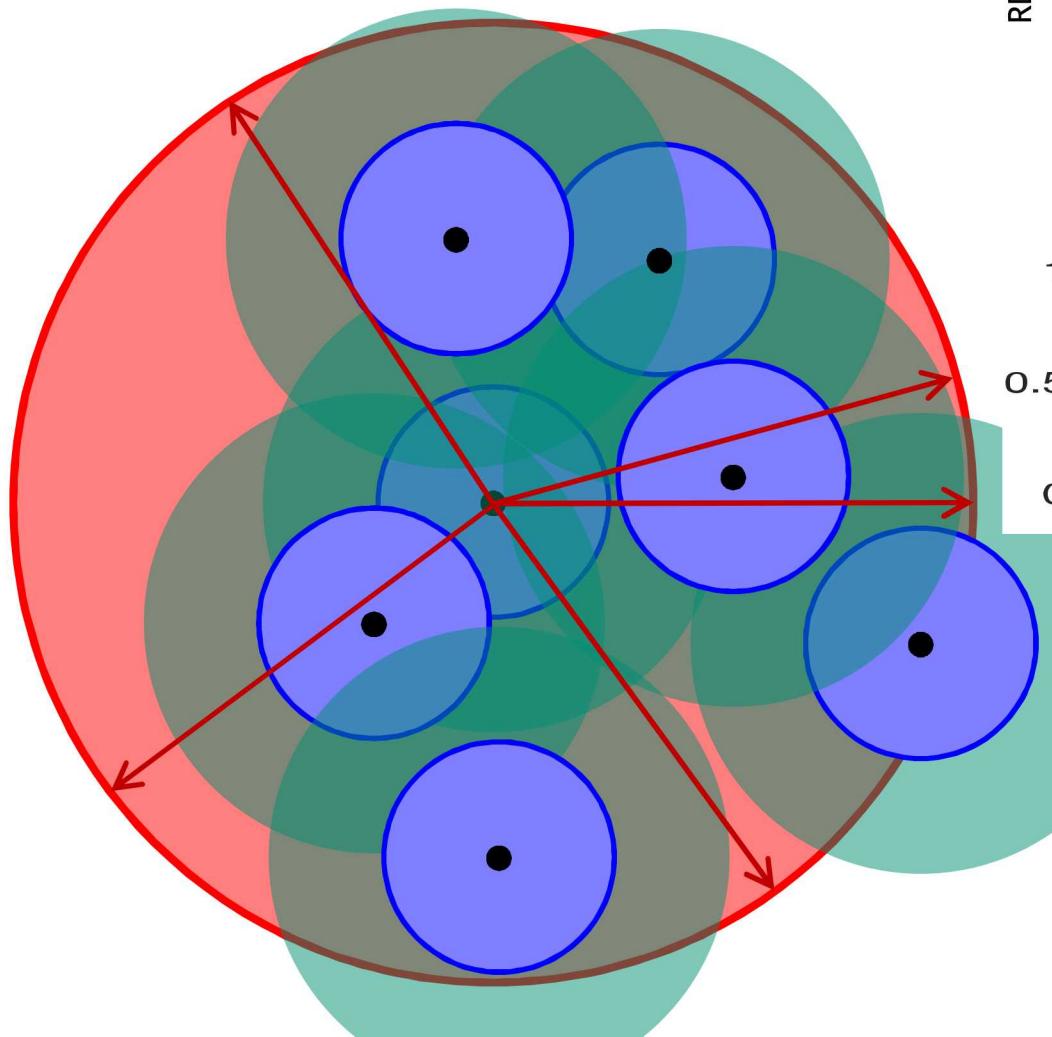
- **Two-spokes** mimic Two-radii
 - 1st spoke, trim by large green
 - 2nd spoke, trim by small blue



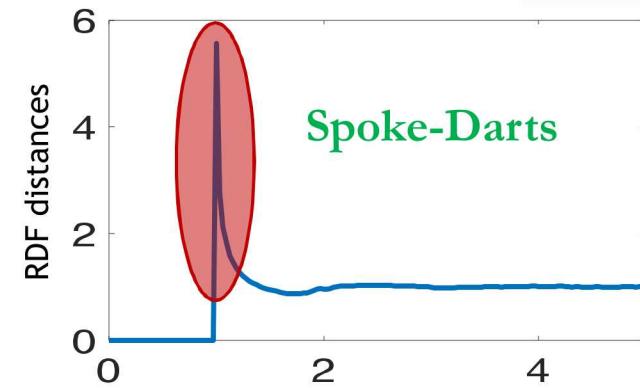
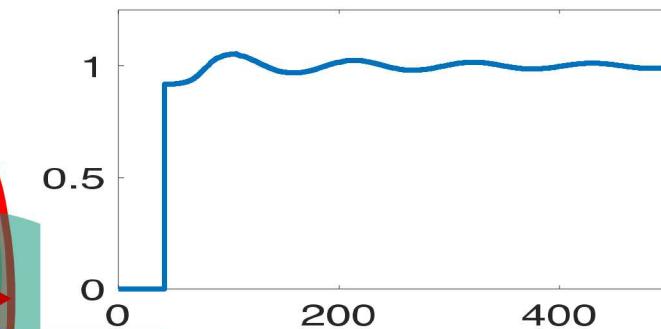
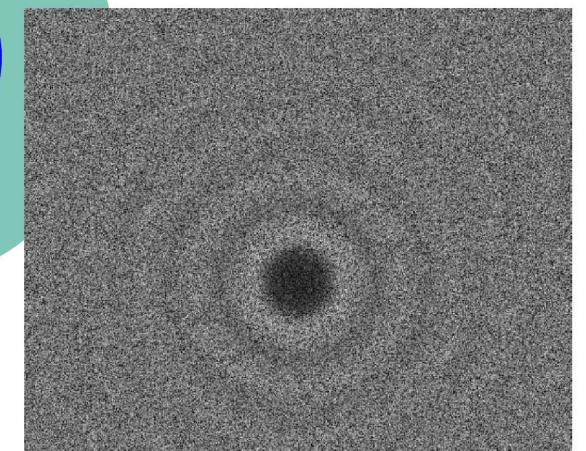
Output Randomness – Blue noise

Eliminate spike

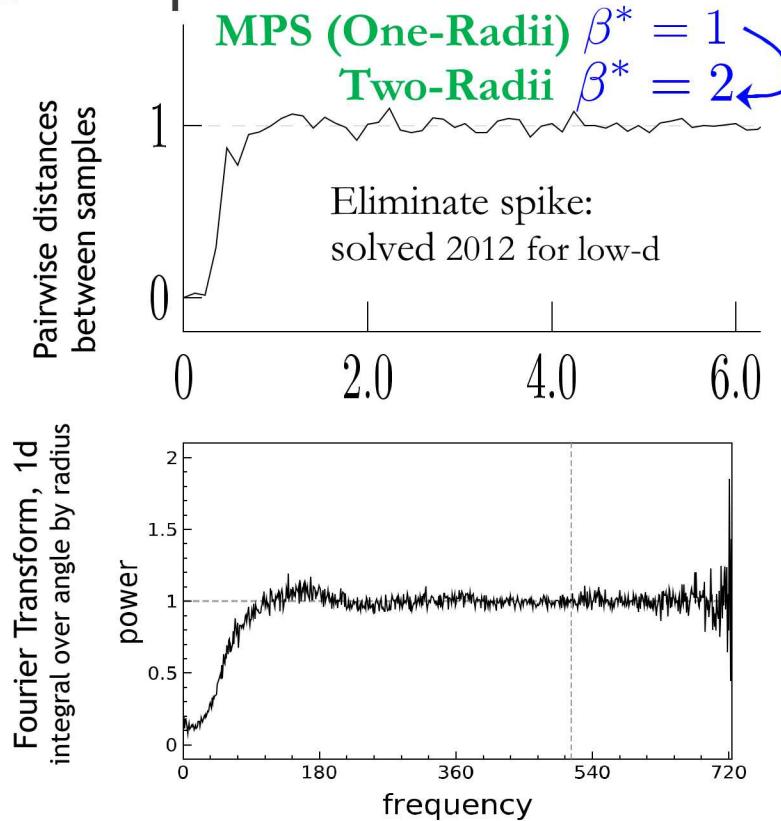
- **†Two-radii** : $r_{\text{free}} \neq r_{\text{cover}}$
- Small blue r_{free} minimum sample separation
- Large green r_{cover} maximum domain-to-sample
- Unique coverage: accept only if covers white



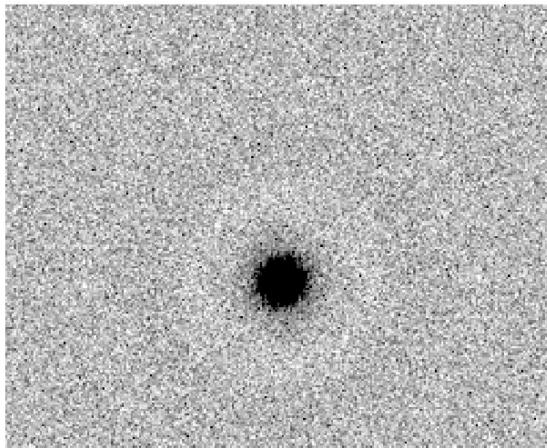
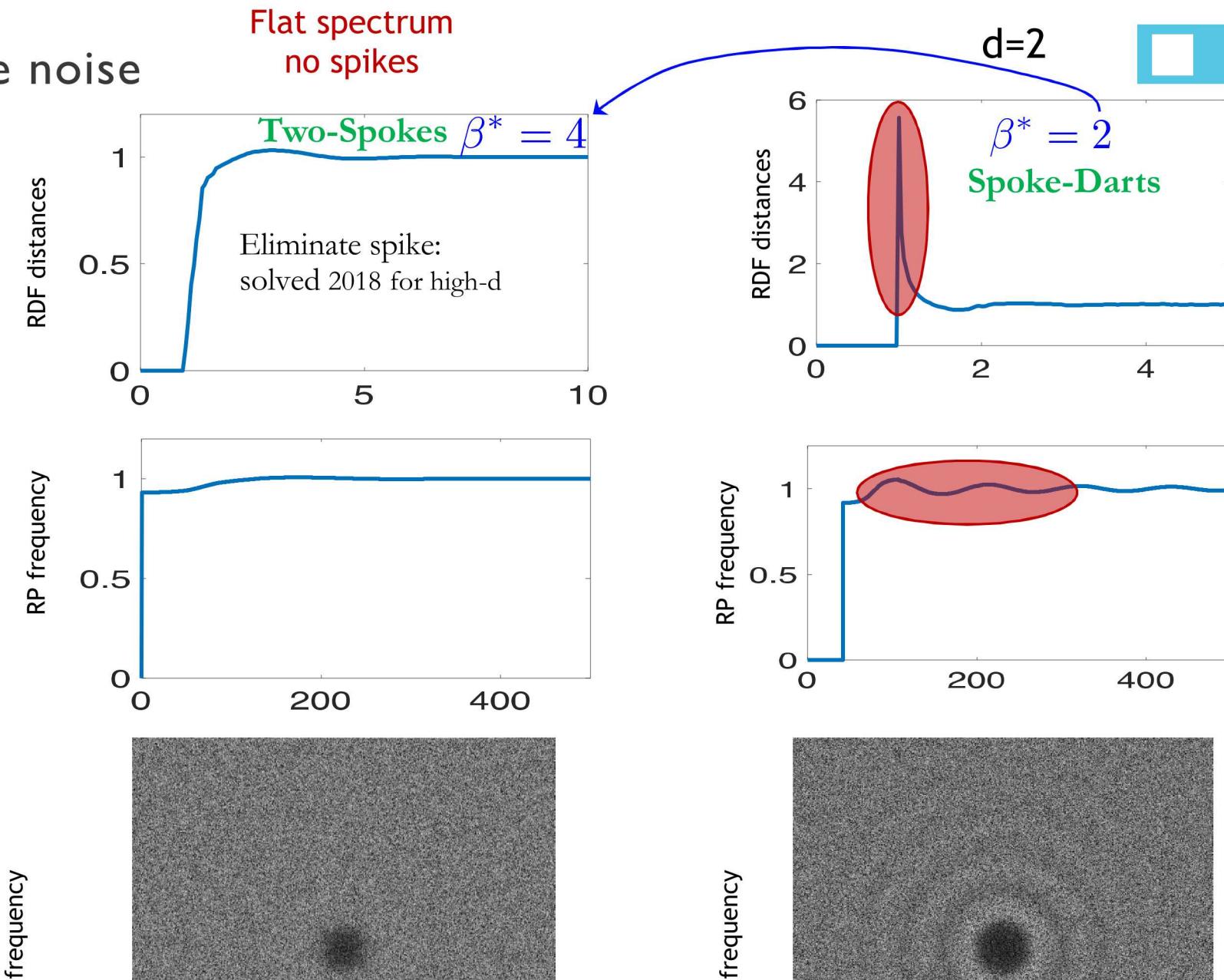
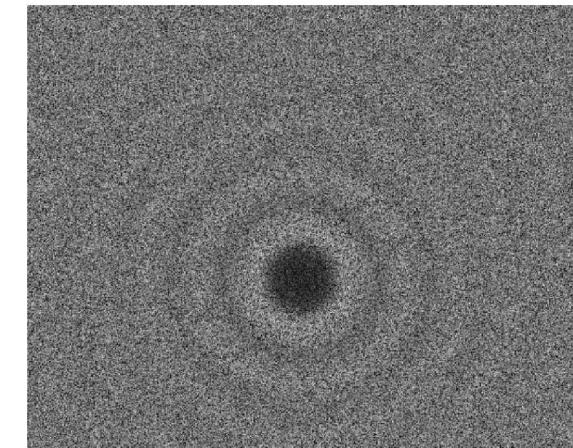
- **Two-spokes** mimic Two-radii
 - 1st spoke, trim by large green
 - 2nd spoke, trim by small blue



Output Randomness – Blue noise

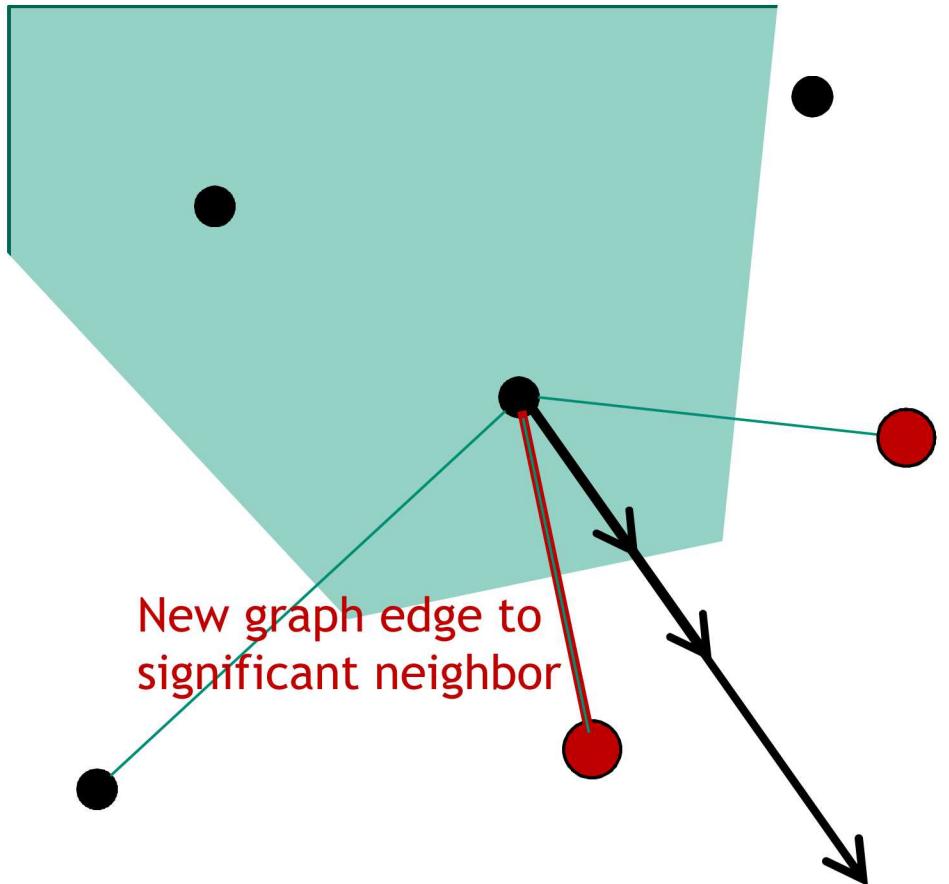
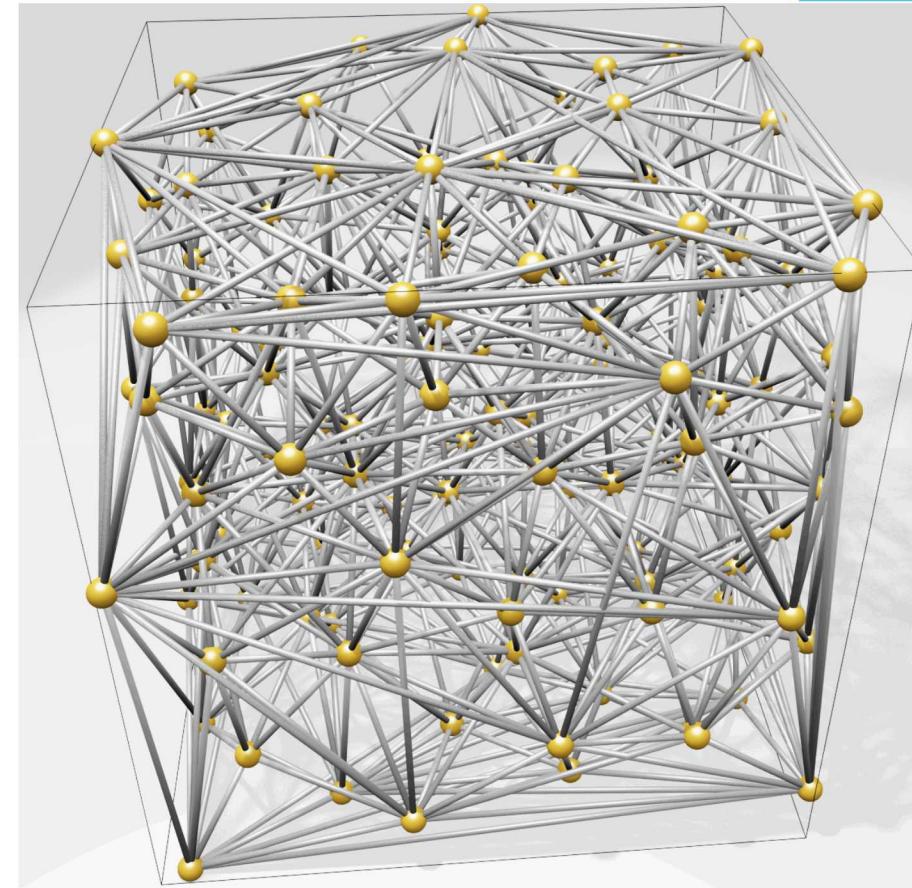


Fourier Transform



Application: Approximate Delaunay Graph

Trim line-spokes to find “significant” neighbors in Voronoi diagram



3d rendering of 8d graph

Application: Global Optimization

DIRECT = DIviding RECTangles

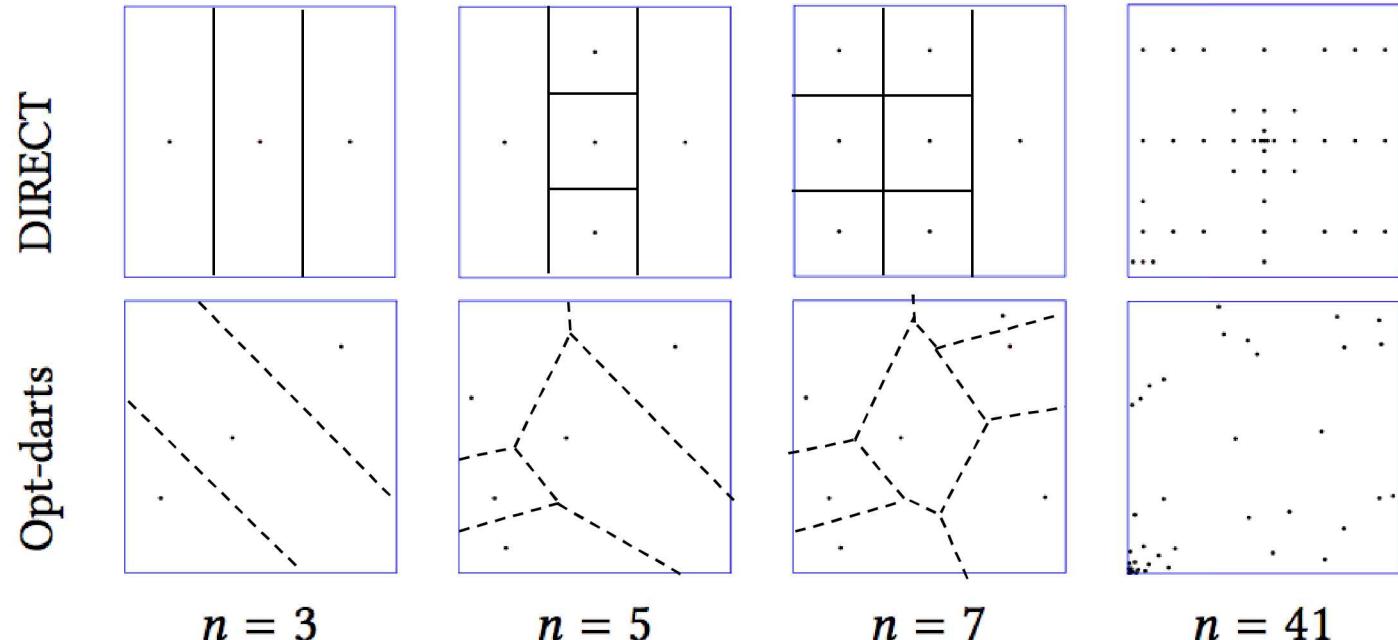
- Divide space by rectangles
- Refine large rectangles with small sample values

Opt-Darts

- Divide space by Voronoi cells (*implicit only*)
- Refine large cells with small sample values
 - Approx. Delaunay graph defines “large” cells
 - Spoke-darts selects refinement sample

Opt-Darts: 5-25× speedup over DIRECT

- Increasing speedup with d
 - Rectangle bad approximation of Voronoi cell
- More-random sample patterns

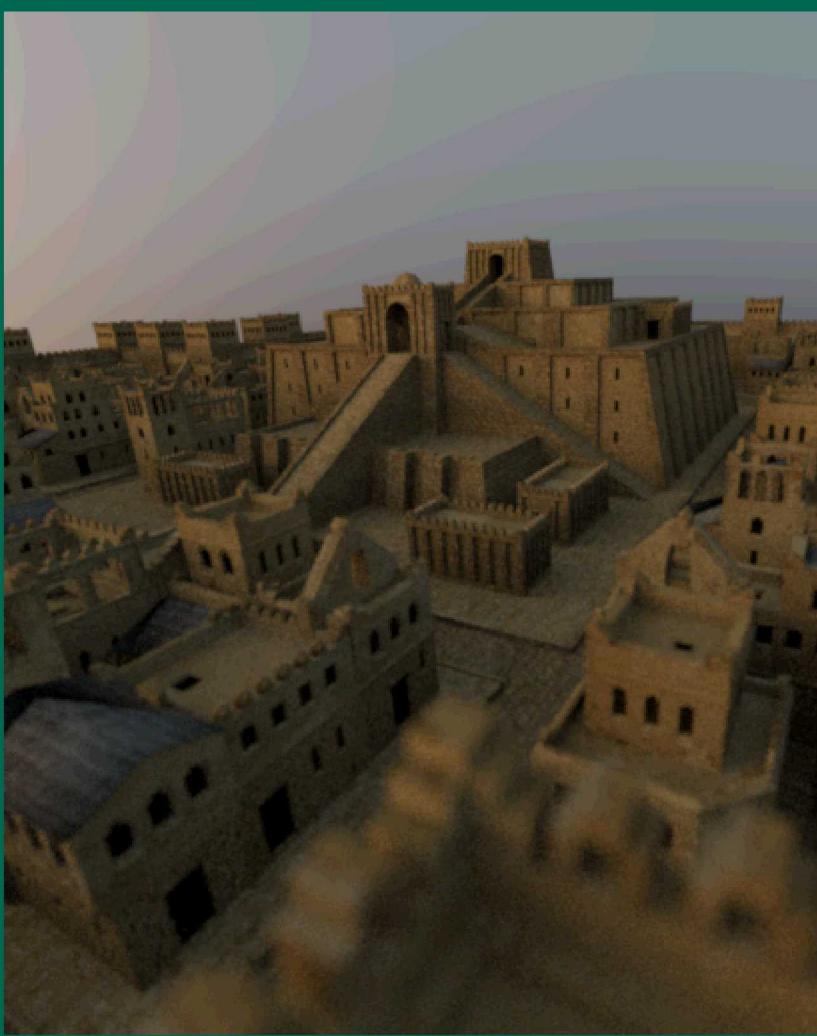


Application: Rendering

Mitsuba ray tracing

- 4D = 2 screen × 2 lens
- 16 samples per pixel

Stratified



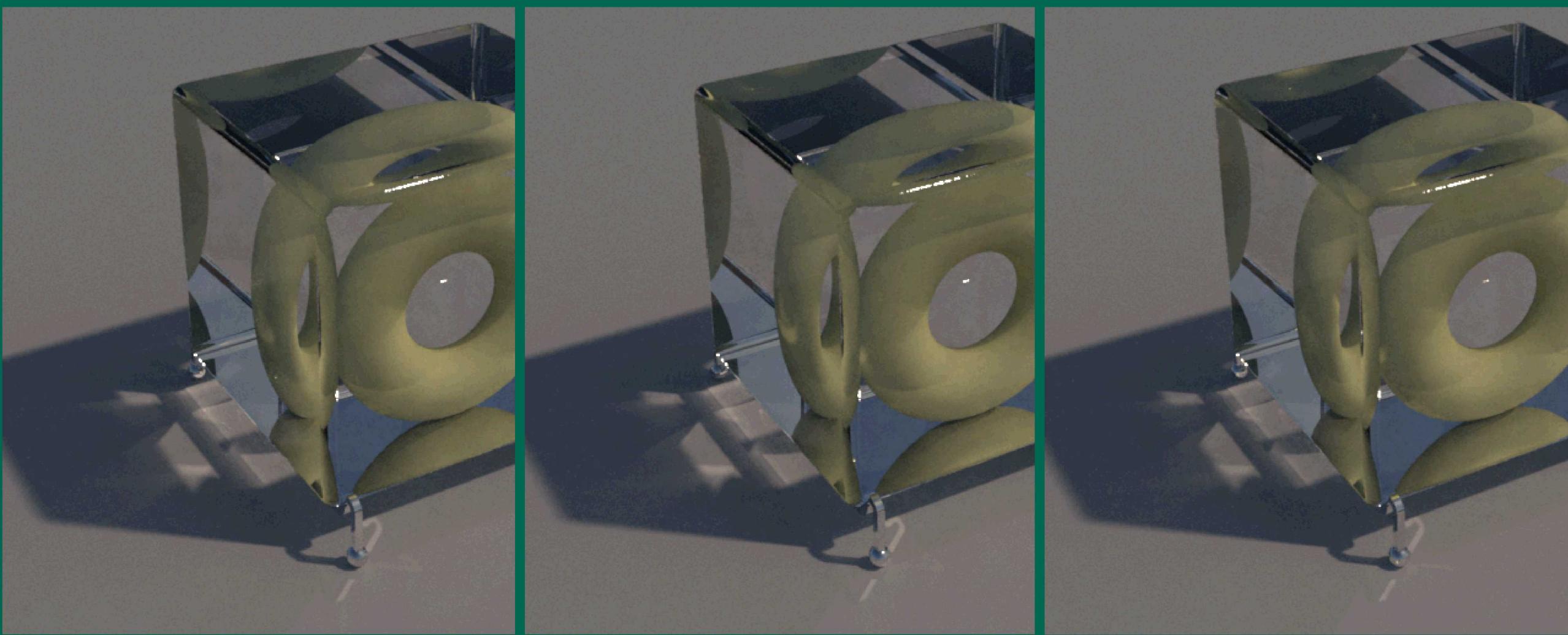
Low discrepancy

Spoke-darts
comparable to alternatives

Application: Rendering

Mitsuba ray tracing

- 8D = 2 sky-emitter × 2 screen × 2 × 2 bounce
- 256 samples per pixel

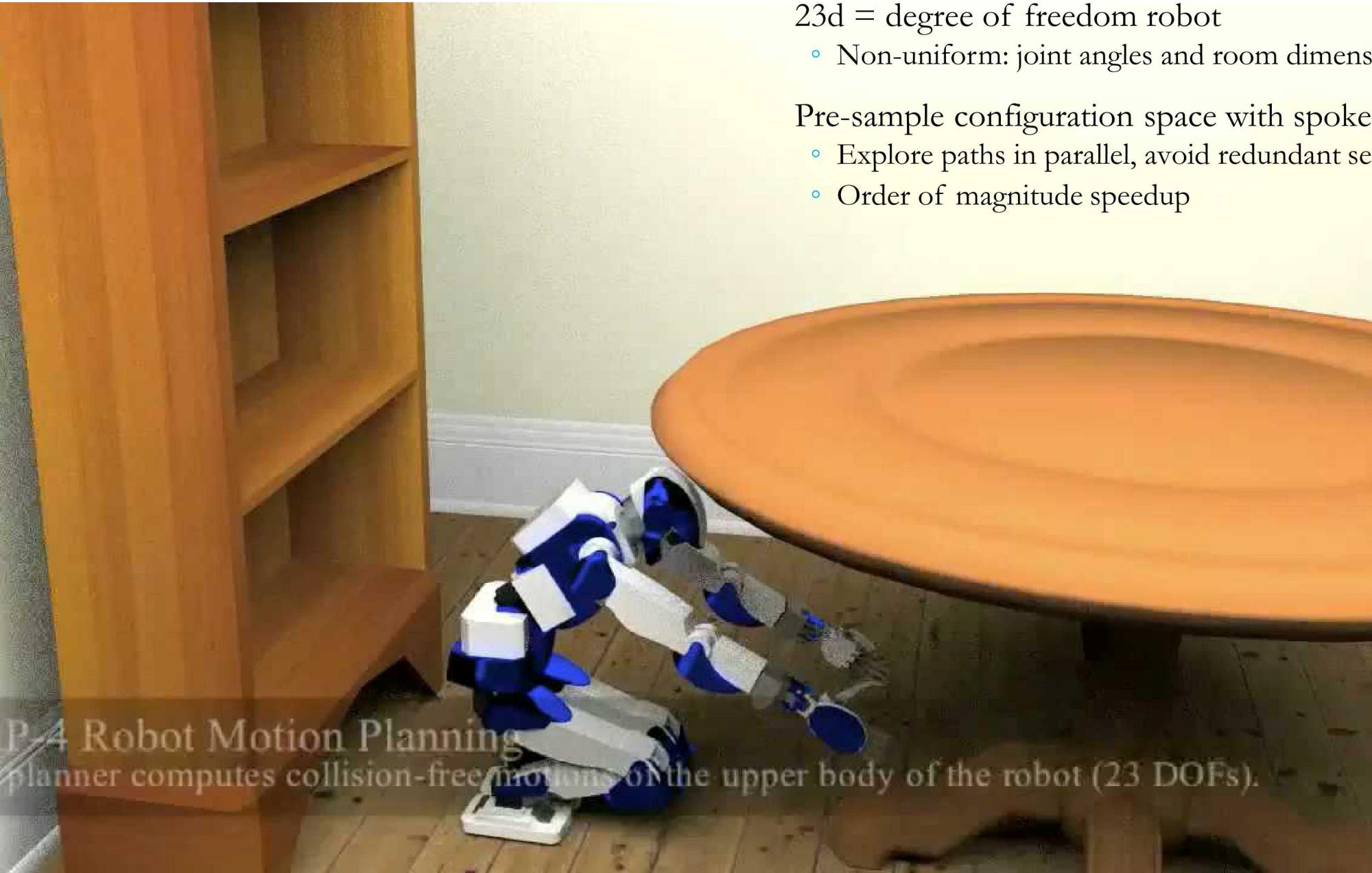


Stratified

Low discrepancy

Spoke-darts
comparable to alternatives

Application: Motion Planning



Path = robot: under table to up
book: table to shelf

23d = degree of freedom robot

- Non-uniform: joint angles and room dimensions

Pre-sample configuration space with spoke-darts

- Explore paths in parallel, avoid redundant searches
- Order of magnitude speedup

Conclusions

Free software

- SpokeDartsPublic on github
<https://github.com/samitch/SpokeDartsPublic>

Recommendations

Two-radii

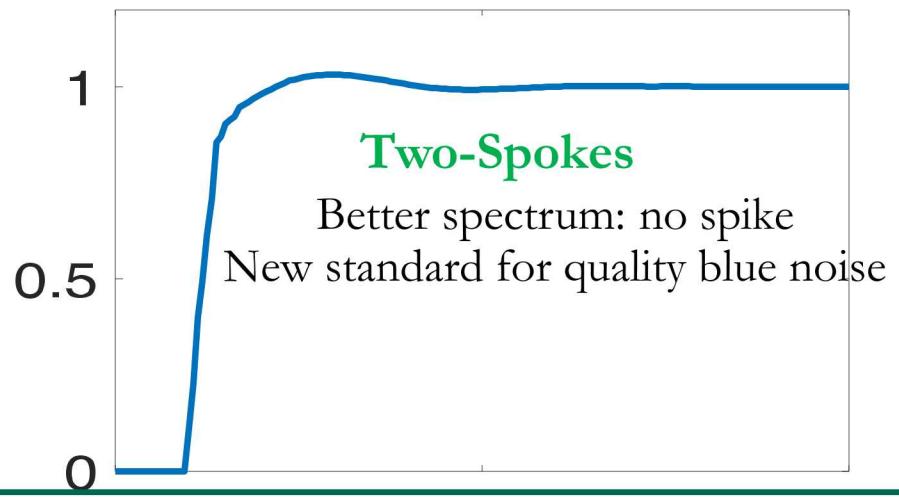
Quality blue-noise in $d < 5$

Spoke-Darts

Blue-noise $d \geq 5$

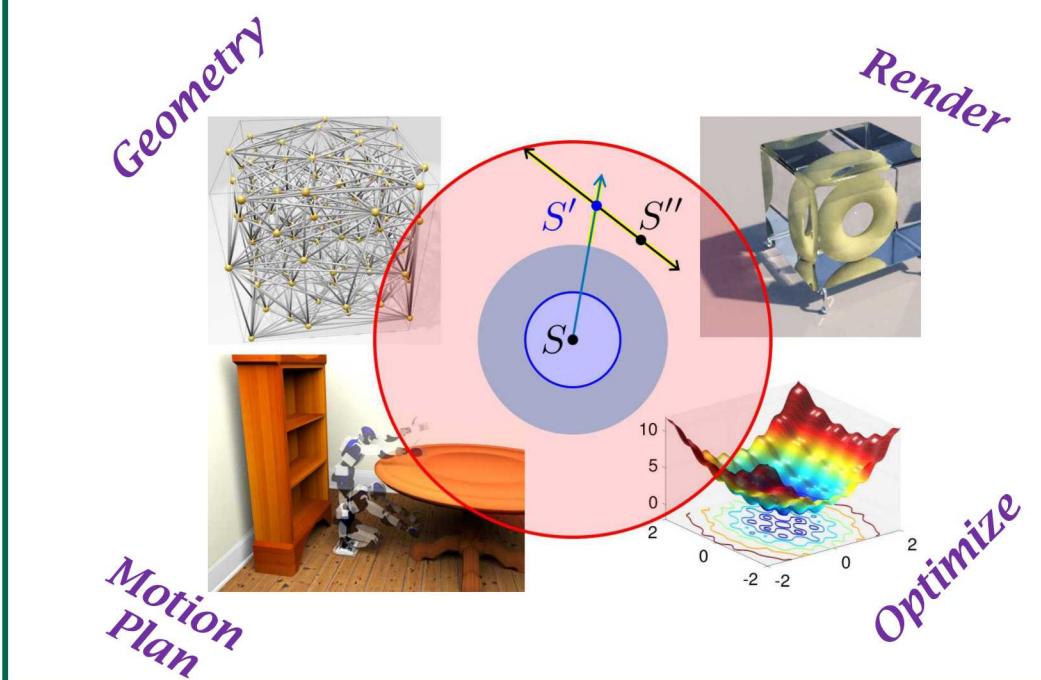
Linear scaling by dimension

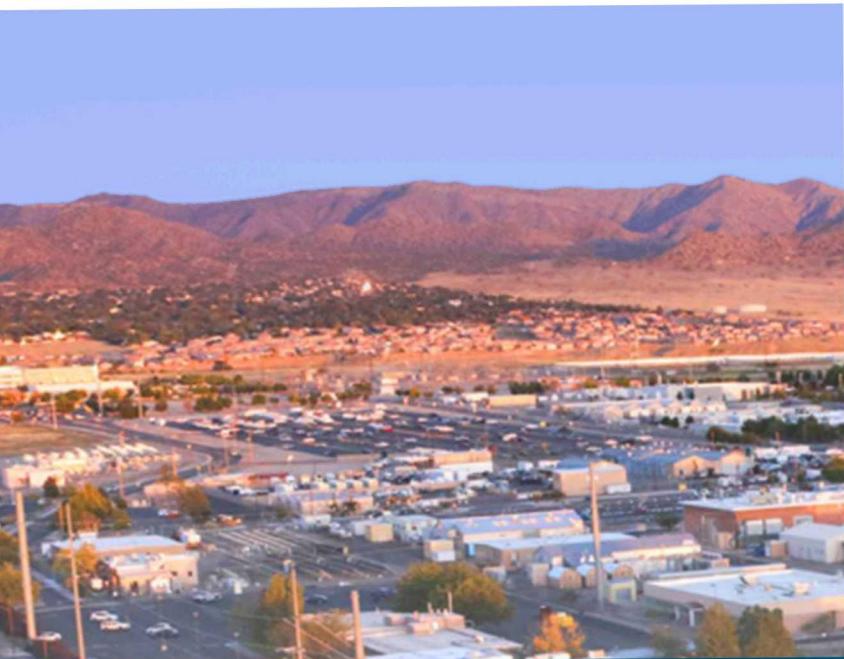
Guaranteed saturation



Open problems

- Faster than $O(d n^2)$ time?
- Our experiments had $r_{\text{cover}} = 2 r_{\text{free}}$
 - Spectrum effects for other ratios?
- Prove non-trivial saturation-bound on Bridson 2007?
- Does saturation matter for high-d rendering, other “Graphics” applications ?





Backup slides

Spoke-Darts

Runtime = $O(dn^2)$, best one can hope for

d

- Linear scaling is perfect: primitives are $O(d)$

n^2

- Finding neighbors in high dimensions expensive
- Each of n samples, find neighbors
- Each of n may have n neighbors
 - Finding them quickly still won't prevent n^2

Spoke-Darts \approx Bridson 2007 due to simple primitives

- Is point in sphere
- Trim segment by sphere

Runtime(Two-Spokes) > Runtime(One-Spoke)

- mostly due to $2 \times$ radius of annulus, many more neighbor disks

Spectra by dimension

