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A long—standing problem in computational electromagnetics is the search for
efficient methods to minimize the resource burden in modeling scenarios where Hierarchical Decomposition of Material Properties
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scatterer is large in one (or more) physical dimension in comparison to the Weiss and Newman (Geophysics, 2002, 2003)

other(s). That is, the scatterer is either long and slender or wide and thin.
Examples include conductive infrastructure (pipes, rails, cables), fractures, y
laminations, spatially extensive textural lineaments. Brute force three—dimensional
modeling of these targets can be computationally explosive because they typically
consume a disproportionately large number of elements in a given numerical
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The tensor representation keeps the material properties local to the edges
and facets in the Finite Element weak formulation / bilinear form.
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We review here a recently proposed (Weiss, 2017) mathematical architecture for Assembly and solution of the linear system Variational formulation: va (0-Vu) dz | L vf do
meeting this computational challenge — the hierarchical material properties
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both singular scatterers and composites of many, and could provide a means for Global stiffness matrix g _ 1, Solve iteratively with Jacobi scaled conjugate
clarifying the mesoscale where various upscaling theories (homogenization, thus ensuring that the facet and edge material properties are is a sum of 3D, 2D and N N N gradients and on-the-fly matrix assembly
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Benchmarking and internal consistency checks show that for thin conductors,
the facet/edge representation achieves acceptable accuracy over a range of

. . . & Tets with at
geometries and material properties. Weiss. (2017)

least one casing node
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Convergence Analysis: Does the hierarchy require a modified theory?

AN

Discretization of complex reservoir completion scenarios is relatively simple do to from “as built” direction logs (LAS files)
provided by the driller/service company because the casing need only be represented by a connected set of infinitely thin
segments, rather than a complex and computationally costly set of nested cylinders. We generate such meshes using Cubit
(cubit.sandia.gov) using an advancing front method with LAS data points as internal volumetric constraints.

validation and verification
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Electrostatic Potential and Finite Element Mesh

Weiss and van Bloemen Waanders, SIAM (2017)
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Beskardes and Weiss (2018)

2D fracture systems driven by boundary conditions in a perfectly resistive o

medium can admit analytic solutions. RMS errors for HiFem 3D solutions are C onc I usion

on the order of 108V for the problem shown above, where the fracture

current is a function of the cosine of its angular deviation from vertical.

* The hierarchical material properties concept approximates small scale features by equivalent conductances on the facets and edges of an arbitrary discretization.

* This concept has been applied to finite element analysis of Maxwell’s Equations in the electrostatic limit.

 The hierarchical finite element method (HiFEM) is shown to possess the expected h? error convergence for linear nodal elements, consistency with brute force discretization of fine model
features, and agreement with various analytic solutions for slender, rod-like conductors and thin, sheet-like conductors.

* The HIiFEM architecture has been applied to problems in applied geophysics for simulating well-casing response, fracture characterization and casing-design analysis at a minimal

We accommodate this through tears in the mesh where computational cost where, otherwise, it would be computationally explosive if tractable at all.

physically coincident surfaces are twice discretized to * Careful inspection of fracture response shows evidence of “anomalous” non-classical field decay, reminiscent of prior field studies and a possible segue toward reconciliation with

represent potentials associated with each side of the surface. <« *© = o » @ o alternative mathematical frameworks for macroscopic transport phenomena based on fractional calculus theory.
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What about thin resistive features?

Thin resistive features result in strong potential e
Differences between adjacent surfaces and in the o w20 o 4w e M
infinitely thin limit means that the potential is double-valued.

B i o S Sandia National Laboratories is a multimission laboratory managed and Essential References .
% ENERGY operated by National Technology & Engineering Solutions of Sandia, LLC, *  Weiss CJ, (2001) A matrix-free approach to solving the fully 3D electromagnetic induction problem. 7 I st Annual International Meeting, SEG, Expanded Abstracts, pp. 1451—-1454, doi: 10.1190/1.1816377. Salldla

EZ;:::QZ“W:? Esnueb:gi;j,i:rzl;fol:glnﬁylzi;nst:;:?itti;r::j:;;Sfti;tti(};i lquid.er *  Weiss CJ, (2017) Finite-element analysis for model parameters distributed on a hierarchy of geometric simplices. Geophysics, 82, no. 4, pp. EI55-E167. Naﬁonal
I VA K g - * Beskardes GD & C] Weiss, (2018) Modelling DC responses of 3-D complex fracture networks, Geophysical Journal International, 214, no. 3, 1901—-1912, doi: 10.1093/gji/ggy234. .
5 contract DE-NA0003525. g p p phy giilggy Laboratories
TVA <24 SAND No. 2018-4869 A *  Weiss CJ and B van Bloemen Waanders, (2018) On the convergence of Neumann series for electrostatic fracture response, Geophysics (in review).




