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Why Uncertainty Quantification?
What? Determine variability, distributions, statistics of code outputs, given uncertainty in
input factors; put error bars on simulation output

Why? Tactically, assess likelihood of typical or extreme outcomes. Given input
uncertainty...
• Determine mean or median performance of a system
• Assess variability or robustness of model response
• Find probability of reaching failure/success criteria (reliability metrics)
• Assess range/intervals of possible outcomes

Ultimately, use simulations for risk-informed decision making,
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e.g., assess how close uncertainty-endowed code predictions are to 

Test
Data

Temperature [leg .C]

• Experimental data (validation, is model sufficient for the intended application?)
• Performance expectations or limits (quantification of margins and uncertainties;
QMU)



A Practical Process for UQ

1.Determine UQ analysis goals
• Identify the kuy muuel respurises (quantities of interest)
• What kind of statistics or metrics do we want on them?
2.Identify potentially influential uncertain input parameters
• iriumues parameters that influence treriu in response as well as those that

influence variability in response
3.Characterize input uncertainties and map them into Dakota variable
specifications
4.What are the model characteristics/behaviors?
• b 1 mulation cost, moaei robustness, input/output properties such as kinks,

discontinuities, multi-modal, noise, disparate regimes
5.Select a method appropriate to variables, goal, and problem
6.Set up Dakota input file and interface to simulation
7.Run study and interpret the results Dakota Software Training, SAND2016-1198PE



Key Statistics Ideas: Moments of Random variables

Understanding the following basic concepts will help with Dakota UQ

Concept of a random variable X

Mean (m,,u): expected or average value of X,
e.g., mean of sample of size N:
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Standard deviation (s, a): measure of dispersioi
/ variability of X:
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Key Statistics Ideas. correlation coefficients

• Correlation coefficients are used in statistics to
measure how strong a relationship is between
two variables. There are several types of
correlation coefficient: Pearson's correlation (also
called Pearson's R) is a correlation coefficient
commonly used in linear regression

• Correlation coefficient formulas are used to find
how strong a relationship is between data. The
formulas return a value between -1 and 1

N/1 indicates a strong positive relationship.

N/-1 indicates a strong negative relationship.

N/A result of zero indicates no relationship at all.
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Dakota Uncertainty Quantification

• Dakota UQ methods primarily focus on forward propagation of parametric
uncertainties through a model: determine uncertainty in model output, given
uncertainty in input parameters

Uncertainty in input variables u

[
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]
,

Probability densities Intervals

. [ UQ method i 

Uncertainty in output
f(u)
variability,
probabilities,
intervals (ranges),
belief/plausibility, etc.

• Example uncertain inputs: physics parameters, material properties
boundary/initial conditions, operating conditions, model choice, geometry

• Can also perform "inverse UQ" to determine uncertainties in parameters
consistent with data



Selecting a UQ method

Consider variable characterizations, model properties, ultimate UQ
goal to choose a method

Sampling (Monte Carlo, LHS)
•( Robust, understandable, and applicable to

most any model
•( Slow to converge
s( Moments, PDF/CDF, correlations, min/max

Reliability
Goal-oriented; target particular response or
probability levels

• Efficient local (require derivatives) / global
variants

• Moments, PDF/CDF, importance factors

Stochastic Expansions
7 Surrogate models tailored to UQ for continuous

variables
•( Highly efficient for smooth model responses
•( Moments, PDF/CDF, Sobol indices

Epistemic
Non-probabilistic methods

• Generally applicable, can be costly when no
surrogate

• Belief/plausibility, intervals, probability of
frequency



Monte Carlo Sampling (MCS) Ensemble
of inputs

Sampling methods draw (pseudo-random) realizations from
the specified input distributions, run the simulation, and

u1
calculate sample statistics:

s( Sample moments, min/max, empirical PDF/CDF, based on ensemble of
calculations U2

Robust even for complex, poorly-behaved simulations
Slow, though reliable convergence: O(N-112), (in theory) U3

independent of dimension

Latin Hypercube Sampling (LHS)
Dakota has sample_type options random and lhs

1(LHS is recommended when possible

1(Better convergence rate and stability across replicates

1(Any follow-on studies must double the sample size

1(LHS (McKay and Conover): stratified random sampling among
equal probability bins for all 1-D proj ections of an n-
dimensional set of samples
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Reliability Methods

Goal-oriented methods that focus on regions of probability or response space of interest,
for example:
• What temperature is achieved with 99% probability?
• What is the probability of exceeding Ucriticai?

Naïve sampling can be ineffective / under-resolved
• Run 10,000 samples, only 5 are in relevant region
Need to specify to Dakota

Ucrirical U

• Probability or response threshold(s) of interest using probabili levels, response levels
Method choice
• Mean-value: best for linear problems, normally distributed parameters, efficient derivatives;

specify local _reliability (with no mpp_search)
• MPP: computes most probable point of failure when failure boundary is near linear or

quadratic; specify local _reliability (with an mpp_search option)
• Adaptive: computes probability of failure for complicated failure boundaries; specify

global _reliability



Cubic Polynomial Surrogate

Stochastic Expansions
General-purpose UQ methods that build UQ-
tailored polynomial approximations of the output
responses
Perform particularly well for smooth model
responses
Resulting convergence of statistics can be
considerably faster than sampling methods
Need to specify the Dakota method:
s(Polynomial Chaos (polynomial chaos):
specify the type of orthogonal polynomiars and
coefficient estimation scheme, e.g., sparse grid
or linear regression.

• Stochastic Collocation (stoch collocation):
specify the type of polynomial bsis and the
points at which the response will be
interpolated; supports piecewise local basis

1.2

1

0.8

0.6

0.4

0.2
-1

0 6

10
1

10
-2

10'

32 1 0 -4

10
-s

---- truth

training data
surrogate

-0.5 0
x1

0.5 1

—.a— SC TP0 uniform E
SC TP0 adaptive

.L SC SSG uniform -
 SC SSG adaptive

10
-s

101 102 103 
.03,1

Simulations
105



Dakota UQ Methods Summary

Character Method class
r
Problem character Variants

aleatory probabilistic sampling nonsmooth, multimodal, modest
cost, #variables

Monte Carlo, LHS,
importance

local reliability smooth, unimodal, more variables,
failure modes

mean value and MPP,
FORM/SORM

global reliability nonsmooth, multimodal, low
dimensional

EGRA

stochastic expansions nonsmooth, multimodal, low
dimension

polynomial choas,
stochastic collocation

Epistemic Interval estimation sample intervals global/local optimization,
sampling

evidence theory belief structures global/local evidence

both nested UQ mixed aleatory/epistemic nested



UQ results with Dakota
MCS with 100,000 samples

Cas
e #

Inputl
e pn

input 2
e w,n

Bed height
Sample mean

Bed height
Sample Std deviation

1 N(0.8,0.1) N(0.8,0.1) 14.37 1.7e-01

2 N(0.8,0.1) N(0.8,0.05) 14.37 1.6e-1

UQ results with PSUADE
MCS with 100,000 samples
Case
#

Inputl
e pn

Input 2
e w,n

Bed height
Sample mean

Bed height
Sample Std deviation

1 N(0.8,0.1) N(0.8,0.1) 14.37 1.7e-1

2 N(0.8,0.1) N(0.8,0.05) 14.37 1.5e-1

Flow in the fluidized bed
e p,ri = particle-particle restitution co-efficient

e wn = Particle-wall restitution co-efficient

Response function (Bed height) =

= 17.026 — 7.767 emn — 0.46428ew,n +
5.6644 eAn + 0.18379 emn ewx + 0.20556 eiii,n

Surrogate model

Gel, A., Garg, R., Tong, C., Shahnam, M. and Guenther, C., 2013. Applying uncertainty quantification to multiphase flow
computational fluid dynamics. Powder technology, 242, pp.27-39.



UQ results with Dakota
MCS with 100,000 samples 
Case lnputl input 2 Bed height Bed height
# e pn e wm Sample mean Sample Std deviation

1 N(0.8,0.1) N(0.8,0.1) 14.374 1.7e-01

2 N(0.8,0.05) N(0.8,0.1) 14.332 7.5e-2

3 N(0.8,0.1) N(0.8,0.05) 14.372 1.6e-1

4 N(0.8,0.05) N(0.8,0.05) 14.330 7.5e-2

e p,n = particle-particle restitution co-efficient

e wn = Particle-wall restitution co-efficient

Response function - bed height(h) =

= 17.026 — 7.767 emn — 0.46428ew,n +
5.6644 eii,n + 0.18379 emn ewm + 0.20556 ei247,n

PCE (order =5) with different standard deviation specifications for input parameter distributions.
Case lnputl input 2 Bed height Bed height
# e pn e wm Sample mean Sample Std deviation

1 N(0.8,0.1) N(0.8,0.1) 14.374 1.7e-01

2 N(0.8,0.05) N(0.8,0.1) 14.332 7.5e-2

3 N(0.8,0.1) N(0.8,0.05) 14.372 1.6e-1

4 N(0.8,0.05) N(0.8,0.05) 14.330 7.5e-2



UQ results with Dakota
MCS— sample size study

samples Inputl
e p,n

Input 2
e wn

h
mean

h
Std deviation

100,000

10,000

1000

500

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

14.374

14.374

14.374

14.374

1.65e-01

1.65e-01

1.65e-01

1.65e-01

200

100

50

20

10

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

N(0.8,0.1)

14.374

14.376

14.372

14.363

14.356

1.66e-01

1.73e-01

1.59e-01

1.40e-01

1.32e-01



Implementation of MFiX in Dakota

• In order to create an interface between the
two independent software packages, a c++
wrapper is created. This wrapper facilitates
interaction between Dakota and MFIX.

• In the current workflow model, Dakota is the
primary driver, i.e., Dakota performs the
preparations, and then performs the
uncertainty quantification via the response
functions returned from the wrapper for
MFiX results. In a separate input file for
Dakota, the user prescribes the variables with
uncertainty and a range of values to
determine the upper and lower bounds.

• Quantities of interest or response variables
with the type of UQ analysis to be performed
are also specified in this input file.
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Schematic of a loosely-coupled or "black-box" interface

between Dakota and MFiX — a multiphase CFD solver



Implementation of MFiX in Dakota

• The C++ wrapper creates separate work directories for each independent run and
modifies the input file for MFiX simulations by substituting new set of values for the
variables that were prescribed by the user to be treated as uncertain or varied if employing
design of experiments. The values for these variables are determined based on several
factors such as the sampling method chosen, number of samples, upper and lower bounds
and the probability distribution function prescribed for the uncertain variable(s) in the
Dakota input file.

• The Wrapper launches MFiX executable for each sample independently

• Once the simulation is completed, the response functions values from MFiX is
returned to Dakota for uncertainty analysis such as sensitivity study, or propagating
uncertainties to determine their effect on the quantities of interest.



Time: 0.10

in thP fluidized bed
• Central jet fluidized bed using DEM

simulations.

• The air is injected at a speed of 4200 f)
cm/s through a narrow inlet having
width of 1 cm and located exactly at ,T7
the geometric center of the bottom -5°
wall. _0

• The air exits to atmospheric conditions
at the top. No-slip boundary
conditions are specified for the gas-
phase velocity at the walls.

• cells having width of 1 cm and height
of 2 cm, resulting in a total of 675
(=15x45) computational cells.

• The bed is initialized with 217.15 g of
particles with a diameter of 0.4 cm and
density of 2.7 g/cm3, resulting in total
of 2400 spherical particles.

Average bed height = 14.3808 cm
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Dakota-MRX results: Flow in a fluidized bed

Input 1 - e p,n Input 2 - e vu

N(0.8,0.04) N(0.8,0.04)

Response function NP

Bed height = 1 Yn /Np
n=1

Mean
Std

PCE, Order =5
sample size =25

14.4081
3.6230e-02

e p,n

e wn

= particle-particle restitution co-efficient

= particle-wall restitution co-efficient

N 
P 

= Number of particles (=2400)
Y = y- coordinate of nth particle's position at time t

LHS, sample size =500

14.4171
3.4146e-02

Partial Correlation Matrix between input and output:
response_fn_1

x1 5.0089e-01
x2 -2.2879e-01



Dakota-MRX results: Flow in a fluidized bed
Normal distribution, LHS, # of uncertain input variables = 9

D
P Uiniet e p,n

(cm) (cm/s)
e wn KN KN_W MEW MEW_ l'ig

(g/s2) (g/s2) W (g/ cm s)

mean

std

Dp

Uiniet

e p,n

e vu

0.34 4200 0.8 0.8 1000000 1000000 0.1 0.1

0.0297 367.5 0.07 0.07 87500 87500 0.0087 0.0087

= Particle diameter

= Velocity of the fluidizing agent at the inlet
= particle-particle restitution co-efficient

= particle-wall restitution co-efficient

KN = Particle — particle normal collision spring constant
KN W = Particle — wall normal collision spring constant
MEW = Particle - particle friction co-efficient
MEW_W = particle — wall friction co-efficient

Pg = Viscosity of the fluidizing agent at the inlet

0.00018

0.00001575

Response function N P

1 . Average bed height Hp(t) = 1 Yn /Afp
n=1

2. Maximum pressure difference across the bed



Dakota-MRX results: Flow in a fluidized bed
# of uncertain input variables = 9

DP Uiniet e p,n
(cm) (cm/s)

e wn KN KN_W MEW MEW_W
(g/s2) (g/s2) (g/ cm s)

mean 0.34 4200 0.8 0.8 1000000 1000000 0.1 0.1 0.00018

Response function
1 . Average bed height Hp(t) = Yn /Afp
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Bed height at t=40 is 9.868 cm Max pressure difference at t=40 is 15.991 k dn/cm2



Response function bed height
Normal distribution, LHS, sample size = 500

Mean: 9.6827
Std: 1.9529

0,25

0,20

Partial Correlation Matrix between
input and output: 2-,, 0,15

=
Bed height la

co
D 9.87853e-01 _CZ

P 2
Uinlet 7.65915e-01 ci_ an

e pn 1.26841e-03
e wn -2.19558e-02
KN -5.44667e-02 

0.05

KN_W -4.08984e-02
MEW -1.03671e-02 000
MEW_W 6.74702e-02

itg -1.76986e-02
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Response function Max pressure difference across the bed
Normal distribution, LHS, sample size = 500

Mean:
Std:

Uinlet

e pn 5.73839e-02
1.11189e-01e wn

KN -7.00940e-02
KN_W -1.14437e-02

MEW 3.87739e-02
MEW_W 3.50937e-02

-2.23406e-02itg

1.5857e+04
5.2590e+03

Partial Correlation Matrix between
input and output:

Pressure drop

D
P 

9.81640e-01
-4.91593e-01
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Characterizing Uncertainties to Dakota

Must characterize each variable's uncertainty and
(optionally) any correlation between pairs of
variables. Need not be normal (or uniform)!
• May require processing data with math/stats

tool to fit distributions, performing literature
searches, or querying experts

Dakota uncertain variable types:
• Aleatory continuous: normal, lognormal,

uniform, loguniform, triangular, exponential,
beta, gamma, Gumbel, Frechet, Weibull,
histogram

• Aleatory discrete: Poisson, binomial, negative
binomial, hypergeometric, histogram point
Epistemic: continuous interval, discrete
interval, discrete set
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Response function — bed height
Normal distribution

Mean:
Std:

9.6826836828e+00
1.9528769373e+00

LHS, sample size = 500

9.6850171779e+00
1.9410264354e+00

gaussian_process
surfpack

9.6762857192e+00
1.9423379855e+00

Global nueral
network

-0.112585 + 0.990706*x0 + 0.189103*x1 +
0.00483635*x2 -0.00142171*x3 -
0.00356067*x4 + 0.000614168*x5 -
0.00888153*x6 + 0.00596127*x7
0.00369133*x8 + 0.491255*x0^2 -
0.0590336*x1 ̂2 + 0.0806555*x2^2 -
0.00036364*x3^2 - 0.0214853*x4^2 -
0.00213713*x5^2 -0.0434566*x6^2 +
0.0396718*x7^2 + 0.0211821*x8^2

9.6835642134e+00
1.9448349902e+00

Global mars

9.6816878179e+00
1.9446660490e+00


