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Principal Components Analysis (PCA)

Let L; be the loss defined over column j, define column

¢ Center:

“* Fundamental statistical tool for large, noisy datasets 0.= aromi L:(x:: 0
: ;= argmin },; L;(x;,0) : : _

% Useful for detecting low-dimensional structure . OER Poisson Data with g(0) = log(x)
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6i(x) = infL;(x,0)

Given: Observed matrix X =mxn > OER

% Scale:

Goal: Determine low-rank approximation
X =~ 0 =ABT
by minimizing sum squared errors
min ¥;;(x;; — 6;)°
A = m x k new representations (weightings)
B = n x k principal components
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Our Standardized Loss:

_ 0 20 40 0 20 40 0 20 40
mj

¢ Every loss function has a link, x = g(0), relating mean to

model parameters
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Note: Observed X vs. O e is right-shifted by 0.5 for side-by-side comparison
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*» Common practice to “center and scale” each matrix

Comparing 04,.,,.Vs 0.4 with Ideal
column before looking for principal components.
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Suitable “Goodness” Measures
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** Measures error in first order approximation of unscaled
7 . . .
*¢* Gaussian, Poisson, Bernoulli, etc. loss between two quantities Note: PCA minimizes squared error and may result in negative 6;;. Therefore,

+*»* Similar to PCA, center and scale columns BF (p| |CI) _ F(p) _ F(q) _ F’(q) (p _ CI) applying Bregman Divergence other than squared error does not make sense.
according to loss

where F(x) is a minimizer [2]

s Center: Single parameter minimizing Savared L(x,0) —8(0)! Numerical Comparisons
column loss = — KL-Divergence J’ L
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