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EXECUTIVE SUMMARY

The Energy Frontier Research Center Materials Science of Actinides (MSA) conducted basic
research from 2009-2019. The scientific personnel and participating institutes changed several
times during the evolution of the Center, and in total included 24 senior investigators, four national
laboratories, and ten universities. Workforce development was a motivating goal of the university-
led Center, which included many undergraduate, graduate, and post-doctoral researchers. The
center focused on the actinide elements, which arise from the sequential filling of the 5f electron
orbitals. Although the specific themes evolved during the Center’s history, the final research
themes were: (1) Nanoscale Cage Clusters, (2) Complex Ceramic and Metallic Materials, and (3)
Materials Under Extreme Environments. To date, the Center has produced 254 peer-reviewed
journal publications and book chapters that acknowledged only the EFRC funding, and an
additional 161 journal publications and book chapters that acknowledged funding from the EFRC
and additional sources (a few manuscripts are still in preparation). Broad highlights include: (1)
Development of an extensive family of actinide nanomaterials that self-assemble in aqueous
solution, an understanding of their formation mechanisms and stabilities, and possible uses in
nuclear fuel cycles; (2) Establishment of facilities and methodologies to conduct high-temperature
calorimetry on transuranium materials, and extensive thermodynamic-based studies of uranium
and thorium compounds important to the nuclear fuel cycle; (3) A vastly improved understanding
of the behavior of actinide materials in extreme conditions, including high radiation fields,
temperatures, and pressures, as well coupled effects of two or more of these; (4) Development of
resonance ultrasound spectroscopy and direct measurement of aging of plutonium alloys.

SUMMARY OF CENTER BACKGROUND, PARTICIPATION, AND MAJOR ACCOMPLISHMENTS

Materials Science of Actinides (MSA) was funded initially from 2009-2014 and was renewed
through 2018. MSA united researchers to conduct collaborative, novel and transformative research
in actinide materials science. Actinides arise from the sequential filling of the 5f electron orbitals,
are the heaviest natural elements, and are all radioactive. They are unique in their societal
importance owing to their roles in energy production, national security, nuclear weapons non-
proliferation, medical isotope production, and environmental contamination. The 5f electrons,
relativistic effects, and redox chemistry complicate the chemistry of actinides. Research in actinide
materials has lagged far behind that of most other materials systems, particularly in the synthesis
and characterization of new materials, measurement of thermochemical and physical properties,
and the design of materials for special applications under extreme conditions, such as may be found
in nuclear reactors.



Actinide materials present exceptional scientific challenges because the highly directional nature
of 5f electron orbitals produces a complex interactive physical and chemical system that is not
fully understood. Plutonium, an actinide near the center of the series, sits on the boundary between
localized and itinerant electron behavior. Lighter actinides have itinerant electrons, while for
heavier actinides the electrons are localized. In ionic compounds, mainly oxides, this transition
from itinerant to local behavior results in more variable oxidation states for uranium-plutonium
than for the later actinides. In essence, all actinides are structurally and electronically fragile,
wherein small changes in pressure, temperature, and composition may have a profound effect on
the structures and properties of actinide materials. This fragility (or complex energy landscape)
provides an opportunity to modify and probe their underlying complexity and to tailor materials
with specific properties.

Mission: The mission of MSA is to conduct collaborative, multidisciplinary, novel and
transformative research on actinide materials emphasizing actinide ceramic, metallic, hybrid, and
nanoscale materials, effective integration of experimental and computational approaches, and
solving research questions that are critical to the energy future of the nation. Workforce
development is a fundamental and inherent goal of this university-based center.

Senior Investigators 2009-2014

Thomas Albrecht-Schmitt — University of Notre Dame and then Florida State University
Mark Asta — University of California, Davis

Udo Becker — University of Michigan

Peter C. Burns — University of Notre Dame

Christopher Cahill — George Washington University

William H. Casey — University of California, Davis

Rodney C. Ewing — Stanford University

Jeremy Fein — University of Notre Dame

Laura Gagliardi — University of Minnesota (added to EFRC in 2010)

David Hobbs — Savannah River National Laboratory

Neils Jensen — University of California, Davis (removed from EFRC in 2011)

Jie Lian — Rensselaer Polytechnic Institute

Edward Maginn — University of Notre Dame

Alexandra Navrotsky — University of California, Davis

May Nyman — Sandia National Laboratory and then Oregon State University

Lynda Soderholm — University of Notre Dame (adjunct) (removed from EFRC in 2011)
Tracy Rudisill — Savannah River National Laboratory

Ann Visser — Savannah River National Laboratory

William Weber — Pacific Northwest National Laboratory and then University of Tennessee

Senior Investigators 2014-2018

Mark Asta — University of California, Davis

Peter C. Burns — University of Notre Dame

Christopher Cahill — George Washington University (removed from EFRC in 2016)
William H. Casey — University of California, Davis



Rodney C. Ewing — Stanford University

Jeremy Fein — University of Notre Dame

Laura Gagliardi — University of Minnesota

Amy Hixon — University of Notre Dame

Maik Lang — University of Tennessee

Tianbo Liu — University of Akron

Edward Maginn — University of Notre Dame
Wendy Mao — Stanford University

Albert Migliori — Los Alamos National Laboratory
Alexandra Navrotsky — University of California, Davis
May Nyman — Oregon State University

Scientific Advisory Board (over the lifetime of the Center)

Lynn Boatner — Oak Ridge National Laboratory

Bruce Bursten — University of Tennessee

David Clark — Los Alamos National Laboratory

Sue Clark — Pacific Northwest National Laboratory, Washington State University
Ingmar Grenthe — Professor Emeritus, KTH, Sweden

Richard Haire — Oak Ridge National Laboratory

Joseph Hupp — Northwestern University

lain May — Chemistry Division, Los Alamos National Lab

Lester Morss — retired from DOE

Mark Peters — Idaho National Laboratory



During 2009-2014, the EFRC had
three research themes: (1) Complex
Actinide Materials, (2) Nanoscale
Actinide Materials, and (3) Actinide
Materials Under Extreme
Environments. The renewed EFRC in
2014 had four research themes: (1)
Nanoscale Cage Clusters, (2)
Complex Ceramic and Metallic
Materials, (3) Hybrid Materials, and
(4) Materials Under Extreme
Environments (Fig. 1). In 2016 the
research themes of the EFRC were
modified following peer review, and
were (1) Nanoscale Cage Clusters, (2)
Complex Ceramic and Metallic
Materials, and (3) Materials Under
Extreme Environments. Note that
RT1 in 2016 corresponds to RT2 in
2009, RT2 in 2016 corresponds to
RT1 in 2009, and RT3 in 2016
corresponds to RT3 in 2009.
Summaries of accomplishments will
be discussed below organized in the
three research themes that existed in
2016.
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Fig. 1. The intersection between Research Themes (RT)
and Cross-Cutting Themes (CCT) defines MSA.

Research Theme 1: Nanoscale Cage Clusters

In 2005 Burns and co-workers discovered the spontaneous self-assembly of uranyl peroxide cage
clusters in aqueous solutions under ambient conditions, and reported the structures of three of
these: U24, U28 and U32 (which contain 24, 28, and 32 uranyl ions, respectively).! Upon creation
of the EFRC in 2009, uranyl peroxide cage clusters were a major focus of research. The trans
configuration of the uranyl oxygen atoms provides for stabilization of these clusters on both the
inside and outside, and results in a unique class of metal oxide clusters. Research efforts in the
EFRC vastly expanded this novel class of nanoscale actinide materials to more than 70 published
clusters. In each case clusters were crystallized and single-crystal X-ray diffraction was used to
resolve the details of their structures, with neutron diffraction also used for two clusters to provide
further detail of H atom and counter cation potions.?3 In 2012 we published a very extensive
review of the structures and synthesis of uranyl peroxide cage clusters in Chemical Reviews* in
2013, as well as a comprehensive comparison of uranyl peroxide cage clusters to transition metal
polyoxometalates in Chemical Society Reviews in 2012.° In 2018 we published a Frontier article
in Dalton Transactions the summarized current understanding and future research directions in
uranyl peroxide cluster chemistry.® The interested reader is directed to these review articles for
details of our studies of uranyl peroxide cage clusters.




In order to achieve our goals in RT1, we applied a variety of experimental techniques to the
study of uranyl peroxide cage clusters in solutions. Particularly notable is the application of small-
angle X-ray scattering techniques to characterize the size, shape, and aggregation of clusters in
solution, electrospray ionization mass spectrometry to characterize the size and charge of cluster
species in solution, dynamic and static light scattering to characterize the size and shape of clusters
and their aggregates in solution, and cryogenic transmission electron microscopy to image
blackberries of uranyl peroxide cage clusters in vitrified solutions.

Broad highlights of the 2009-2018 EFRC research in RT1 include:

- Syntheses, structures and characterization were published for about 60 types of uranyl
peroxide cage clusters, producing a library of cluster geometries, compositions, and sizes
to support additional research concerning their formation mechanisms, solubilities,
stabilities, etc. Each of these was crystallized and single-crystal X-ray diffraction was used
to determine their structures. Clusters containing from 16 to 124 uranyl ions were isolated,
with diameters extending to 4 nm. In addition to uranyl and peroxide, many ligands were
incorporated including hydroxyl, phosphate, pyrophosphate, nitrate, phosphite, oxalate,
and etidronic acid.?-2° We also synthesized a series of clusters containing both uranyl and
transition metals 81426

- We characterized the extremely high solubility of uranyl peroxide cage cluster salts and
their use to facilitate dissolution of normally insoluble uranium compounds such as
studtite.?”?® The solubilities of the various salts of clusters exhibit a significant dependence
upon the counter cation present, with Li salts being the most soluble.

- Using mass spectrometry, we demonstrated the unexpected stability of uranyl peroxide
cage clusters in aqueous solutions over extended periods (many months)?® and the
breakdown mechanisms of clusters*®®! and their reduction by bacteria.*?

- We developed a uranium purification and separation process based upon uranyl peroxide
cage clusters®*3* and methods to remove clusters from aqueous solutions using mesoporous
materials.®>3® The former was demonstrated using mass-based filtration of a solution
produced by dissolving a surrogate spent nuclear fuel. We also demonstrated high
efficiency extraction of uranyl clusters into organic solvents.®’

- We demonstrated the solubilization of normally insoluble divalent and trivalent metals by
encapsulating them in uranyl peroxide cage clusters.® We also incorporated lanthanides
into the walls of uranyl peroxide cage clusters.*?

- Computation studies that provided details of uranyl-peroxide interactions and how these
favor cluster formation, relative energetics, and cluster formation mechanisms 26:27:3%-44,

- Examination of the behavior of uranyl peroxide cage clusters at extremely high pressures
in diamond anvil cells, including a mass spectroscopic demonstration of cluster persistence
even after the crystals had become X-ray amorphous.*

- Determination of the thermodynamic properties of uranyl peroxide cage cluster salts,
including the relationship between cluster charge density and enthalpy of formation.2%46:47

- Aggregation behavior of uranyl peroxide cage clusters in agueous solution to form a variety
of blackberry structures that were characterized by light scattering® > and transmission
electron microscopy.*®

- Studies of the dynamics of uranyl peroxide cage clusters and their transformations in
aqueous solutions, including as a function of pressure, temperature, and pH.>"°



Evaluation of the interaction of uranyl peroxide cage clusters with various mineral surfaces
as an evaluation of their significance for the environmental transport of uranium.%53

We summarize the results and impact of some of the more important papers:

Dembowski, M. et al. (2016) Journal of the American Chemical Society *

Solution P-31 NMR Study of the Acid-Catalyzed Formation of a Highly Charged
{U24Pp12} Nanocluster, [(UO2)24(02)24(P207)12]*%, and Its Structural Characterization in
the Solid State Using Single-Crystal Neutron Diffraction. The first neutron diffraction
study of a single crystal containing uranyl peroxide nanoclusters was reported for a
pyrophosphate-functionalized cluster. Relative to earlier X-ray studies, neutron diffraction
provides superior information concerning the positions of H atoms and lighter counterions.
Hydrogen positions were assigned and reveal an extensive network of H-bonds; notably,
most O atoms present in the anionic cluster accept H-bonds from surrounding H.O
molecules, and none of the surface-bound O atoms are protonated. The Dsh symmetry of
the cage is consistent with the presence of six encapsulated K cations, which appear to
stabilize the lower symmetry variant of this cluster. P-31 NMR measurements
demonstrated retention of this symmetry in solution, while in situ P-31 NMR studies
suggest an acid-catalyzed mechanism for the assembly of 1 across a wide range of pH
values.

Olds, T.A. et al. (2017) Inorganic Chemistry '

Single-Crystal Time-of-Flight Neutron Diffraction and Magic-Angle-Spinning NMR
Spectroscopy Resolve the Structure and H-1 and Li-7 Dynamics of the Uranyl Peroxide
Nanocluster U-60. Single-crystal time-of-flight neutron diffraction provided atomic
resolution of H atoms of H,O molecules and hydroxyl groups, as well as Li cations in the
uranyl peroxide nanocluster U-60. Solid-state magic-angle-spinning nuclear magnetic
resonance (MAS NMR) spectroscopy was used to confirm the dynamics of these
constituents, revealing the transportation of Li atoms and H,O through cluster walls. H
atoms of hydroxyl units that are located on the cluster surface are involved in the transfer
of H2O and Li cations from inside to outside and vice versa. This exchange occurs as a
concerted motion and happens rapidly even in the solid state.

Peruski, K. et al. (2017) Inorganic Chemistry *’

Uranyl Peroxide Cage Cluster Solubility in Water and the Role of the Electrical Double
Layer. In this study we demonstrated that uranium concentrations as high as 2.94 x 10°
parts per million (1.82 mol of U/1 kg of H>O) occur in water containing nanoscale uranyl
cage clusters. The concentration of uranium in these systems is impacted by the
countercations (K, Li, Na), and molecular dynamics simulations predicted their
distributions in selected cases. Formation of uranyl cages prevents hydrolysis reactions that
would result in formation of insoluble uranyl solids under alkaline conditions, and these
spherical clusters reach concentrations that require close packing in solution.

Vlaisavljevich, B. et al. (2010) Journal of the American Chemical Society *!
Understanding the Structure and Formation of Uranyl Peroxide Nanoclusters by Quantum
Chemical Calculations. For the first time, density functional theory was applied to




understand the formation of nanoscale uranyl peroxide cage clusters. We investigated the
uranyl-peroxide-uranyl interaction and compared the geometries of clusters with and
without such interactions. We showed that a covalent interaction along the U-O-peroxo
bonds causes the U-O,-U dihedral angle to be bent, and it is this inherent bending of the
configuration that encourages curvature and cage cluster formation. The U-O.-U dihedral
angle of the peroxo bridge can be tuned to some extent by the size or electronegativity of
the counterion present.

e Falaise, C. and Nyman, M. (2016) Chemistry — A European Journal®*

The Key Role of Ugin the Aqueous Self-Assembly of Uranyl Peroxide Nanocages. Here
we exploited the high solubility of the UO2?*/H.O./LiOH aqueous system to address the
effect of the hydroxide concentration. Important techniques of this study are single-crystal
X-ray diffraction, small-angle X-ray scattering, and Raman spectroscopy. When the
LiOH/U ratio is around three, U2s forms rapidly and this cluster can be isolated in high
yield and purity. This result was most surprising and challenges the hypothesis that alkali
templating is the most important determinant in the cluster geometry. Moreover, analogous
experiments with KOH, NH4OH, and TEAOH (TEA=tetraethylammonium) also rapidly
yield Uzs, which suggests that Uog is the Kinetically favored species. Complete mapping of
the pH-time phase space reveals only a narrow window of the Uzg dominance, which is
why it was previously overlooked as an important kinetic species in this chemical system,
as well as others with different counterions.

Research Theme 2: Complex Ceramic and Metallic Materials

A wide suite of actinide materials is important for nuclear technology, and a much deeper and
more accurate understanding of their properties is critical. From a fundamental perspective, this
variety offers exciting opportunities for comparative studies that expand fundamental knowledge
of actinide chemistry and physics. The functionality of refractory actinide materials, their phase
diagrams, and stability to corrosion and radiation damage all depend on the interplay of structural,
chemical, and electronic configurations. The emphasis of this research theme is development of
methodologies and measurements of thermodynamic parameters of important actinide materials.

In order to achieve our objectives in this research theme, we developed new calorimetry facilities
for measurements of thermodynamic data for transuranium materials.%>®® We also developed
resonant ultrasound spectroscopy to measure aging of plutonium alloys directly for the first time.®’

Selected highlights of this research effort are:

- Measurement and characterization of the aging of plutonium alloys in real time using
spectroscopic techniques.®”-"°

- Measurement of thermodynamic properties of various uranium-based minerals’*" and
hybrid materials,” including coffinite,”>"6"8 which has resisted studies for many years.

- Synthesis and characterization of an extensive family of actinide borates, including
examples of cationic frameworks with anion exchange properties.”®°!



Determination of thermodynamic properties of a broad range of actinide and lanthanide
oxides important as nuclear fuels and nuclear waste forms, often including computational
models. 65,71,74,92-111

Studies of X-ray amorphous U>O7 that forms upon heating of the uranyl peroxide studtite
and that caused pressurization of drums of yellowcake that resulted in contamination and
injuries. 112

Determination of formation energetics and order disorder in fluorite oxides.%3998100-
103,107,110

Discovery and characterization of complexity of radiation damage and annealing in
pyrochlores, including short range weberite structural motifs, 6695111113

Developing calorimetric techniques applicable to higher actinides at the University of
Notre Dame and at Los Alamos National Laboratory.®>6®

We summarize the results and impact of some of the more important papers:

Ennaceur, S. and Migliori, A. (2018) Philosophical Magazine Letters®

Toward an understanding of aging in plutonium from direct measurements of stored
energy. We present here the first direct measurement of the radiation-damage-induced
energy stored in delta-phase plutonium. Each decay imparts about 85 keV of recoil energy
to the uranium byproduct, 5.2 Mev to the alpha particle, and a spectrum of mostly low
energy gamma rays with the most probable at 51 keV. Most of the decay energy is
converted immediately to heat, releasing about 1.9 mW/g. However, some thermally-
recoverable energy remains trapped. We report measurements of that stored energy using
differential scanning calorimetry (DSC) applied to Pu-239-2.0 at.%Ga delta-phase alloy.
Retained energy of similar to 2 J/g saturates at about 5 months and is unchanged after 30
years. The magnitude of the stored energy agrees with a short-bond defect model that that
we present. This model treats radiation damage as a Pu impurity with shortened bond
lengths. It explains the change in known properties with age and predicts that density
increases with age, contrary to current thinking. The short-bond impurities proposed are
expected to act like other impurities, affecting strength, phase transitions, grain boundaries
and other metallurgical properties.

Odoh et al. (2016) Inorganic Chemistry''?

Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U>O7. Recent accidents
resulting in worker injury and radioactive contamination occurred due to pressurization of
uranium yellowcake drums produced in the western U.S.A. The drums contained an X-ray
amorphous reactive form of uranium oxide that may have contributed to the
pressurization. Heating hydrated uranyl peroxides produced during in situ mining can
produce an amorphous compound, as shown by X-ray powder diffraction of material from
impacted drums. Subsequently, studtite, [(UO2)(02)(H20)2](H20)2, was heated in the
laboratory. Its thermal decomposition produced a hygroscopic anhydrous uranyl peroxide
that reacts with water to release O> gas and form metaschoepite, a uranyl-oxide hydrate.
Quantum chemical calculations indicate that the most stable U207 conformer consists of
two bent (UO2)?* uranyl ions bridged by a peroxide group bidentate and parallel to each
uranyl ion, and a mu.-O atom, resulting in charge neutrality. A pair distribution function
from neutron total scattering supports this structural model,as do H! and O nuclear




magnetic resonance, spectra. The reactivity of U,O- in water and with water in air is higher
than that of other uranium oxides, and this can be both hazardous and potentially
advantageous in the nuclear fuel cycle.

e Zhang et al. (2018) Journal of Nuclear Materials®

Experimental thermochemistry of neptunium oxides: Np2Os_and NpO». Although high
temperature oxide melt solution calorimetry has proven very useful in obtaining
thermodynamic data for the formation of uranium and thorium oxide materials, it has not
yet been applied to transuranium compounds. Continuing a program at Notre Dame to
study the thermodynamics of transuranium compounds, we report the first determination
of the enthalpies of drop solution of well-characterized neptunium oxides (Np2Os and
NpOz) using oxide melt solution calorimetry in molten sodium molybdate solvent at 973
K. The calorimetric methodology is straightforward and produces reliable data using
milligram quantities of radioactive materials, and can be applied to many other
transuranium compounds.

e Alexandrov et al. (2011) Journal of Physical Chemistry Letters'*?

Actinide Dioxides in Water: Interactions at the Interface. A comprehensive understanding
of chemical interactions between water and actinide dioxide surfaces is critical for safe
operation and storage of nuclear fuels. Despite substantial previous research, understanding
the nature of these interactions remains incomplete. In this work, we combined accurate
calorimetric measurements with first-principles computational studies to characterize
surface energies and adsorption enthalpies of water on two fluorite-structured compounds,
ThO2 and CeO.. The results show a correlation between the magnitude of the anhydrous
surface energy and the water adsorption enthalpy. Further, they suggest a structural model
featuring one adsorbed water molecule per one surface cation on the most stable facet that
is expected to be a common structural signature of water adsorbed on actinide dioxide
compounds.

Research Theme 3: Materials Under Extreme Environments

Materials behavior under simultaneous high-irradiation, high-pressure and high-temperature
conditions have significant implications for studies in condensed matter physics, materials science,
nuclear engineering as well as the geological sciences. The large amount of energy deposited by
relativistic heavy ions in materials under high pressure and temperature will have significant
influences on the thermodynamics and kinetics of phase-transitions under pressure. Since the ion
energy deposition involves extremely short time scales, non-equilibrium processes such as ion-
induced pressure/temperature waves may be expected. Their interaction with already applied static
pressure and temperature may trigger new phase transitions in solids that are only present under
static pressure. In addition, nano-scale materials behave very differently from the bulk material
under extreme conditions.

Prior to this research effort there were limited data available on how materials respond to the
simultaneous exposure to energetic projectiles, high pressures, and high temperatures as a function
of structure, composition, thermodynamic stability and crystallite size. Over the nine year period



of this EFRC, researchers in RT3 were able to investigate the behavior of important actinide
ceramics, such as UO2, ThO., actinide-bearing complex ceramics, such as pyrochlore, garnet, and
apatite, as well as simple compounds or alloys that have applications in nuclear science, such as
ZrN and high entropy metal alloys.

Viewed broadly, the RT3 research team:

e Systematically investigated these coupled processes with high-energy irradiations at
elevated pressures and temperatures. We also performed high-pressure/temperature
experiments on pre-irradiated samples (to investigate the influence of defects on phase
transitions) and irradiation experiments of pre-pressurized/ thermally treated samples (to
investigate the stability of high-pressure phases under ion irradiation).

e Sought to understand the response of actinide materials to combinations of extreme
conditions of temperature, pressure, chemical environments, and high-radiation fields as a
function of crystallite size.

e Sought to understand the structures and stabilities of the full range of U:O and Th:O
compounds as a function of high pressures and temperatures that were subjected to intense
radiation fields in order to determine their response under extreme conditions.

e Investigated the response of actinide materials far from equilibrium using high-energy ion
beams and high energy lasers to deposit extremely large amounts of energy into small
volumes of actinide materials.

e Synthesized new actinide materials under coupled conditions of high pressures and
temperatures in an intensely ionizing radiation field and as a function of crystallite size.

We also successfully addressed a number of fundamental scientific issues specific to actinide
compounds

e What are the high-pressure/temperature behaviors of different U:O stoichiometries? How
are these related to the much simpler Th:O system?

e What new actinide phases form under extremes of pressure and temperature? What is the
effect of grain size on the energetics and dynamics of phase transformations?

e What are the structural responses of different actinide materials to ionization and ballistic
collision processes from energetic ion irradiation?

e What are the effects of electronic configuration on the stability and defects of AnO2
materials?

e How do the microstructures evolve and what are the impacts of nano-grain size and
stoichiometry on radiation stability? What is the nature of defects and structures produced
by fission products (or similar ions) in AnO2 materials that do not exhibit track formation?

e What is the structural response of actinide materials to the combined application of
relativistic heavy ions, high pressure, and high temperature? Can we predictively model
materials behavior under such extreme conditions?

e Can the coupling of extreme conditions result in the formation of novel actinide phases
with enhanced performance in harsh environments?

e How is the production and nature of defects affected by ion irradiation at high pressures?

10



e How does radiation damage from energetic ions affect the thermal and ionic conductivity
of AnO; materials? What is the relationship of this damage to the underlying nanoscale
damage morphology, microstructure evolution, and defect accumulation?

e What is the effect of non-stoichiometry and grain size on these modifications?

e Can very-high-energy ion irradiation be used to tailor nanoscale transport properties?

e How can extremes in high-energy ion irradiation, pressure, and temperature be used to
synthesize novel actinide materials? Do these new compounds have useful properties that
enhance their use in extreme environments?

e What is the response of different nanoscale uranyl cage topologies to high pressure?

In order to address these issues, new, innovative experimental techniques had to be developed and
applied. Much of the effort of the RT3 team was devoted to developing these new techniques.
Three broad experimental efforts included:

1. Coupling of extreme conditions (high-temperature- and high-pressure experiments in
intense radiation fields):

Research on materials exposed to swift heavy ion irradiation, high pressure, and temperature
is based on a new experimental approach fulfilling three technical requirements: (i) the sample
must be enclosed in a high-pressure cell, (ii) the ions require sufficient kKinetic energy to travel
completely through one of the pressure anvils to reach and traverse the sample under
investigation, and (iii) a heating wire (or heating laser) must be connected with the pressure
cell at the irradiation site (Fig. 2). High-pressure techniques have been successfully combined
with the use of ion beams by injecting relativistic heavy ions of one of the world’s largest
accelerator facilities (GSI Helmholtz Center for Heavy lon Research, in Darmstadt, Germany)
through a mm-thick diamond anvil of a high-pressure cell (DAC) into a pressurized target (Fig.
2). During the EFRC project, experimental

protocols have been continuously developed to gramondanvl
routinely expose samples to controlled extremes ~ - m——
of pressure (~1 Mbar) and irradiation (~1x10'3 P —r
jons/cm?). A wide range of actinide and | PACTJ sanpie rolativisticlons S0COY ™ eamiine

surrogate materials (nanocrystalline and bulk

materials) have been systematically irradiated
with swift heavy ions at high pressures to
investigate their response to coupled extremes.

Fig. 2: Scheme of high-pressure irradiation
experiments with relativistic heavy ions. In
order to reach the sample pressurized between
two diamond anvils (size ~100 um), the initial

Material modifications were analyzed by
means of in situ synchrotron-based X-ray
diffraction which requires coordinated
beamtimes at large  user facilities
(characterization at high pressure prior to ion irradiation and afterwards).

beam energy must be ~50 GeV. Temperature
can be controlled by heating wires or intense
heating lasers (not shown).

2. Neutron total scattering characterization of ion irradiation materials:

The investigation of radiation effects with conventional characterization techniques such as
XRD and TEM has two major shortcomings: (i) both X-ray and electron probes are insensitive
to low-Z elements (e.g., oxygen) and (ii) diffraction experiments provide no information on
the local atomic arrangement and the medium-range structure. To overcome this, we have
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6-bank detector system at NOMAD together  cytaway side view (right) shows the orientation

with the wide range of available neutron of the holder during ion irradiation.
wavelengths (0.1 - 3 A) are essential to

produce PDFs with very high resolution to resolve subtle structural features within irradiated
materials. Key to this experimental procedure is the use of GeV ions to produce sufficient
sample material irradiated with a near uniform electronic energy loss. A new holder system
was developed for such experiments to facilitate the preparation of ~100 mg sample with
precision control of the thickness (Fig. 3). Several of such sample holders were irradiated
simultaneously with a ~25 cm? sized beam of energetic heavy ions (e.g., Au ions, 2.2 GeV).
After ion-beam exposure the samples were removed from the irradiation holders, combined,
ground into a fine powder, and loaded into sample holders for neutron analysis. The NOMAD
instrument has also in situ capabilities enabling neutron scattering experiments at high
temperatures of up to 1200 °C. We complemented therefore the characterization of radiation
effects by studies on damage recovery and defect dynamics at elevated temperatures.

3. High energy laser irradiations and pump probe experiments:

One of the challenges of using ion beam irradiation as a source of induced damage was that
the volume of material damaged was so small. We solved this problem by using a combination
of HRTEM and SAXS experiments, but still the work was tedious. This led us to develop the
use of higher energy lasers to move and observe systems far from equilibrium. Ultrafast optical
pump-probe experiments were performed using a Ti:sapphire laser with a pulse duration of 50
fs and central wavelength of 800 nm. Probe fluence was over an order of magnitude lower than
the pump beam for all measurements, which were collected at elevated pressure using a
diamond-anvil cell (DAC) at room temperature. We first demonstrated that the types of phase
transitions observed from ion beam irradiations were the same as those induced by high-energy
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lasers. The ability to temporally resolve ultrafast laser pulses allows one to directly observe
the radiation damage process on the relevant timescales by using time-resolved pump-probe
spectroscopy. The ultimate goal of this work was to be able to directly observe phase transitions
at the atomic-scale.

Over the nine-year period, this research group was remarkably productive. Referring to the
tabulated list of publications for the MSA EFRC, RT3 researchers published: 102 papers fully-
funded by the EFRC, 46 papers that were completed with collaborators and 4 book chapters. We
summarize the results and impact of some of the more important papers below (# indicates the
listing in the tabulation of papers from the EFRC:

Zhang, J.M. et al. (2015) Journal of Materials Research''*
Ceo_and U ion irradiation of Gd»TixZroxO7 pyrochlore. Gd2TixZrpxO7 (x = 0 to 2)

pyrochlore was irradiated by 30 MeV CgQ clusters, which provide an extremely high

ionizing energy density. High-resolution transmission electron microscopy revealed a
complex ion-track structure in Gd2Ti2O7 and Gd2TiZrO7, consisting of an amorphous
core and a shell of a disordered, defect-fluorite structure. As compared with the irradiation
by 1.5 GeV U ions with the highest energy loss, the track structure is consistent with tracks
created by monoatomic swift heavy ions, but the diameters (with the entire diameter of 17
nm for Gd2Ti2O7 and 15 nm for Gd2TiZrO7) are significantly larger due to the much
smaller velocity and higher energy density of the Cgp ions. lon tracks created by

monoatomic ions are challenging to describe by HRTEM, as the boundary between
disordered fluorite and pyrochlore matrix is less distinct. However, the Cgq irradiation
shows a clearly resolved ion track with completely crystalline, disordered, defect-fluorite
structure around an amorphous core. Based on the distinct boundaries of the track
morphology, inelastic thermal-spike calculations were used to describe the track size and
extract critical energy densities for the interpretation of the complex core—shell
morphologies for the different pyrochlore compositions.

Tracy, C.L. et al. (2015) Nature Communications''® and Cureton, W.F. et al. (2019) Journal
of Nuclear Materials''®

Redox response of actinide materials to highly ionizing radiation. Energetic radiation can
cause dramatic changes in the physical and chemical properties of actinide materials,
degrading their performance in fission-based energy systems. Characterization of
irradiated actinide oxides by advanced synchrotron techniques (X-ray diffraction and X-
ray absorption spectroscopy) showed that the redox behavior of actinides governs the
radiation tolerance. The microstructure of the material plays a critical role in this process
with a nanoscale grain size reducing significantly the radiation resistance. These findings
suggest that by limiting the redox activity of actinide materials through control of
composition or microstructure, one can mitigate radiation-induced swelling and
microstrain.
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Fig. 4: (top) Cation reduction causes structural distortion in the actinide oxide lattice that
are identical to that caused by Frenkel defects. (bottom) Radiation-induced swelling
depends strongly on the electronic structure of the cation and the grain size of the material.

Shamblin et al. (2016) Nature Materials'’
Probing disorder in isometric pyrochlore and related complex oxides. Complex oxides are

candidate materials for a wide range of energy-related applications, such as solid
electrolytes for fuel cells, host materials for actinide immobilization, and thermal barrier
coatings for gas turbine jet engines. When subjected to extreme environments, such as high
temperatures or highly ionizing radiation, many of these compounds partially lose their
ordered structure through, as previously thought, random mixing of their atomic
constituents. Neutron total scattering experiments, however, revealed that the cations and
oxygen atoms are not randomly arranged at the atomic level, but only appear so when
sampling over longer length scales. This discovery indicates that discrepancies may arise
when extrapolating the materials structure from the microscale to the atomic scale (or vice
versa), which has significant implications for modelling properties and degradation
phenomena in actinide-bearing materials. Structural heterogeneity across different length
scales appears to be a universal phenomenon for both, intrinsically (e.g., chemical
doping/substitution) and extrinsically (e.g., irradiation and mechanochemical processing)

disordered complex oxides.
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Fig. 5: (left) The disordered cubic phase does not agree with the neutron scattering data
on Ho2Zr,07. (right) Despite an average cubic structure, an orthorhombic structure agrees
well locally.

O’Quinn et al. (2017) Journal of American Chemical Society''®

Inversion in Mgi1xNixAl,O4 spinel. Given the ubiquity of the spinel structure in many
engineering applications, a comprehensive understanding of its structure at the atomic-
scale is important, particularly under extreme conditions. The atomic arrangement of the
isometric spinel structure is conventionally described by only three degrees of freedom. Of
importance is the inversion parameter, which defines the degree of cation exchange and
represents a direct measure of intrinsic disorder. Based on neutron total scattering
experiments, we have determined that the local structure of spinel cannot be understood as
simply being due to cation disorder. Rather, cation inversion creates a local tetragonal
symmetry that extends over sub-nanometer domains. Consequently, the simple spinel
structure is more complicated than previously thought, as more than three parameters are
needed to fully describe the structure. This new insight provides a framework by which the
behavior of spinel can be more accurately modeled under the extreme environments
important for many geophysics and energy-related applications, including prediction of
deep seismic activity and immobilization of nuclear waste in oxides.
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Fig. 6: (left) Comparison of PDFs for the Mgi1xNixAl204 spinel series, highlighting the
distances associated with coordination polyhedra in each series member and associated
deviation from the isometric structure with increasing Ni-content. (right) The good
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agreement of inversion parameter, from average structure refinement, and local tetragonal
P4,22 phase fraction, from PDF refinement indicate that cation inversion can be
understood as locally-ordered structural distortion.

Tracy et al. (2017) Nature Communications'"

High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy
CrMnFeCoNi. High-entropy alloys, near equi-atomic solid solutions of five or more
elements, represent a new strategy for the design of materials with properties superior to
those of conventional alloys. However, their phase space remains constrained, with
transition metal high-entropy alloys exhibiting only face- or body-centered cubic
structures. In this paper, we investigated the high-pressure synthesis of a hexagonal close-
packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic
transformation begins at 14GPa and is attributed to suppression of the local magnetic
moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al
and the noble gases, the transformation is sluggish, occurring over a range of 440 GPa.
However, the behavior of CrMnFeCoNi is unique in that the hcp phase is retained
following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This
demonstrates a means of tuning the structures and properties of high-entropy alloys in a
manner not achievable by conventional processing techniques.

J. Shamblin et al. (2018). Acta Materialia'?®

Similar local order in disordered fluorite and aperiodic pyrochlore structures. A major
challenge to understanding the response of materials to extreme environments (e.g., nuclear
fuels/waste forms and fusion materials) is to unravel the processes by which a material can
incorporate atomic-scale disorder, and at the same time, remain crystalline. Neutron total
scattering was utilized to characterize the irradiation response of two pyrochlores, one that
is known to disorder and the other to amorphize under ion irradiation. The data
demonstrated that in both cases, the local pyrochlore structure is transformed into similar
orthorhombic units even though the two compositions have distinctly different structures,
aperiodic vs. disordered-crystalline, at longer length scales. This suggests that a material's
propensity to disorder rather than to amorphize may not be fully determined by its ability
to incorporate point defects, but rather on the structure's compatibility with meso-scale
modulations of the local order in a way that maintains long-range periodicity. This
discovery not only redefines the understanding of radiation resistance, but indicates that
discrepancies may arise when extrapolating the material’s structure from the microscale to
the atomic scale (or vice versa), which has significant implications for modelling properties
and degradation phenomena in actinide materials.
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Fig. 7: Neutron PDFs of pyrochlores before (blue) and after (red) being irradiated with
2.2 GeV Au ions to a fluence of 8x10* jons/cm?. (top) Er2Sn,07, disorder is indicated by
broadening and merging of the original pyrochlore peaks. (bottom) Dy.Sn,O7, after
irradiation the peaks are significantly reduced in area, but do not show pronounced
merging, indicative of partial amorphization. The local atomic arrangement changes in
both cases from pyrochlore to weberite-type.

Rittman et al. (2018) Physical Rev. B'*!

Anomalous behavior of nonequilibrium excitations in UO,. Ultrafast optical pump-probe
studies of UO2 under pressure were performed in order to better understand the material’s
response to ionizing radiation. Photoexcitation generates oscillations in the time- resolved
reflectivity at two distinct GHz-scale frequencies. The higher-frequency mode is attributed
to a coherent longitudinal acoustic mode. The lower-frequency mode does not correspond
to any known excitation under equilibrium conditions. The frequency and lifetime of the
low-frequency mode are studied as a function of pressure. Abrupt changes in the pressure-
dependent slopes of these attributes are observed at ~10 GPa, which correlates with an
electronic transition in UO2. Variation of probe wavelength reveals that the low-k
dispersion of the low-frequency mode does not fit into either an optical or acoustic
framework. Rather, we propose that this mode is related to the dynamical magnetic
structure of UO2. The implications of these results help account for the anomalously small
volume of damage known to be caused by ionizing radiation in UO2; we propose that the
existence of the low-frequency mode enhances the material’s transient thermal
conductivity, while its long lifetime lengthens the timescale over which energy is
dissipated. Both mechanisms enhance damage recovery.

Palomares, R 1. et al. (2019) Physical Review Materials'**

Oxygen point defect accumulation in single-phase UO»+x. Uranium dioxide is of primary
technological importance as a nuclear fuel material. A unique feature of the uranium oxide
system is the high degree of off-stoichiometry that the material exhibits upon varying
oxygen partial pressure and temperature, such as under off-normal operating conditions.
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Oxidation of UO; is an exothermic process that proceeds largely through the incorporation
of oxygen atoms into the UO, matrix. These excess oxygen interstitials are expected to
form small defect clusters with morphologies that are not fully understood. Experimental
findings from Willis for example, although reproducible, remain at odds with theoretical
models, which consistently show that the experimental defect configurations are unstable
and decompose into smaller di-interstitial defects upon structural relaxation. Simultaneous
modeling of multiple length scales using complementary Reverse Monte Carlo (RMC) and
Molecular Dynamics (MD) methods on neutron total scattering data obtained with UO2.07
confirm that excess oxygen primarily exists as small defects, such as mono-interstitials and
di-interstitials. Employing a combination of analysis methods with varying length-scale
sensitivities enabled more accurate assessment of the UO».x defect structure. These
findings provide experimental support for previously predicted di-interstitial defect
morphologies in UO2+« that highly influence the accurate prediction of bulk
physiochemical properties, such as oxygen diffusivity.
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Fig. 8: Oxygen point defect configurations in UO207 at 600 and 1000 °C studied by neutron
total scattering experiments, Reverse Monte Carlo (RMC) modelling, and Molecular
Dynamics (MD) simulations. (left) The oxygen interstitials in the optimized RMC models
cause the emergence of a small O-O correlation at ~2 A. (middle and right) Bond vector
analyses show that these short (1.9-2.1 A) O-O pairs are oriented primarily along <111>
directions.
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