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Introduction

The understanding of fracture phenomenon, both critical. and subcritical., is i.mportant for
the assessment of caprock integrity for CO2 secluestration. A computational method is
presented for modeling the coupl.ecl flow and solid mechanical response of both single
fractures and fracture networks. The meshing of the domain is facilitated by the Lise of
general pol.yheclral grids, for both the solid mechanics and fluid mechanics. A simple
hexahedral grid is used to mesh the overall. domain. A cut-cel.l paradigm is used to
generate explicit fracture surfaces. Each cut hexahedral. cell. becomes a potylieclral.
A mimetic formuLation is used for the fl.ow physics, while a clispLacement-basecl
element formuLation is used for the solid mechanics. The explicit fracture representa-aon
is advantageous for modeling couplecl fluicl-fLow within the fracture network. Fl.ow within
the fractures is moclelecl using a full. poLyheclral. mesh that conaturally resolves
non-pl.anar as well as intersecting fractures. Row in the fracture is couplecl with flow in
the surrounding matrix through boundary conditions and forcing terms. A cohesive model.
is used at each fracture tip to represent the subscale damage and energy dissipated during
fracture opening and growth.

Cohesive Fracture Modeling

Cohesive Fracture Models (CFM) Lump the ineLastic processes occurring during fracture
propagation into a thin zone between eLastic subclomains. CFM assumes that the cohesive
zone initially deforms eLastically to a maximum tensile stress and then softens LinearLy
from the crack opening width to zero stress at a crthcal. crack openhig width [6].
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Polyhedral Finite Elements

, The cohesive fracture model. can be applied to both standard hexahedral. eLement meshes
as well poLygonal. meshes (including Voronoi.) using harmonic basis function [2]:

• Models can be used to assess geologic fracture initiation and propagation, or reactiva-
tion of existing fracture networks, in various lithologies and lithostatic stress-states.
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Mimetic Finite Differences

The Mimetic Finite Difference method [4] solves flow prol3Lems over a general set of poLy-
heclral. elements, which includes Voronoi grids.
For fracture flow caLcul.ations, the problem cliviclecl over two separate domains, one for
the fracture and one for the matrix. The two problems are then couplecl using boundary
conditions and source terms [1]:
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Unlike other methods that define the fracture problem over a Lower-dimensional. manifol.cl,
we represent the fracture domain in the same dimension as the matrix domain. Doing so
has some important advantages:

• Cocle reusability: we are ushig the exact same cocle for the both the fracture and matrix
solution.

• Simple intersections: intersecting fractures are naturally represented in the fuLL dimen-
sional. space.

• Fracture geometry: we can fully represent fracture aperture and curvature clirectLy using
the mesh.
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Putting it all together

Coupling mechanics and flow is a challenging problem. Typically, mechanics meshes are
very different from the ones used in FLow. Since both the MFD method and a cohesive
fracture modeling can be applied over the same meshes. a natural path for coupling the
two methods is possibl.e. We pl.an to couple the two methods over three stages:

1. Secluential. use: Run a full. simuLation of mechanics, and then Lise the final fracture
geometry for flow.

2. Iterative coupling: In a singel simuLation, iterate between the two models unta conver-
gence is reached.

3. Fully couplecl: Solve for both systems simuLtaneousLy using a singLe jacoblan matrix.
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Multiphase flow solutions through fracture network embedded hi a Voronoi
mesh using the MFD method.
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