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Motivation: Mixed Variable Factor Analysis

••• Divergence between objects in•
"mixed" feature space
•••• Gaussian (real-valued)
••• Bernoulli (binary)•

•••• Poisson (counts)
••• And others, including•

non-numeric
••• Applications•

+ Clustering
••
•
•

••••

••
•
•

••••
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Principal Components Analysis (PCA)

+ Fundamental statistical tool for large, noisy datasets

+ Useful for detecting low-dimensional structure

Given: Observed matrix X = mxn

Goal: Determine low-rank approximation

X 0 = ABT

by minimizing sum squared errors

min Ei -(x- - 19- • ) 20 j 1.1

A= m x k new representations (weightings)

B=nxk principal components

+ Common practice to "center and scale" each matrix
column before looking for principal components.

+ Columns given equal weighting

+ Ideal for normally distributed data!

X ,rz-, 0 = ABT B =nxk Principal
m x n data

Da s in
Ambient

3D Space (n = 3)
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Our Standardization of GLRMs

+ Re-derivation of Udell et al.'s GLRM

+ Statistically-derived loss functions

+ Based on probability mass or density function

+ Maximizing probability E Minimizing negative log-
likelihood
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Let Lj be the loss defined over column j, define column

+ Center:

+ Shift:

+ Scale:

Oi= argreng Ei (xi» 0)

6j ( x ) = (x , 0)

1
Ti; = 

77j 
(Li (xij, 9j) - 6j (x)) 0

Our Standardized Loss:

Lj(x, B + 0j) - 6j (x)

T/J
• Every loss function has a link, x = g (6), relating mean to

model parameters
.

Name L(::t' 0) 6(0) 0 g(0)
G a u s s i a n 0 x x.

Poisson 6' log(0) log(x) f' x- x x - x

Poisson 0 log(x) logW log(x)- xO x x

Bernoulli log(1 0 logit W logit (x)+ e9) xO
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PC1 Component

Representation
in Reduced
Space (k = 2)

Udell et al.'s Generalized Low-Rank Models (GLRM)

Define the Generalized Low-Rank Model

min Eii Lij (xij, t9i j)
O

♦ Lij(xij, oij) = (xij - 902 yields PCA

+ Udell et al. [1] introduce standardized general loss
functions

+ Authors give popular loss functions
corresponding to exponential family members

+ Gaussian, Poisson, Bernoulli, etc.

+ Similar to PCA, center and scale columns
according to loss

+ Center: Single parameter minimizing
column loss

+ Scale: Generalized variance about
column "center"
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Models to Compare

No centering/scaling but appropriate losses

PCA (centering/scaling but sum squared error loss)

Our standardization (centering/scaling/shifting
appropriate losses)

Suitable "Goodness" Measures

• 

Bregman Divergence

+ Generalized squared Euclidean distance to class of
divergences sharing similar properties

+ Measures error in first order approximation of unscaled
loss between two quantities

B = F 03) F (q) (003 - q)
where F(x) is a minimizer [2]

5quared
Error XL-Divergence

Exponential Family BF (p q) / p-> x, q- g(0)
Gaussian (MSE)

(p q) 2 (x 0)2

Poisson (MKL) p log + q - p - x0 - log(x)
Bernoulli (MLL) log '2,4 + (1 - log 111P, log(1 + c ) - x9p p)

+ Normalized Residual

Ie-611F NR(e) = 2 where . fi is squared Frobenius norm
iloliF

Logistic Loss

Example Data Attributes
••••

••••

••••

•• ••

m = 1000 Objects

n = 75 Features: 25

Gaussian, 25 Poisson, 25

Bernoulli

Rank, k = 5

5% data withheld to test

• A - U(0,1)

• B N (0,11 5), U (-1,1), N(0, 1.44/5 )
•• xij 0.01), P(A.11 = e9ii),

B(pij = 1/(1 + e-99)

+ Fit O w/ 30 different random starts

Comparing Observed X vs. 0- true = ABT , Model ()est

where data types separated and analyzed independently
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Coefficient of Determination: Proportion of Variance in
Dependent Variable Predicted From Independent Variable

Mean Divergence over 30 random starts
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Note: PCA minimizes squared error and may result in negative eq. Therefore,

applying Bregman Divergence other than squared error does not make sense.

Numerical Comparisons

Description: one PCA MXD

Normalized Residual ei est 1.098e-01 5.426e+00 3.610e-02

MSE Gaussian Obs. 2.610e-03 7,056e-04 6.130e-04

MSE Gaussian Miss. 2.708e-03 9.162e-04 8.066e-04

MKL Poisson Obs. 4.169e-01 -\/A 5.254e-01

MKL Poisson Miss. 7.630e-01 -\/A 5.914e-01
MLL Bernoulli Obs. 6.645e-01 -\ /A 6.710e-01

MLL Bernoulli Miss. 6.876e-01 N/A 6.766e-01
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