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Proble
• This work is a part of the SECANT-QKD Grand Challenge LDRD project.

• Quantum key distribution (QKD) aims to distribute secret keys (one-time pads)
that can be utilized for unconditionally secure communication.

• The main goal of the project is to put a QKD system on a photonic chip.

• Two approaches to QKD: CV and DV:

Continuous Discrete
Variable (CV) Variable (DV)

• CV-QKD approach is based on measuring two conjugate quantum
observables: amplitude and phase of the optical field:

Electric field of a coherent state Phase space representation

Ax

(Phase) A

►x

(Amplitude)

• A major problem of CV-QKD: it requires transmission of a high-intensity
coherent pulse, called local oscillator (LO).

Approa
• We have developed a new CV-QKD protocol that eliminates the transmission

of an LO.

• Instead of transmitting an LO, Alice sends regularly spaced reference pulses
whose quadratures are measured by Bob to estimate Alice's phase reference.

• This new protocol, which we call self-referenced CV-QKD (SR-CV-QKD),
greatly simplifies the hardware requirements at Alice's and Bob's since it
enables them both to employ independent (truly local) LOs.
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• In a physical implementation of the SR-CV-QKD protocol, Alice chooses two
independent Gaussian random variables (qA, pA), both normally distributed
with zero mean and a fixed variance VA, and sends Bob a coherent-state
signal pulse with amplitude qA + i PA.

• She also sends a coherent-state reference pulse with publicly known fixed
amplitude VR112, which is much smaller than that of a typical LO.
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• In each round, Bob performs homodyne
measurement of one of the quadratures
of the received signal pulse.

• He also performs heterodyne
measurement of both quadratures of the
received reference pulse.

• The key operation is the estimation of the
phase difference 0 between Alice's and
Bob's frames.
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• Our theoretical analysis focused on obtaining expected asymptotic key
rates, secure against individual and collective attacks.

• A principal feature of our security analysis is the incorporation of the
inherent quantum uncertainty of reference pulses.
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• Our experimental work focused on:

1. Characterizing the performance of the central element of SR-CV-QKD —
signal reconstruction through compensation of the drifting phase;

2. Performing a proof-of-principle demonstration of key distribution using
the new protocol.
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• SR-CV-QKD obviates a key assumption of most CV-QKD security proofs
— namely that the LO is trusted — and thus provides a more secure
implementation of CV-QKD.

• SR-CV-QKD is manifestly compatible with chip-scale implementation
since it only requires classical optical communication components. This
enables miniaturization of CV-QKD hardware:

Transmitter
design

Receiver
design

• Our results [1], along with demonstrations by other groups [2, 3], establish
SR-CV-QKD as a practical protocol with significant benefits in terms of
hardware simplification and compatibility with integrated photonics.
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