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Why model cookoff? )

Laboratories

= Need to know behavior in accidental fires to assess safety.
= Need to know the time-to-ignition for safety timing studies.

= Need to know the amount of gas produced to determine if
confinement will rupture before ignition.

= Need to know how the damaged state of the material affects
the subsequent burn behavior.

= Need to avoid accidents such as the breach of drum 68660 at
WIPP. Initial upper bound cost estimate to restore WIPP to
operation-- S550M.

Carrier Deaths Injured Cost

Oriskany, 1966 44 156 $63.6M
Forestal, 1967 134 162 S758M
Enterprise, 1969 28 343 S554M
Nimitz, 1981 14 48 S150M

220 709 $1525M

Atwood et al, “Experimental Support of a Slow Cookoff Model Validation effort,”
2004 Insensitive Munitions & Energetic materials Technology Symposium (2004).

Tremendous cost considering none were under attack! 5




Organic adsorbent with nitrate salts h) s,

Temperature after 70 days
Model of drum 68660

(arrows represent heat generation)
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Complex decomposition mechanism (@,

Highlights
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Controlling mechanisms
include unimolecular
decomposition and gas
phase reactions occurring

Behrens R., “Thermal Decomposition of HMX: Morphological and Chemical Changes Induced at

Slow Decomposition Rates, Proceedings of the 38" JANNAF Combustion Subcommittee Mtg., within a closed pore

2002, CPIA Pub. 712, Vol. I: p. 397-408. network.

This is for HMX, PBX 9502 also contains 2.5% Estane and 2.5% BDNPA/F




Simplified Decomposition Mechanism h) s,

PBX 9502 (95% TATB 5% Kel-F)

H20a—3 H20q Y*MF
1 A

3
TATB \*! Gas + Carbon

Hobbs ML and Kaneshige MJ, J. Chem. Phy. 140, 124204 (2014).

PBX 9501 (95% HMX 2.5% Estane 2.5% BDNPAF)

H,O_ 1> H,0,

BDNPA
apnpe - NVR +4NO,

Estane + NO, 3> Gas + Carbon J“

Highlights

Reactions occur in gas, solid,
and molten phases and
depend on physical and
morphological changes in the
PBX.

Phase transitions create grain
structure and promote
cracking and nucleation sites.

Nucleation sites fill with
decomposition gases and NVR.

Controlling mechanisms
include unimolecular
decomposition and gas phase
reactions occurring within a
closed pore network.

Binder: 9502 (Kel-F is assumed inert) 9501 (BDNPAF is a major reactant) .




What do plastic-bonded explosives look like? (@)
Prills Pressed Pressed
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SEM of thermally
degraded HMX grain

Behrens R. et al (1998)

If porosity is less than about 5%, the pores may not be connected
and decomposition occurs in a closed pore network.




Sandia’s Instrumented Thermal Ignition (SITI) (i) &
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My Favorite PBX 9502 Experiment ) i,

Temperature Pressure
Data Data
s Model (PBX swells by temperature and gas generation) == Model (PBX swells by temperature and gas generation)
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Hobbs ML and Kaneshige MJ, “Ignition experiments and models of a plastic bonded explosive (PBX 9502),” J. Chem. Phys., 140, 124203 (2014).

Anomalies may not be anomalies. g




Boroscope in SITI with PBX 9501 ) .

Exp 445 (sealed) Exp 444 (vented)
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For unconfined decomposition, bmder migrates to the edge.
wetted surface provides better heat transfer for the vented case. 9




Mechanism from 15t Det. Symp does not matc
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Observations

Distributed activation energy
model can be used to match
curvature in pressure.

Steric factor can be used to
match slope of ignition
curve.

Poor agreement with T9 for
sealed SITI may be due to
contact resistance.

Better agreement with T9 for
vented SITI may be related
to binder extruding
preferentially along Al/EM
interface causing better
contact at this surface.

Temperature excursion may
be caused by a limiting
reactant such as the binder.

10




PBX 9501 molding powder (46% TMD)® .
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Similar trend shown with 85% TMD SITI experiments.

Could the binder be a major player in cookoff of PBX 95017
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ODTX data shows reactive binder
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PBX 9501 pressed pellets (95%
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Is this evidence of closed pore decomposition?
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SITI Predicted vs. Measured Ignition Times k=

(Symbols are data and lines are model)
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Validation with experiments from other labs ()&=,
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Model predicts scales from 2 g = 36 g = 2540 g. However, we need to
know volumes and working pressures accurately! 15




Other simulations ) e
Fast Slow
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Comp-B experiments ) e,
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Pressure affects mixing/heat transfer @ms.

Limited head space, #372 Large head space (colored) shows
increased heat transfer

Black lines: limited head space (#372)
Colored lines: Ample head space (#373)
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Pressure affects heat transfer more than

chemistry since ignition times are similar.
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Venting has a significant effect
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Observations

*Bubbly two-
phase flow
increases heat
transfer and
delays ignition.

*Higher
pressure
causes large
bubbles to

escape along

the edge of the
Comp-B.
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Summary and Conclusions )

Pressure effects are different in PBX’s vs melt-castables explosives
Pressure effects chemistry in PBX’s
Pressure effects flow in melt-castable

lgnition time depends on the degree of confinement of the PBX 9501,
which is similar to PBX 9502. Phase change may release trapped gases and
open up the structure.

A temperature excursion during unconfined decomposition of PBX 9501
may be associated with an limiting reactant such as the reactive binder.
Perhaps NO, reacts with the organic fuel, which is pressure dependent.

Internal gas generation in closed pore system leads to failure.




Mechanism Details )

PBX 9502 (95% TATB 5% Kel-F)

DAE 1) Drying (h,, = 2.26x108 J/kg, endothermic)

2) Mono-Furazan formation (h., = 0 J/kg, neutral)
TATB — MF + H,O (h,, = 0 J/kg, neutral)

3) MF decomposition into equilibrium products (h; = -4.82x108 J/kg, exothermic)
MF — 3 N, + 1.66 H,0 + 1.67 CO, + 0.15 CH, + 0.04 H, + 4.18 C
MF — 6.52 Gas,, + 4.18 C_,

DAE, f(P) 4) TATB decomposition into equilibrium products (h, = -4.48x10° J/kg, exothermic)

TATB - 3N, +24H,0+18C0O,+03CH,+39C
TATB — 7.5 Gas, + 3.9 C,

PBX 9501 (95% HMX 2.5% Estane 2.5% BDNPAF)

DAE 1) Drying (h,, = 2.26x108 J/kg, endothermic)
DAE  2) NO, evolution (h,, = -2.01x108 J/kg, exothermic)
BDNPAF (C; 5H13N,O4)— NVR (C7 5H;305) + 4 NO,
DAE, f(P) 3) Oxidation of Estane (h; = -3.32x10° J/kg, exothermic)
Estane (C;oH14 6N 4055) + NO, - 0.7 N, +45H,0+0.5C0O,+1.4CH,+0.04H,+81C
Estane + NO, — 7.1 Gasg + 8.1 C
DAE, f(P) 4) HMX decomposition into equilibrium products (h,, = -6.2x10° J/kg, exothermic)
HMX — 4 N, + 3.6 H,O0+22C0O,+02CH,+1.6C
HMX— 10 Gasy + 1.6 Cy

Equations solved in finite element code with conductive energy equation.

Rates are pressure dependent using distributed activation energy models.
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