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Nonlinear Optics : Second-Harmonic Generation (SHG) et e
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where the coefficients x() are the n-th-order susceptibilities of the medium




Prominent On-Chip Approaches for SHG =
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Desired Properties for Nonlinear Metasurfaces e e

1. High second-order nonlinear susceptibility : IST in QWs —/

2. Large field enhancement : High Q Resonances

3. Large damage threshold and low loss at all wavelengths
: Dielectric structures

4. Large bandwidth : Require new type of resonances as
high Q and bandwidth work in
opposite directions

pr——

5. Practical aspects : Easy to fabricate, monolithically integrable,
Dual mode operation ( reflection/transmission) ——

Can we design a hybrid
approach that has all
these properties ?

Yes, using a hybrid
approach of coupling
leaky mode resonances
in dielectric structures
to ISTs in QWs
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What is a Leaky Mode Resonance ? Netonat
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Dielectric-Semiconductor Hybrid Structure for SHG (i) fom
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a=1070nm , b=1200nm , {=500nm InGaAs QWs with AllnAs barriers

p=3150, 3250, 3350 nm Ref. : O. Wolfet. al., Nature Comm. 6 (2015)

The thickness of the InGaAs QWs is optimized to have transitions at 10 microns and 5 microns. The
geometrical parameters of the grating structure is designed for these wavelengths. 6




Leaky Mode Resonance Coupled to IST () i,
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The pump wavelength (fundamental frequency, FF) is at 10 microns. The evanescent fields of the leaky mode
resonance drives the ISTs in the QWs.
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Leaky Mode Resonances : High Q and Large Bandwidth () i

Linear Simulations ( Ignoring IST absorption) Cross Section of Reflectance ( white dashed line)
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The leaky mode resonances have high Q with Fano features and can exist for all wavelengths between 8-12 microns
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Device Fabrication and Experimental Setup (i) &t
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Experimental Data and Comparison to Simulations () &&=
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Experimental Data and Comparison to Simulations () &,
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Summary

1. We have demonstrated a hybrid approach for realizing a dielectric-semiconductor planar
nanostructure for high efficiency SHG with increased bandwidth.

2. Using our devices, we demonstrate SHG at pump wavelengths ranging from ~ 8.5-11
microns. The maximum observed SHG conversion factor is 0.68 mW/W<4 and maximum
conversion efficiency observed is ~3 x 10 at 15 kW/cm?2pump power.

3. In addition to fundamental advantages, the approach also has practical advantages such
as wavelength scalability, monolithic integrability, and ease of fabrication. The devices can
also be fabricated using optical lithography.

4. The results here demonstrate a proof-of-concept and there is further scope of
improvement of SHG efficiency by optimizing various parameters such as the dielectric
medium of the grating, geometrical parameters, semiconductor heterostructure etc.
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