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Why Uncertainty Quantification?

What? Determine variability, distributions, statistics of code outputs, given uncertainty in
input factors; put error bars on simulation output

Why? Tactically, assess likelthood of typical or extreme outcomes. Given input
uncertainty...

* Determine mean or median performance of a system

* Assess variability or robustness of model response

* Find probability of reaching failure/success criteria (reliability metrics)

» Assess range/intervals of possible outcomes 2T Model —
+ Data

Test

Ultimately, use simulations for risk-informed decision making,

Temperature [deg C]

e.g., assess how close uncertainty-endowed code predictions are to
* Experimental data (validation, 1s model sufficient for the intended application?)

* Performance expectations or limits (quantification of margins and uncertainties;
QMU)



A Practical Process for UQ

1.Determine UQ analysis goals

 |dentify the key model responses (quantities of interest)

« What kind of statistics or metrics do we want on them?

2.ldentify potentially influential uncertain input parameters

* Includes parameters that influence trend in response as well as those that
iInfluence variability in response

3.Characterize input uncertainties and map them into Dakota variable

specifications

4 What are the model characteristics/behaviors?

« Simulation cost, model robustness, input/output properties such as kinks,
discontinuities, multi-modal, noise, disparate regimes

5.Select a method appropriate to variables, goal, and problem

6.Set up Dakota input file and interface to simulation

7.Run study and interpret the results Dakota Software Training, SAND2016-1198PE



Key Statistics ldeas: Moments of Random variables

Understanding the following basic concepts will help with Dakota UQ
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Key Statistics ldeas: correlation coefficients

« Correlation coefficients are used in statistics to
measure how strong a relationship is between
two variables. There are several types of

correlation coefficient: Pearson’s correlation (also N .

called Pearson’s R) is a correlation coefficient r=0

commonly used in linear regression :
 Correlation coefficient formulas are used to find L

how strong a relationship is between data. The x
formulas return a value between -1 and 1

No correlation °

v'1 indicates a strong positive relationship.
v'-1 indicates a strong negative relationship.
v A result of zero indicates no relationship at all.

Negative correlation

»




Dakota Uncertainty Quantification

* Dakota UQ methods primarily focus on forward propagation of parametric
uncertainties through a model: determine uncertainty in model output, given

uncertainty in input parameters
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* Example uncertain inputs: physics parameters, material properties
boundary/initial conditions, operating conditions, model choice, geometry
* (an also perform “inverse UQ” to determine uncertainties in parameters

consistent with data



Selecting a UQ method

Consider variable characterizations, model properties, ultimate UQ
goal to choose a method

Sampling (Mente Carlo, LHS) Stochastic Expansions
v" Robust, understandable, and applicable to v" Surrogate models tailored to UQ for continuous
most any model variables

v' Slow to converge v" Highly efficient for smooth model responses
v Moments, PDF/CDF, correlations, min/max v Moments, PDF/CDF, Sobol indices

Reliability Epistemic
* Goal-oriented; target particular response or « Non-probabilistic methods

probr:}bﬂity levels * Generally applicable, can be costly when no
* Efficient local (require derivatives) / global surrogate

variants .

Belief/plausibility, intervals, probability of

* Moments, PDF/CDF, importance factors frequency



Monte Carlo Sampling (MCS)

Sampling methods draw (pseudo-random) realizations from
the specified input distributions, run the simulation, and

calculate sample statistics:

v Sample moments, min/max, empirical PDF/CDF, based on ensemble of
calculations

Robust even for complex, poorly-behaved simulations
Slow, though reliable convergence: O(N-12), (in theory)
independent of dimension

Latin Hypercube Sampling (LHS)

Dakota has sample type options random and lhs

v'LHS is recommended when possible

v'Better convergence rate and stability across replicates
v’ Any follow-on studies must double the sample size
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v'LHS (McKay and Conover): stratified random sampling among

equal probability bins for all 1-D projections of an n-
dimensional set of samples



Reliability Methods

Goal-oriented methods that focus on regions of probability or response space of interest,
for example:

* What temperature 1s achieved with 99% probability?
* What 1s the probability of exceeding U_;..;?

Naive sampling can be ineffective / under-resolved

* Run 10,000 samples, only 5 are in relevant region

N
7

Need to specify to Dakota Ucriricalml U
* Probability or response threshold(s) of interest using probability levels, response levels
Method choice

* Mean-value: best for linear problems, normally distributed parameters, efficient derivatives;
specify local reliability (with no mpp search)

* MPP: computes most probable point of failure when failure boundary is near linear or
quadratic; specify local reliability (with an mpp search option)

* Adaptive: computes probability of failure for complicated failure boundaries; specify
global reliability



Cubic Polynomial Surrogate
1.2

Stochastic Expansions |50

O training data

surrogate 4

General-purpose UQ methods that build UQ-
tailored polynomial approximations of the output
responses

Perform particularly well for smooth model
responses

Resulting convergence of statistics can be
considerably faster than sampling methods

Need to specify the Dakota method:

v'Polynomial Chaos (polynomial chaqsl):
specify the ty{ge of orthogonal polynomials and
coefficient estimation scheme, e.g., sparse grid
or linear regression.

» Stochastic Collocation (stoch_collocation):
specify the type of polynomial basis and the
points at which the response will be _
Interpolated; supports piecewise local basis

(x,)

Simulafions



Dakota UQ Methods Summary

Character Method class Problem character Variants
aleatory  probabilistic sampling nonsmooth, multimodal, modest  Monte Carlo, LHS,
cost, #variables importance
local reliability smooth, unimodal, more variables, mean value and MPP,
failure modes FORM/SORM
global reliability nonsmooth, multimodal, low EGRA
dimensional
stochastic expansions nonsmooth, multimodal, low polynomial choas,
dimension stochastic collocation
Epistemic | Interval estimation sample intervals global/local optimization,
sampling
evidence theory belief structures global/local evidence
both nested UQ mixed aleatory/epistemic nested




UQ results with Dakota
MCS with 100,000 samples

N(0.8,0.1)  N(0.80.1) 1437 Flow in the fluidized bed

e ,, = particle-particle restitution co-efficient

e wn = Particle-wall restitution co-efficient

UQ results with PSUADE

MCS with 100,000 samples

Response function (Bed height) =
= 17.026 —7.767 ey, — 0.46428e,, , +

Case Input1 Input 2 Bed height Bed height 2 o n 2
# eon € wn Sample mean Sample Std deviation ARERS Epac LGS g S 20200 B
1 N(0.8,0.1) N(0.8,0.1) 14.37 1.7e-1 Surrogate model

2 N(0.8,0.1) N(0.8,0.05)  14.37 1.5e-1

Gel, A, Garg, R., Tong, C., Shahnam, M. and Guenther, C., 2013. Applying uncertainty quantification to multiphase flow
computational fluid dynamics. Powder technology, 242, pp.27-39.



UQ results with Dakota
MCS with 100,000 samples

e ,, = particle-particle restitution co-efficient
e ., = Particle-wall restitution co-efficient

N(0.8,0.1)  N(0.8,0.1)  14.374

Response function - bed height(h) =

=17.026 — 7.767 e,, — 0.46428e,,, +
5.6644 efn + 0.18379 e, , eyn + 0.20556 ey, n

N(0.8,0.1)  N(0.8,0.05) 14.372

PCE (order =5) with different standard deviation specifications for input parameter distributions.

N(0.8,0.1)  N(0.8,0.1)  14.374

N(0.8,0.1)  N(0.8,0.05) 14.372




UQ results with Dakota
MCS- sample size study

100,000  N(0.8,0.1) N(0.8,0.1)  14.374 1.65e-01
10,000 N(0.8,0.1) N(0.8,0.1)  14.374 1.65€-01
1000 N(0.8,0.1) N(0.8,0.1)  14.374 1.65€-01
500 N(0.8,0.1) N(0.8,0.1)  14.374 1.65e-01
200 N(0.8,0.1) N(0.8,0.1)  14.374 1.66e-01
100 N(0.8,0.1) N(0.8,0.1)  14.376 1.73e-01
50 N(0.8,0.1) N(0.8,0.1)  14.372 1.59¢-01
20 N(0.8,0.1) N(0.8,0.1)  14.363 1.40e-01
10 N(0.8,0.1) N(0.8,0.1)  14.356 1.32e-01




Implementation of MFiX in Dakota

wrapper is created. This wrapper facilitates
interaction between Dakota and MFIX.

« In order to create an interface between the | L]
two independent software packages, a c++ i

* In the current workflow model, Dakota is the
primary driver, i.e., Dakota performs the
preparations, and then performs the
uncertainty quantification via the response
functions returned from the wrapper for
MFiX results. In a separate input file for
Dakota, the user prescribes the variables with
uncertainty and a range of values to
determine the upper and lower bounds.

» Quantities of interest or response variables
with the type of UQ analysis to be performed
are also specified in this input file.
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UQ toolkit
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DAKOTA Output Input [N IV
Response variables variables parameters &
functions MFIX -
Simulation Code

Schematic of a loosely-coupled or “black-box’ interface
between Dakota and MFiX — a multiphase CFD solver

Design

variables




Implementation of MFiX in Dakota

 The C++ wrapper creates separate work directories for each independent run and
modifies the input file for MFiX simulations by substituting new set of values for the
variables that were prescribed by the user to be treated as uncertain or varied if employing
design of experiments. The values for these variables are determined based on several
factors such as the sampling method chosen, number of samples, upper and lower bounds
and the probability distribution function prescribed for the uncertain variable(s) in the
Dakota input file.

 The Wrapper launches MFiX executable for each sample independently

 Once the simulation is completed, the response functions values from MFiX is
returned to Dakota for uncertainty analysis such as sensitivity study, or propagating
uncertainties to determine their effect on the quantities of interest.



Flow in the fluidized bed

Central jet fluidized bed using DEM
simulations.

The air is injected at a speed of 4200
cm/s through a narrow inlet having
width of 1 cm and located exactly at
the geometric center of the bottom
wall.

The air exits to atmospheric conditions
at the top. No-slip boundary
conditions are specified for the gas-
phase velocity at the walls.

cells having width of 1 cm and height
of 2 cm, resulting in a total of 675
(=15x45) computational cells.

The bed is initialized with 217.15 g of
particles with a diameter of 0.4 cm and
density of 2.7 g/cm3, resulting in total
of 2400 spherical particles.

bed height (cm)

15.6

15.0 |

14.4
13.8
13.2

Average bed height = 14.3808 cm

mstantaneous

Il !H”'}H”HHH'\'IH I

averaged —— -

‘l 11“.)11“1

H"l

time (sec)

parameter value e et Ao

Particle-particle restitution 0.80
co-efficient

Particle-wall restitution 0.80
co-efficient

Time: 0.10

EP_g
1.00

—0.85

—0.70



Dakota-MFiX results: Flow in a fluidized bed

Input 1 -e o Input 2-e wh € o = particle-particle restitution co-efficient
N(0.8,0.04) N(0.8,0.04) € yn = particle-wall restitution co-efficient
Response function - ) N, = Number of particles (=2400)
Bed height = ZY /Np Y = y- coordinate of nt" particle's position at time t
PCE, Order =5 LHS, sample size =500
sample size =25
Mean 14.4081 14.4171
Std 3.6230e-02 3.4146e-02

Partial Correlation Matrix between input and output:
response_fn_1
x1 5.0089e-01
x2 -2.2879e-01



Dakota-MFiX results: Flow in a fluidized bed

Normal distribution, LHS, # of uncertain input variables = 9

D, Ujet  ©pn €wn KN KN W MEW MEW_ i
(cm) (cm/s) (g/s?) (g/s?) W (g/ cm s)
mean 0.34 4200 0.8 0.8 1000000 1000000 0.1 0.1 0.00018
std 0.0297 367.5 0.07 0.07 87500 87500 0.0087 0.0087 0.00001575

D, = Particle diameter

Uinet = Velocity of the fluidizing agent at the inlet

€ = particle-particle restitution co-efficient Response function Ny

& win = particle-wall restitution co-efficient 1. Average bed height Hp(t) = Z Y™ /N,

KN = Particle — particle normal collision spring constant | | n=l

KN_W = Particle — wall normal collision spring constant 2. Maximum pressure difference across the bed
MEW = Particle - particle friction co-efficient

MEW _ W = particle — wall friction co-efficient
Uy = Viscosity of the fluidizing agent at the inlet



Dakota-MFiX results: Flow in a fluidized bed

# of uncertain input variables = 9

mean 0.34 4200 0.8 0.8 1000000 1000000 0.1 0.1 0.00018
Response function Np
1. Average bed height H,(t) = z Y™ /N, 2. Maximum pressure difference across the bed
n=1
T e —
108 P instantaneous ——— - 5 7 instantaneous |
g i averaged ] % 18 -_ g __
E 120 hl’““”l']l[ M”l[(ll i LAl “{{HH |“y||m|h|xl IJIJ'J‘II"‘ [“[!l’ i A AL l A, A
& VI Uil i g 'U‘“M i W 'l i bt I 'I I I
B 9.5 —_ g 14 |
< I ] 7] L
90_....|....|....|....|....|....|...._ @ 12:....|....|....|....|....|....|....:
5 10 15 20 25 30 35 40 = 5 10 15 20 25 30 35 40
time (sec) time (sec)

Bed height at t=40 is 9.868 cm Max pressure difference at t=40 is 15.991 k dn/cm?



Response function — bed height

Normal distribution | HS, sample size = 500

Mean:;

Std:

Partial Correlation Matrix between

9.6827
1.9529

input and output:

DP
Uinlet

€ on

€ w,n

KN
KN_W
MEW

Bed height
9.87853e-01
7.65915e-01
1.26841e-03
-2.19558e-02
-5.44667e-02
-4.08984e-02
-1.03671e-02

MEW W 6.74702e-02

Hg

-1.76986e-02

Probability

0.25

0.20

0.15

0.10

0.05

0.00

o0,

3 6 9 12 15
Bed height (cm)

Cumulative probability

1.0

0.8

0.6

0.4

0.2

0.0

6 9 12
Bed height (cm)

15




Response function — Max pressure difference across the bed

Normal distribution | HS, sample size = 500

Mean: 1.5857e+04
Std: 5.2590e+03
Partial Correlation Matrix between
input and output:
Pressure drop
D, 9.81640e-01
Ui o -4.91593e-01
€ on 5.73839e-02
€ wn 1.11189e-01
KN -7.00940e-02
KN W -1.14437e-02
MEW 3.87739e-02
MEW W  3.50937e-02
U, B -2.23406e-02

Probability

0.12

0.10

0.08

0.06

0.04

0.02

0.00

AU

0

5 10 15 20 25 30
pressure drop (k dyn/cm?)

Cumulative probability

1.0

0.8

0.6

0.4

0.2

0.0

0

5 10 15 20 25 30
pressure drop (k dyn/cm?)
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Characterizing Uncertainties to Dakota

Must characterize each variable’s uncertainty and

(optionally) any correlation between pairs of » _
variables. Need not be normal (or uniform)! I Normal o _
o A=10

* May require processing data with math/stats |
tool to fit distributions, performing literature‘zg T
searches, or querying experts

Poisson

02—

0.0 p—=

Dakota uncertain variable types:

* Aleatory continuous: normal, lognormal, e o | _

uniform, loguniform, triangular, exponential, | [ | ‘esnorma %1 histogram
[ i I — o=10

L3

beta, gamma, Gumbel, Frechet, Weibull, | I\ — o= 1 = o

{1 \ a=1/2

20

' — o=1/4 1 =

histogram ) / TR
 Aleatory discrete: Poisson, binomial, negative | | ] .
binomial, hypergeometric, histogram point s

|

Epistemic: continuous interval, discrete
interval, discrete set 0w s 1o s




Response function — bed height

Normal distribution

Mean: 9.6826836828e+00 9.6850171779e+00 9.6762857192e+00
Std: 1.9528769373e+00 1.9410264354e+00 1.9423379855e+00

LHS, sample size = 500 gaussian_process Global nueral
surfpack network

-0.112585 + 0.990706*x0 + 0.189103*x1 +
0.00483635*x2 -0.00142171*x3 -
0.00356067*x4 + 0.000614168*x5 -
0.00888153*x6 + 0.00596127*x7
0.00369133*x8 + 0.491255*x0"2 -
0.0590336"x172 + 0.0806555*x2"2 -
0.00036364*x3"2 - 0.0214853*x4"2 -
0.00213713*x5"2 -0.0434566*x6"2 +
0.0396718*x7"2 + 0.0211821*x8"2

9.6835642134e+00
1.9448349902e+00

Global mars

9.6816878179e+00
1.9446660490e+00



