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Why model cookoff? Sandia
National
Laboratories

■ Need to know behavior in accidental fires to assess safety.

■ Need to know the time-to-ignition for safety timing studies.

■ Need to know the amount of gas produced to determine if
confinement will rupture before ignition.

■ Need to know how the damaged state of the material affects
the subsequent burn behavior.

■ Need to avoid accidents such as the breach of drum 68660 at
WIPP. Initial upper bound cost estimate to restore WIPP to
operation-- $550M.

Carrier Deaths Injured Cost
Oriskany, 1966 44 156 $63.6M
Forestal, 1967 134 162 $758M
Enterprise, 1969 28 343 $554M
Nimitz, 1981 14 48 $150M

220 709 $1525M
Atwood et al, "Experimental Support of a Slow Cookoff Model Validation effort,"
2004 Insensitive Munitions & Energetic materials Technology Symposium (2004).

Tremendous cost considering none were under attack! 2



Organic adsorbent with nitrate salts

Model of drum 68660
(arrows represent heat generation)
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Yellow
residue
is a key
sign of
NOx

Fuming nitric acid contaminated with yellow NO2

Behrens also measured NO and NO2 in STMBMS
3



Complex decomposition mechanism
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Behrens R., "Thermal Decomposition of HMX: Morphological and Chemical Changes Induced at
Slow Decomposition Rates, Proceedings of the 38th JANNAF Combustion Subcommittee Mtg.,
2002, CPIA Pub. 712, Vol. I: p. 397-408.
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Highlights

• Reactions occur in gas, solid,
and molten phases and
depend on physical and
morphological changes in
the HMX.

• (3to6 phase transition

creates grain structure and
promotes cracking and
nucleation sites.

■ Nucleation sites fill with
decomposition gases and
NVR.

• Controlling mechanisms
include unimolecular
decomposition and gas
phase reactions occurring
within a closed pore
network.

This is for HMX, PBX 9502 also contains 2.5% Estane and 2.5% BDNPA/F 4



Simplified Decomposition Mechanism

PBX 9502 (95% TATB 5% Kel-F)
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PBX 9501 (95% HMX 2.5% Estane 2.5% BDNPAF)
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• Reactions occur in gas, solid,
and molten phases and

depend on physical and
morphological changes in the
PBX.

• Phase transitions create grain
structure and promote
cracking and nucleation sites.

• Nucleation sites fill with
decomposition gases and NVR.

• Controlling mechanisms
include unimolecular

decomposition and gas phase
reactions occurring within a

closed pore network.

Binder: 9502 (Kel-F is assumed inert) 9501 (BDNPAF is a major reactant) 5



What do plastic-bonded explosives look like?

Prills Pressed Pressed
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SEM of thermally
degraded HMX grain

Behrens R. et al (1998)

If porosity is less than about 5%, the pores may not be connected
and decomposition occurs in a closed pore network.
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Sandia's Instrumented Thermal Ignition (SITI)

two 2.54 cm diameter by 127 an tall pellets

J I 

Large ullage SITI
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 -}-*- PBX
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SITI: 533 K Tsp s 574 K

sealed & vented
20-75% ullage (excess gas volume)

Measures: Ignition time, temperature, pressure
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Open half shell

onset

crater

burn

washer

spall

Incremental bursts heard as audible noises (pop, thud, etc.)
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My Favorite PBX 9502 Experiment

Temperature
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Hobbs ML and Kaneshige MJ, "Ignition experiments and models of a plastic bonded explosive (PBX 9502)," J. Chem. Phys., 140, 124203 (2014).

Anomalies may not be anomalies. 8



Boroscope in SITI with PBX 9501

Camera

Head space

O-ring

Kapton gasket

Thermocouples

Sandia
National
Laboratories

Exp 445 (sealed) Exp 444 vented

Minimal binder flow

500

450

Ei‘

2 400
a)

E
a) 350

300

Binder flows to edges

0 1 2 3

Time, hour

For unconfined decomposition, binder migrates to the edge. A

wetted surface provides better heat transfer for the vented case.
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Mechanism from 15th Det. Symp does not match
excursion.
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Observations

• Distributed activation energy
model can be used to match
curvature in pressure.

• Steric factor can be used to
match slope of ignition
curve.

• Poor agreement with T9 for

sealed SITI may be due to
contact resistance.

• Better agreement with T9 for

vented SITI may be related
to binder extruding
preferentially along Al/EM

interface causing better
contact at this surface.

• Temperature excursion may
be caused by a limiting
reactant such as the binder.

10



PBX 9501 molding powder (46% TMD
Vented
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Similar trend shown with 85% TMD SITI experiments.
Could the binder be a major player in cookoff of PBX 9501? 11



ODTX data shows reactive binder
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ODTX data does not show a strong effect of venting possible due
to gases remaining in PBX. ODTX densities are 95-97%TMD.
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PBX 9501 pressed pellets (95% TM D
Vented
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Is this evidence of closed pore decomposition?
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Validation with experiments from other labs
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Other simulations
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Comp-B experiments
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Pressure affects mixing/heat transfer
Limited head space, #372

Ample head space, #373
(

-11/1141.1l 1_1 s

Large head space (colored) shows
increased heat transfer

500

450

'5 400

0 350

300

Black lines: limited head space (#372)

Colored lines: Ample head space (#373)

1 center
—2
—3
4
5
6
7
8
9 edge

— outside

0 500 1000
Time [s]

1500

Sandia
National
Laboratories

5x 1 06 725 psi

4x106

3x 1 06

2x106

1x 1 06

0

2000

Pressure affects heat transfer more than
chemistry since ignition times are similar.

Pr
es

su
re

 [
Pa

sc
al

s]
 

18



Venting has a significant effect
Vented, #370
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Observations

•Bubbly two-

phase flow

increases heat

transfer and

delays ignifion.

•Higher
pressure
causes large
bubbles to
escape along
the edge of the
Comp-B.
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Summary and Conclusions
• Pressure effects are different in PBX's vs melt-castables explosives

• Pressure effects chemistry in PBX's

• Pressure effects flow in melt-castable

• lgnifion time depends on the degree of confinement of the PBX 9501,
which is similar to PBX 9502. Phase change may release trapped gases and
open up the structure.

• A temperature excursion during unconfined decomposition of PBX 9501
may be associated with an limiting reactant such as the reactive binder.
Perhaps NOx reacts with the organic fuel, which is pressure dependent.

Internal gas generation in closed pore system leads to failure.
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Mechanism Details
PBX 9502 (95% TATB 5% Kel-F)

DAE, f(P)

1) Drying (hri = 2.26x106 J/kg, endothermic)
2) Mono-Furazan formation (hr2 = 0 J/kg, neutral)

TATB MF + H20 (hr2 = 0 J/kg, neutral)
3) MF decomposition into equilibrium products (hr3 = -4.82x106 J/kg, exothermic)

MF -> 3 N2 + 1.66 H20 + 1.67 CO2 + 0.15 CH4 + 0.04 H2 + 4.18 C
MF -> 6.52 Gasm + 4.18 Cm

4) TATB decomposition into equilibrium products (hr4 = -4.48x106 J/kg, exothermic)
TATB -> 3 N2 + 2.4 H20 + 1.8 CO2 + 0.3 CH4 + 3.9 C
TATB -> 7.5 Gast + 3.9 Ct

PBX 9501 (95% HMX 2.5% Estane 2.5% BDNPAF)

DAE 1) Drying (hri = 2.26x106 J/kg, endothermic)
DAE 2) NO2 evolution (hr2 = -2.01x106 J/kg, exothermic)

BDNPAF (C7 5H13N4010)-> NVR (C7.5H1303) + 4 NO2
DAE, f(P) 3) Oxidation of Estane (hr3 = -3.32x106 J/kg, exothermic)

Estane (C10H14.6N0.403.5) + NO2 -> 0.7 N2 + 4.5 H20 + 0.5 CO2 + 1.4 CH4 + 0.04 H2 + 8.1 C
Estane + NO2 -> 7.1 GasE + 8.1 CE

DAE, f(P) 4) HMX decomposition into equilibrium products (hr4 = -6.2x106 J/kg, exothermic)
HMX -> 4 N2 + 3.6 H20 + 2.2 CO2 + 0.2 CH4 + 1.6 C
HMX-> 10 Gasx + 1.6 Cx

Equations solved in finite element code with conductive energy equation.
Rates are pressure dependent using distributed activation energy models.
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