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Summary and Outline

• At Sandia National Laboratories' Z-accelerator facility the MagLIF
(Magnetized Liner Inertial Fusion) concept is being studied as a fusion
source.

• A variety of neutron diagnostics are fielded on MagLIF experiments
to ascertain physical parameters relevant to the performance of the
experiment.

• Prior to being fielded on the Z-machine these diagnostics are
characterized at Sandia National Laboratories' Ion Beam Laboratory
(IBL)

• Neutrons produced at the IBL are known absolutely to < 7% using the
Associated Particle Method.



The "Z-Machine" is a pulsed power accelerator and the
most powerful x-ray source in the world.

• Z-Machine by the numbers
• 36 Marx generators
• —26 MA of current
• Nominal pulse width of 100 ns
• > 300 TW of x-ray power

• User Facility that supports many
scientific campaigns
• Inertial Confinement Fusion
• High Energy Density Physics
• Radiation Effects
• Material Science
• Fundamental Science

D.V. Rose, Phys. Rev. Accel. and Beams,17,(2010)

M.C. Jones et al., Rev. Sci. lnstr.,85, (2014)
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The MagLIF (Magnetized Liner Inertial Fusion)
S.A. Slutz et al., Phys. of Plasma,ii, Ubb.3U.3(ZU1U)

A.B. Sefkow et al., Phys. of Plasma,21, 072711 (2014)

M.R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)

concept is being developed as a fusion source at the
Z-accelerator.

Deuterium gas load, 0.7 mg/cm3 at 60 psi

• External magnetization — 10 Tesla

• Laser Pre-heat — 2.5 kJ

• Beryllium liner compression — 20 MA

• 2-3 keV ion temperatures

• 3E12 D-D neutron yield

MagLIF Hardware Liner "z-pinch"
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There are several diagnostics fielded on MagLIF experiments that
view the source through unique geometries.

Cross-section view of the Z-accelerator and diagnostic location

LOS270, 2 NTOFs 9.5 and 11.5 m
LOS300, Be-activation detector at 8-m

Diagnostics located within the target chamber

Copper samples are

fielded in a re-entrant

  tube for quick retrieval

(< 10 mins).

LOS50, NTOF
at 25-m

Ta rget

Target Location (Expanded
View on the right)

Not to scale

=

= LOS90, 2 CVD bang-time detectors

Axial, 2 NTOFs 8 and 9 m 1.6 and 1.7 m from the source

ODIN — 1 m from the

source

Indium activation -

three top, three

side, and three

bottom samples

Bottom nTOF collimator

(in vacuum)
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The primary yield (D-D) and secondary yield
(D-T) are inferred from activation diagnostics.

Indium Activation (D-D)
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The indium activation spectrum is measured
using high-purity germanium detectors.
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Copper Activation (D-T)

63Cu(n,2n)62Cu—>1.32 MeV (3±—> 62Ni (100%)

65Cu(n,2n)64Cu—>0.65 MeV 13±-> 64Ni (61%)
Copper activity is inferred by measuring the
511-keV annihilation gamma's in coincidence.
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Information about the reaction kinetics and confinement
physics can qualitatively be extracted from the neutron time
of flight spectra

r'VD Bang-time detectors

BR (MG-cm) is the MagLIF confinement

parameter inferred from the D-T/D-D yield

ratio and the shapes of the D-T axial and

radial spectra *Simulated data
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The neutron producing region within the plasma column
can be inferred using ODIN (One dimensional imager of
neutrons).

source

250 — 750 [tm rolled W
slit (20-cm from source)

W enclosure for detector
package (101-cm from source)

Diagram of ODIN
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D. Ampleford et al. (accepted by Rev. Sci. Instr. 89 (2018)

J. Vaughan et al. (accepted by Rev. Sci. Instr. 89 (2018)
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Shot #: Z3040
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MATERIAL - THICKNESS
Al - 0.080"
Ni - 0.005 or 0.010"
Be - 0.127mm N1,1 z

C - 0.005"
CR-39 - 0.080"
HDPE - 0.040" "7/iAlA
dPE - "v)
SR (image plate)
TR (image plate)
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19
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Typical detector package uses image plate and CR-39 detectors with various radiators
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Diagnostics fielded on the Z-accelerator are characterized using
a 300-keV Cockroft-Walton generator at the lon Beam
Laboratory.

Water
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Camera Port
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D* Beam

Schematic of the IBL neutron target chamber IBL target chamber, shown is a dual PMT
nToF under study

Before

2.6-µm x
1.0-cm Cu
ErD2 target
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1.9-cm Cu
substrate

After

111 ErD2 Target, Quartz and Cu cold finger
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beam spot

C. L. Ruiz et al., Rev. Sci. lnstrum. 83, 10D913 (2012)



The neutron yield per steradian at any angle is
inferred using the Associated Particle Method
(APM).
• Associated Particle Method

• Transformation of differential cross-sections
from center-of-mass to the lab frame using
relativistic kinematics

• Accounts for loading ratio and dE/dx ion losses in
the target

Thick target yield

dy f° nda(E)Idfl
 dE

dfl 
Emax 

dE I dx

C. L. Ruiz et al., Rev. Sci. lnstrum., 63, 4889 (1992)
C. L. Ruiz et al., Rev. Sci. lnstrum. 83, 10D913 (2012)
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The calibration factor inferred for the activation
diagnostics is known as the F-factor.

• F-factor characterizes the
entire detector system

• Examples:
• Indium sample + HPGe

detector

• Copper sample + Nal
coincidence

• Beryllium detector + CFD
(constant fraction
discriminator)

C. L. Ruiz et al., Rev. Sci. lnstrum., 63, 4889 (1992)

C. L. Ruiz et al., Rev. Sci. lnstrum. 83, 10D913 (2012)

J. D. Styron et al., Rev. Sci. lnstrum. 85, 11E617 (2014)

C. L. Ruiz et al., submitted to Phys. Rev A (2018)

Expected number of net counts from an exposed cylindrical activation sample

(C - =
AA,

OEAEDESEBMNA6(E)[(1- eAto)(e-At1 — e-212)]

Calibration F-factor

Ffrcts) (cm2)1 OEAEDESEBNAo-(E)
n g AA,

F-Factor determined as determined from measurable quantities at IBL

cts)(cm2y A(C -

FFn)g OM[(1- eAto)(e-A-t1 — e-A-t2)]

Isotropic neutron yield calculated on MagLIF experiment

4Thd2 (C — B)zyz = 47d24)(d) = Fm(e-At1 e-At2)



ODIN is being tested at the IBL to understand the
point spread function of the slit and the
efficiencies of different radiator materials.

• CR-39 is a plastic substrate used to
measure charged particles

• Etched with a 6-mol NaOH solution
and viewed under a microscope to
view the particle tracks

Typical scan of a CR-39 sample-1M
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r

Track diarneter is
proportional to dE/dX 1/E

o

CR-39 samples (shown to the right) fielded
at the IBL and exposed to DT neutrons

CR-39

J. Frenje et al., Rev. Sci. Instr. 73, 2597 (2002)

D. Ampleford et al. (accepted by Rev. Sci. Instr. 89 (2018)
J. Vaughan et al. (accepted by Rev. Sci. Instr. 89 (2018)

Experimental Results using the sample shown below
at two different distances
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___/"
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DT neutron efficiency is 1E-4

(tracks/incident neutron)
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At the IBL we have developed a novel nToF instrument response
function (IRF) measurement that utilizes particle coincidence to infer
either DD or DT single neutron interactions.

• Instrument Response Function is a measure
of the time and energy dependent signal
characteristics produced from a neutron
time-of-flight detector
• Scintillator decay
• Photomultiplier tube
• Light-guide
• Does not include throughput delay
• Historically measured using neutron surrogate

sources (bremsstrahlung or x-rays)

• Particle coincidence is derived from the
kinematic relationships
• Related to the Associated Particle Method
(APM) used to calculate absolute yields

• Differences in the kinematics are variable due to
dE/dx losses in the target

J. D. Styron et al. (accepted by Rev. Sci. Instr. 89 (2018)

Scintillator, Attransit 460 ps

. — 14.5 MeV neutrons

Atflight = 160 ps

ErT2 target

175-keV D± ion beam

3.23 — 3.56 MeV alphas

Atflpht = 1.1 ns
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Coincidence is established using a time-to-pulse height
converter and then used to trigger data acquisition on a 3.5
GhZ Tektronix DP07354C Oscilloscope.
2501
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J. D. Styron et aI. (accepted by Rev. Sci. Instr. 89 (2018)
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The IRF is an average of the leading-edge normalized data (10%
of the max) , which can be described using an exponentially
modified Gaussian function.

IRF(t, pt, r, a, A) = A * exp(
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Conclusions

• Neutron diagnostics are a very important tool for diagnosing MagLIF
plasmas and thus need to be very well understood (i.e. energy and
time response)

• The experimental set-up on the Cockroft-Walton accelerator provides
well characterized neutron sources (DD or DT) and experimental
flexibility

• Precise quantities (< 7%) can be inferred using the Associated Particle
Method


