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Introduction

Nerve agents: extrerneiy toxic synthetic chemicals which can be dispersed as a
gas, liquid or aerosol

Tokyo subway station gas attack, 1995

Syria gas attacks in 2013 and 2018

Use of simulant molecules instead of real agents in experiments to study and
compare the activity of any adsorbent material due to toxicity of CWAs

However, no detailed comparison between CWAs and simulants for adsorption
processes
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Objectives

Prediction of adsorption properties of CWAs and simulants in
a library of thousands of MOFs using molecular simulations

To address the question of whether simulants for CWAs are
truly similar to CWAs in terms of their adsorption properties

Probing the sensitivity of our results to newly DFT derived FF
to draw robust conclusions
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Materials

Adsorbents: CoRE MOFs databasel, a collection of >2900 experimental
reported MOFs with high quality charges assigned to the frameworks

Adsorbates:

CWAs: Sarin and Soman

Simulants: DMMP, DMNP, DCP and DFP

••••••0,

DMNP

DFP Sarin

1Chung, Y. G. et al. Chem. Mater. 26, 6185-6192 (2014)

DCP

Soman
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Simulation Methods
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DFT-derived FF vs generic FF

Interaction energies of 3000 configurations of 6 molecules in Ui0-66
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Heats of Adsorption: Sarin vs DCP
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Heats of Adsorption: Sarin vs Simulants
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DCP and DMMP are the closest to Sarin
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Heats of Adsorption: Soman vs Simulants
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No simulant is able to very closely predict Soman's adsorption properties

DMNP is the closest to Soman among all simulants
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Correlation Between MOFs Rankings: CWAs vs Simulants
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DCP and DMMP are able to best predict MOFs ranking of Sarin based on adsorption properties

DMNP is the only simulant that is able to closely predict MOFs ranking of Soman based on adsorption pLoperties .
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Conclusions

DCP and DMMP are the best suited simulants to predict adsorption behavior of

Sarin in nanoporous materials

DMNP is the only simulant that is suited to predict Soman's adsorption

behavior in nanoporous materials

Our DFT-derived FF is performing better than generic FF in predicting

interaction energies of CWAs and simulants in MOFs, however, generic FFs are

also well suited to predict qualitative adsorption behavior of CWAs and

simulants

Our qualitative predictions are independent of the force-field used in the

simulations
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THANK YOU
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Figure El: A parity plot between interaction energies calculated using classical force fields and quantum chemistry

calculations using (a) a generic FF and (b) a DFT-derived FF for all CWAs and simulants adsorbed in 5 randomly

selected MOFs from the database
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Figure E2: Heat of adsorption of Sarin compared to simulants, (a) DCP, (b) DFP, (c) DMMP, and (d) DMNP using generic

FF

High performing MOFs pore diameters are in the range of 6-10 A
DCP and DMMP are the closest to Sarin
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Figure E3: Heat of adsorption of Soman compared to simulants, (a) DCP, (b) DFP, (c) DMMP, and (d) DMNP using

generic FF

No simulant is able to very closely predict Soman's adsorption properties

DMNP is the closest to Soman among all simulants
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Correlation Between MOFs Rankings: CWAs vs Simulants
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Correlation Between MOFs Rankings: Soman vs Simulants

(a)Using DFT-derived FF
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