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Motivation
High-dimensional

blue-noise sampling is useful
but hard to generate

8-100D: approximate
Delaunay Graphs
(Voronoi neighbors)

8D: proof-of-concept
path tracing

Social proof of utility:
Bridson SIGGRAPH 2007

cited 200 times

23D: find a path in
robot configuration space 10

5

0
100D: adaptively explore

black-box function 2
to find global minimum

1



3 I Motivation Maximum •
domain-to-sample •

distance •

Goal: algorithm to produce point distributions

Requirements
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0°s(Output: blue-noise, uniform-random except

VIN-o big gaps sample

VNo points too close •Minimum •• • •• •• • 
•

• •
•
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separation • •

•
•

Algorithm
Memory & time scales to high dimensions (e.g. 20D)

✓ Locally adaptive, general domain shapes

Confidence: provable output quality

0.5

o
o 5 10

RDF Radial Distance Function

2 RP Radial Power

1
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4 What's wrong with the algorithms we already have?

SimpleMPS guarantees saturation

runtime & memory = O(n)

efine

divide domain into cubes

while 2cubes, and cube diagonal > machine precision

do (A(d) X #cubes) times:

pick a cube

pick sample from cube

if distance(sample, prior samples) > r

accept sample

discard cube

refine cubes

discard covered cubes

SimpleMPS, 'A Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions," Eurographics 2012.



5 What's wrong with the algorithms we already have?

SimpleMPS guarantees saturation ... but doesn't scale by dimension,

runtime & memory = 0(ndd/2)

efine

Problem: cube poorly approximates sphere
Exponentially worse as dimension increases
More empty boxes, memory limit dz6

• • •

d=1 d=2 d=3 d—>00

V(cube) = 1 V(cube) = 1 V(cube) = 1 V(c) = 1

V(sphere) = 1 V(sphere) = 0.785... V(sphere) = 0.523... V(s) 0—>

Any algorithm that constructs (an approximation of) remaining sample space
is doomed to be exponential-in-d

SimpleMPS, 'A Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions," Eurographics 2012.



6 What's wrong with the algorithms we already have?

Bridson 2007* scales

prior = randomly pop Front

do

pick sample from volume of

(r,2r) annulus of prior

if distance(sample, all

accept sample

add sample to Front

until 30 consecutive rejections

until Front is empty

Bridson 2007* pseudocode
 1

samples) > r

30+ depending

on dimension

*Modified: no background grid, no exponential-in-d complexity.

Bridson 2007, "Fast Poisson disk sampling in arbitrary dimensions." SIGGRAPH '07 sketch.



7 What's wrong with the algorithms we already have?

Bridson 2007* scales ... but doesn't guarantee saturation

runtime & memory = 0 (dri2)

Trivial
in one annulus

Unknown
outside all annuli?

Bridson 2007, "Fast Poisson disk sampling in arbitrary dimensions." SIGGRAPH '07 sketch. _



8 Proposed Spoke-Darts algorithm

Spoke-Darts scales

runtime & memory = 0(c/712)

do

prior = randomly pop Front

do

1

Spoke-Darts
mod from Bridson

pick sample from radial line through

(r,2r) annulus of prior

if distance(sample, all samples) > r

accept sample

add sample to Front

until 12 consecutive rejections

until Front is empty

12 same for all

dimensions

Spoke-Darts for High-Dimensional Blue-Noise Sampling, TOG 72:2, SIGGRAPH 2018. _



9 Proposed Spoke-Darts algorithm

Spoke-Darts scales ... and guarantees saturation

runtime & memory = 0(c/712)

• Proved
probabilistic bound

outside all annuli!

I
•

Spoke-Darts for High-Dirnensional Blue-Noise Sampling, TOG 72:2, SIGGRAPH 2018. _



10 Proof of saturation

Spoke-Darts scales ... and guarantees saturation

Suppose there exists a void

Void

R =  Areashared / Areadisk

One disk
Missed 12 times, so area R is probably small,
Probability of 12 misses = fl(1-R) = (1-R)12 < e(-12R)

t all missed = product of probabilities
e-12 E R_i

t the total surface area is large

void radius



11 Structure of saturation guarantee

m = r( in op* 1)1-1

)
where

/3* re/rf

E chance beta exceeded

TT/ #misses, failed darts

d dimension

pick any three

Magic values for dimensional independence

— ln €

m
1 ,3* = 2 Vd

e.g.

m= 12

 > E = 10-5

probability 1 — 10-5

that 0* < 2 Vd

e.g. rn = 14  > c = 10-6
m = 30  > c = 10-13

I
1

I

I•



12 Output Saturation in Practice = better than Bridson
one dimension "for free"

Theory: Beta = constant

Practice: Beta increases and narrows with d
• Narrowing consistent with theory

Sample to its Farthest Voronoi Vertex Distance

„dr
0 5 1 1 5
R/r [0.65,1.17], % 50th=0.932 90th=0.995 98th=1.02

dimension =
Sample to its Farthest Voronoi Vertex Distance

N

Bridson

o

MedianInax33etalcoeršample

2 3 4 5
Sample to its Farthest Voronoi Vertex Distance Sample to its Farthest Voronoi Vertex Distance Sample to its Farthest Voronoi Vertex Distance

0 5 1
R/r [0.79,1.2], % 50th=0.997

o-

u_
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th_
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_
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Sample to its Farthest Voronoi Vertex Distance

1 5 0 5 1 1 5 0 5 1 1 5 0 5 1
90th=1.05 98th=1.08 Rh- [0.92,1.19], % 50th=1.05 9)th=1.09 98th=1.12 R/r [1.02,1.3], % 50th=1.13 90th=1.18 98th=1.21 [1.01,1.3], % 50th=1.12 90th.

5 6
Sample to its Farthest Voronoi Vertex Distance Sample to its Farthest Voro oi Vertex Distance Sample to its Farthest Voronoi Vertex Distance Sample to its Farthest Voronoi

o-
-

_Ai- I-  _,ir 11- ii,_ . A 1-
0 5 1 1 5 0 5 1 1 5 0 5 1 1 5 0 5 1 1 5

R/r [0.67,1.25], % 50th=0.996 90th=1.05 98th=1.08 R/r [0.89,1.23], % 50th=1.06 90th=1.1 98th=1.13 R/r [1,1.21], % 50th=1.1 90th=1.13 98th=1.15 R/r [1.07,1.33], % 50th=1.18 90th=1.22 98th=1.25

1 5
1.16 98th=1.19

Jertex Distance

c
a)
o-

-

0 5 1 1 5
Rh- [1.07,1.31], % 50th=1.17 90th=1.21 98th=1.23



Sharp spike at radius!

13 Output Randomness — Blue noise (annuli inner-radius)
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14 Output Randomness — Blue noise

Eliminate spike
o Post-processing optimization* = expensive, 2d

o Sample non-uniformly
, By spoke-length? Uniform by swept volume? Worse!

, Any sharp local rule —> global discontinuity 0

Good idea
O rcover max domain-point-to-sample distance

o rfree min sample-to-sample distance

Bad idea

rfree — rcover '' B = 1
Traditional goal of Maximal Poisson-disk Sampling!

Serves no purpose

* Blue Noise Sampling with Controlled Aliasing, TOG 32:3, 2013.

;poke-Darts

0
o 2 4

_.,-"•._....-----. 

oo 200 400



1 5 Output Randomness — Blue noise

Eliminate spike — we solved in 2012
° t Two-radii : rfree # rcover
• Small blue rfree minimum sample separation

O Large green reover maximum domain-to-sample

0 Unique coverage: accept only if covers white

gr‘n covers
e'white

reject, inside a blue disk

0 Two-spokes mimic Two-radii
O 1st spoke, trim by large green
O 2nd spoke, trim by small blue

a)
CT

L

t Variable Radii Poisson-Disk Sampling, Canadian Conf. on Comp. Geometry (CCCG) 2012.

0

•

;poke-Darts

O 2 4

200 400



16 Output Randomness — Blue noise

Eliminate spike
0 t Two-radii : rfree # rcover

, Small blue rfree minimum sample separation

O Large green reover maximum domain-to-sample

° Unique coverage: accept only if covers white

t Variable Radii Poisson-Disk Sampling, CCCG 2012.

0 Two-spokes mimic Two-radii
O 1st spoke, trim by large green
O 2nd spoke, trim by small blue

0

0.5
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17 Output Randomness — Blue noise

Eliminate spike
0 t Two-radii : rfree # rcover

, Small blue rfree minimum sample separation

O Large green reover maximum domain-to-sample

° Unique coverage: accept only if covers white

t Variable Radii Poisson-Disk Sampling, CCCG 2012.

0 Two-spokes mimic Two-radii
O 1st spoke, trim by large green
O 2nd spoke, trim by small blue
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18 Output Randomness — Blue noise

Eliminate spike
0 t Two-radii : rfree # rcover

, Small blue rfree minimum sample separation

O Large green reover maximum domain-to-sample

° Unique coverage: accept only if covers white

t Variable Radii Poisson-Disk Sampling, CCCG 2012.

0 Two-spokes mimic Two-radii
O 1st spoke, trim by large green
O 2nd spoke, trim by small blue
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19 Output Randomness — Blue noise

Eliminate spike
0 t Two-radii : rfree # rcover

, Small blue rfree minimum sample separation

O Large green reover maximum domain-to-sample

° Unique coverage: accept only if covers white

t Variable Radii Poisson-Disk Sampling, CCCG 2012.

0 Two-spokes mimic Two-radii
O 1st spoke, trim by large green
O 2nd spoke, trim by small blue
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20 Output Randomness — Blue noise

Eliminate spike
0 t Two-radii : rfree # rcover

, Small blue rfree minimum sample separation

O Large green reover maximum domain-to-sample

° Unique coverage: accept only if covers white

t Variable Radii Poisson-Disk Sampling, CCCG 2012.

0 Two-spokes mimic Two-radii
O 1st spoke, trim by large green
O 2nd spoke, trim by small blue
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21 Output Randomness — Blue noise

Eliminate spike
0 t Two-radii : rfree # rcover

, Small blue rfree minimum sample separation

O Large green reover maximum domain-to-sample

° Unique coverage: accept only if covers white

t Variable Radii Poisson-Disk Sampling, CCCG 2012.

0 Two-spokes mimic Two-radii
O 1st spoke, trim by large green
O 2nd spoke, trim by small blue

0
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22 Output Randomness — Blue noise
MPS (One-Radii) /3* = 1

Two-Radii 0* = 2 i
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23 Application:Approximate Delaunay Graph

Trim line-spokes to find "significant" neighbors in Voronoi diagram

•

•

New ph e• ge to
sig icant neighbor

3d rendering of 8d graph



24 Application: Global Optimization

DIRIH,CT = Dlviding RECTangles

O Divide space by rectangles

O Refine large rectangles with
small sample values

Opt-Darts

Divide space by Voronoi cells (implicit only)

O Refine large cells with small sample values
O Approx. Delaunay graph defines "large" cells
O Spoke-darts selects refinement sample

Opt-Darts: 5-25x speedup over DIRECT

• Increasing speedup with d
O Rectangle bad approximation of Voronoi cell

O More-random sample patterns
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• %

\
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25 Application: Rendering

Stratified

Mitsuba ray tracing

0 4D = 2 screen x 2 lens

o 16 samples per pixel

Low discrepancy
Spoke-darts

comparable to alternatives

1
1



26 Application: Rendering
Mitsuba ray tracing
. 8D = 2 sky-emitter x 2 screen x 2 x 2 bounce

c 256 samples per pixel

Stratified Low discrepancy
Spoke-darts

comparable to alternatives



27 Application: Motion Planning

- 4 Robot Motion Plann
in ruler computes collision-free he upper body of the robot (23 DOFs).

Path = robot: under table to up
book: table to shelf

23d = degree of freedom robot
Non-uniform: joint angles and room dimensions

Pre-sample configuration space with spoke-darts
Explore paths in parallel, avoid redundant searches

Order of magnitude speedup

1.e

•



28 I Conclusions

Free software

• SpokeDartsPublic on github
https://github.com/samitch/SpokeDartsPublic

0.5

Recommendations
Two-radii

Quality blue-noise in d < 5

Spoke-Darts
Blue-noise d 5

Linear scaling by dimension
Guaranteed saturation

Two-Spokes
Better spectrum: no spike

New standard for quality blue noise

• *ex? C CR
ei. *

Center for Computing Research

CISandia National Laboratories

Open problems

Faster than O(d n2) time?

Our experiments had rcover = 2 rfree

Spectrum effects for other ratios?

Prove non-trivial saturation-bound on Bridson 2007?

• Does saturation matter for high-d rendering,
other "Graphics" applications ?

j16

8‘-0/0
- 1



Backup slides

Spoke-Darts



30 I Runtime = 0 (dn2) , best one can hope for

d
Linear scaling is perfect: primitives are O(d)

n2

• Finding neighbors in high dimensions expensive

• Each of n samples, find neighbors

• Each of n may have n neighbors

• Finding them quickly still won't prevent n2

Spoke-Darts z Bridson 2007 due to simple primitives
• Is point in sphere

Trim segment by sphere

Runtime( Two-Spokes ) > Runtime( One-Spoke )

mostly due to 2 x radius of annulus, many more neighbor disks



31 Spectra by dimension
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