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EXECUTIVE SUMMARY 

 

The Energy Frontier Research Center Materials Science of Actinides (MSA) conducted basic 

research from 2009-2019. The scientific personnel and participating institutes changed several 

times during the evolution of the Center, and in total included 24 senior investigators, four national 

laboratories, and ten universities. Workforce development was a motivating goal of the university-

led Center, which included many undergraduate, graduate, and post-doctoral researchers. The 

center focused on the actinide elements, which arise from the sequential filling of the 5f electron 

orbitals. Although the specific themes evolved during the Center’s history, the final research 

themes were: (1) Nanoscale Cage Clusters, (2) Complex Ceramic and Metallic Materials, and (3) 

Materials Under Extreme Environments. To date, the Center has produced 254 peer-reviewed 

journal publications and book chapters that acknowledged only the EFRC funding, and an 

additional 161 journal publications and book chapters that acknowledged funding from the EFRC 

and additional sources (a few manuscripts are still in preparation). Broad highlights include: (1) 

Development of an extensive family of actinide nanomaterials that self-assemble in aqueous 

solution, an understanding of their formation mechanisms and stabilities, and possible uses in 

nuclear fuel cycles; (2) Establishment of facilities and methodologies to conduct high-temperature 

calorimetry on transuranium materials, and extensive thermodynamic-based studies of uranium 

and thorium compounds important to the nuclear fuel cycle; (3) A vastly improved understanding 

of the behavior of actinide materials in extreme conditions, including high radiation fields, 

temperatures, and pressures, as well coupled effects of two or more of these; (4) Development of 

resonance ultrasound spectroscopy and direct measurement of aging of plutonium alloys.  

 

SUMMARY OF CENTER BACKGROUND, PARTICIPATION, AND MAJOR ACCOMPLISHMENTS 

 

Materials Science of Actinides (MSA) was funded initially from 2009-2014 and was renewed 

through 2018. MSA united researchers to conduct collaborative, novel and transformative research 

in actinide materials science. Actinides arise from the sequential filling of the 5f electron orbitals, 

are the heaviest natural elements, and are all radioactive. They are unique in their societal 

importance owing to their roles in energy production, national security, nuclear weapons non-

proliferation, medical isotope production, and environmental contamination. The 5f electrons, 

relativistic effects, and redox chemistry complicate the chemistry of actinides. Research in actinide 

materials has lagged far behind that of most other materials systems, particularly in the synthesis 

and characterization of new materials, measurement of thermochemical and physical properties, 

and the design of materials for special applications under extreme conditions, such as may be found 

in nuclear reactors.  
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Actinide materials present exceptional scientific challenges because the highly directional nature 

of 5f electron orbitals produces a complex interactive physical and chemical system that is not 

fully understood. Plutonium, an actinide near the center of the series, sits on the boundary between 

localized and itinerant electron behavior. Lighter actinides have itinerant electrons, while for 

heavier actinides the electrons are localized. In ionic compounds, mainly oxides, this transition 

from itinerant to local behavior results in more variable oxidation states for uranium-plutonium 

than for the later actinides. In essence, all actinides are structurally and electronically fragile, 

wherein small changes in pressure, temperature, and composition may have a profound effect on 

the structures and properties of actinide materials. This fragility (or complex energy landscape) 

provides an opportunity to modify and probe their underlying complexity and to tailor materials 

with specific properties.  

 

Mission: The mission of MSA is to conduct collaborative, multidisciplinary, novel and 

transformative research on actinide materials emphasizing actinide ceramic, metallic, hybrid, and 

nanoscale materials, effective integration of experimental and computational approaches, and 

solving research questions that are critical to the energy future of the nation. Workforce 

development is a fundamental and inherent goal of this university-based center. 

 

Senior Investigators 2009-2014 

 

Thomas Albrecht-Schmitt – University of Notre Dame and then Florida State University 

Mark Asta – University of California, Davis 

Udo Becker – University of Michigan 

Peter C. Burns – University of Notre Dame 

Christopher Cahill – George Washington University 

William H. Casey – University of California, Davis 

Rodney C. Ewing – Stanford University 

Jeremy Fein – University of Notre Dame 

Laura Gagliardi – University of Minnesota (added to EFRC in 2010) 

David Hobbs – Savannah River National Laboratory 

Neils Jensen – University of California, Davis (removed from EFRC in 2011) 

Jie Lian – Rensselaer Polytechnic Institute 

Edward Maginn – University of Notre Dame 

Alexandra Navrotsky – University of California, Davis 

May Nyman – Sandia National Laboratory and then Oregon State University 

Lynda Soderholm – University of Notre Dame (adjunct) (removed from EFRC in 2011) 

Tracy Rudisill – Savannah River National Laboratory 

Ann Visser – Savannah River National Laboratory 

William Weber – Pacific Northwest National Laboratory and then University of Tennessee  

 

Senior Investigators 2014-2018 

 

Mark Asta – University of California, Davis 

Peter C. Burns – University of Notre Dame 

Christopher Cahill – George Washington University (removed from EFRC in 2016) 

William H. Casey – University of California, Davis 
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Rodney C. Ewing – Stanford University 

Jeremy Fein – University of Notre Dame 

Laura Gagliardi – University of Minnesota 

Amy Hixon – University of Notre Dame 

Maik Lang – University of Tennessee 

Tianbo Liu – University of Akron 

Edward Maginn – University of Notre Dame 

Wendy Mao – Stanford University 

Albert Migliori – Los Alamos National Laboratory 

Alexandra Navrotsky – University of California, Davis 

May Nyman – Oregon State University 

 

Scientific Advisory Board (over the lifetime of the Center) 

 

Lynn Boatner – Oak Ridge National Laboratory 

Bruce Bursten – University of Tennessee 

David Clark – Los Alamos National Laboratory 

Sue Clark – Pacific Northwest National Laboratory, Washington State University 

Ingmar Grenthe – Professor Emeritus, KTH, Sweden 

Richard Haire – Oak Ridge National Laboratory 

Joseph Hupp – Northwestern University 

Iain May – Chemistry Division, Los Alamos National Lab 

Lester Morss – retired from DOE   

Mark Peters – Idaho National Laboratory



 

 4 

During 2009-2014, the EFRC had 

three research themes: (1) Complex 

Actinide Materials, (2) Nanoscale 

Actinide Materials, and (3) Actinide 

Materials Under Extreme 

Environments. The renewed EFRC in 

2014 had four research themes: (1) 

Nanoscale Cage Clusters, (2) 

Complex Ceramic and Metallic 

Materials, (3) Hybrid Materials, and 

(4) Materials Under Extreme 

Environments (Fig. 1). In 2016 the 

research themes of the EFRC were 

modified following peer review, and 

were (1) Nanoscale Cage Clusters, (2) 

Complex Ceramic and Metallic 

Materials, and (3) Materials Under 

Extreme Environments. Note that 

RT1 in 2016 corresponds to RT2 in 

2009, RT2 in 2016 corresponds to 

RT1 in 2009, and RT3 in 2016 

corresponds to RT3 in 2009. 

Summaries of accomplishments will 

be discussed below organized in the 

three research themes that existed in 

2016. 

 

 

Research Theme 1: Nanoscale Cage Clusters 

 

  In 2005 Burns and co-workers discovered the spontaneous self-assembly of uranyl peroxide cage 

clusters in aqueous solutions under ambient conditions, and reported the structures of three of 

these: U24, U28 and U32 (which contain 24, 28, and 32 uranyl ions, respectively).1 Upon creation 

of the EFRC in 2009, uranyl peroxide cage clusters were a major focus of research. The trans 

configuration of the uranyl oxygen atoms provides for stabilization of these clusters on both the 

inside and outside, and results in a unique class of metal oxide clusters. Research efforts in the 

EFRC vastly expanded this novel class of nanoscale actinide materials to more than 70 published 

clusters. In each case clusters were crystallized and single-crystal X-ray diffraction was used to 

resolve the details of their structures, with neutron diffraction also used for two clusters to provide 

further detail of H atom and counter cation potions.2,3 In 2012 we published a very extensive 

review of the structures and synthesis of uranyl peroxide cage clusters in Chemical Reviews4 in 

2013, as well as a comprehensive comparison of uranyl peroxide cage clusters to transition metal 

polyoxometalates in Chemical Society Reviews in 2012.5 In 2018 we published a Frontier article 

in Dalton Transactions the summarized current understanding and future research directions in 

uranyl peroxide cluster chemistry.6 The interested reader is directed to these review articles for 

details of our studies of uranyl peroxide cage clusters. 

 
Fig. 1. The intersection between Research Themes (RT) 

and Cross-Cutting Themes (CCT) defines MSA.  
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   In order to achieve our goals in RT1, we applied a variety of experimental techniques to the 

study of uranyl peroxide cage clusters in solutions. Particularly notable is the application of small-

angle X-ray scattering techniques to characterize the size, shape, and aggregation of clusters in 

solution, electrospray ionization mass spectrometry to characterize the size and charge of cluster 

species in solution, dynamic and static light scattering to characterize the size and shape of clusters 

and their aggregates in solution, and cryogenic transmission electron microscopy to image 

blackberries of uranyl peroxide cage clusters in vitrified solutions. 

 

Broad highlights of the 2009-2018 EFRC research in RT1 include: 

 

- Syntheses, structures and characterization were published for about 60 types of uranyl 

peroxide cage clusters, producing a library of cluster geometries, compositions, and sizes 

to support additional research concerning their formation mechanisms, solubilities, 

stabilities, etc. Each of these was crystallized and single-crystal X-ray diffraction was used 

to determine their structures. Clusters containing from 16 to 124 uranyl ions were isolated, 

with diameters extending to 4 nm. In addition to uranyl and peroxide, many ligands were 

incorporated including hydroxyl, phosphate, pyrophosphate, nitrate, phosphite, oxalate, 

and etidronic acid.2,7–25 We also synthesized a series of clusters containing both uranyl and 

transition metals.8,14,26 

- We characterized the extremely high solubility of uranyl peroxide cage cluster salts and 

their use to facilitate dissolution of normally insoluble uranium compounds such as 

studtite.27,28 The solubilities of the various salts of clusters exhibit a significant dependence 

upon the counter cation present, with Li salts being the most soluble. 

- Using mass spectrometry, we demonstrated the unexpected stability of uranyl peroxide 

cage clusters in aqueous solutions over extended periods (many months)29 and the 

breakdown mechanisms of clusters30,31 and their reduction by bacteria.32 

- We developed a uranium purification and separation process based upon uranyl peroxide 

cage clusters33,34 and methods to remove clusters from aqueous solutions using mesoporous 

materials.35,36 The former was demonstrated using mass-based filtration of a solution 

produced by dissolving a surrogate spent nuclear fuel. We also demonstrated high 

efficiency extraction of uranyl clusters into organic solvents.37 

- We demonstrated the solubilization of normally insoluble divalent and trivalent metals by 

encapsulating them in uranyl peroxide cage clusters.38 We also incorporated lanthanides 

into the walls of uranyl peroxide cage clusters.12  

- Computation studies that provided details of uranyl-peroxide interactions and how these 

favor cluster formation, relative energetics, and cluster formation mechanisms 26,27,39–44. 

- Examination of the behavior of uranyl peroxide cage clusters at extremely high pressures 

in diamond anvil cells, including a mass spectroscopic demonstration of cluster persistence 

even after the crystals had become X-ray amorphous.45 

- Determination of the thermodynamic properties of uranyl peroxide cage cluster salts, 

including the relationship between cluster charge density and enthalpy of formation.29,46,47 

- Aggregation behavior of uranyl peroxide cage clusters in aqueous solution to form a variety 

of blackberry structures that were characterized by light scattering48–55 and transmission 

electron microscopy.56 

- Studies of the dynamics of uranyl peroxide cage clusters and their transformations in 

aqueous solutions, including as a function of pressure, temperature, and pH.57–60  
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- Evaluation of the interaction of uranyl peroxide cage clusters with various mineral surfaces 

as an evaluation of their significance for the environmental transport of uranium.61–63  

 

We summarize the results and impact of some of the more important papers: 

 

 Dembowski, M. et al. (2016) Journal of the American Chemical Society 2 

Solution P-31 NMR Study of the Acid-Catalyzed Formation of a Highly Charged 

{U24Pp12} Nanocluster, [(UO2)24(O2)24(P2O7)12]
48-, and Its Structural Characterization in 

the Solid State Using Single-Crystal Neutron Diffraction. The first neutron diffraction 

study of a single crystal containing uranyl peroxide nanoclusters was reported for a 

pyrophosphate-functionalized cluster. Relative to earlier X-ray studies, neutron diffraction 

provides superior information concerning the positions of H atoms and lighter counterions. 

Hydrogen positions were assigned and reveal an extensive network of H-bonds; notably, 

most O atoms present in the anionic cluster accept H-bonds from surrounding H2O 

molecules, and none of the surface-bound O atoms are protonated. The D4h symmetry of 

the cage is consistent with the presence of six encapsulated K cations, which appear to 

stabilize the lower symmetry variant of this cluster. P-31 NMR measurements 

demonstrated retention of this symmetry in solution, while in situ P-31 NMR studies 

suggest an acid-catalyzed mechanism for the assembly of 1 across a wide range of pH 

values. 

 Olds, T.A. et al. (2017) Inorganic Chemistry 15 

Single-Crystal Time-of-Flight Neutron Diffraction and Magic-Angle-Spinning NMR 

Spectroscopy Resolve the Structure and H-1 and Li-7 Dynamics of the Uranyl Peroxide 

Nanocluster U-60. Single-crystal time-of-flight neutron diffraction provided atomic 

resolution of H atoms of H2O molecules and hydroxyl groups, as well as Li cations in the 

uranyl peroxide nanocluster U-60. Solid-state magic-angle-spinning nuclear magnetic 

resonance (MAS NMR) spectroscopy was used to confirm the dynamics of these 

constituents, revealing the transportation of Li atoms and H2O through cluster walls. H 

atoms of hydroxyl units that are located on the cluster surface are involved in the transfer 

of H2O and Li cations from inside to outside and vice versa. This exchange occurs as a 

concerted motion and happens rapidly even in the solid state.  

 

 Peruski, K. et al. (2017) Inorganic Chemistry 27 

Uranyl Peroxide Cage Cluster Solubility in Water and the Role of the Electrical Double 

Layer. In this study we demonstrated that uranium concentrations as high as 2.94 x 105 

parts per million (1.82 mol of U/1 kg of H2O) occur in water containing nanoscale uranyl 

cage clusters. The concentration of uranium in these systems is impacted by the 

countercations (K, Li, Na), and molecular dynamics simulations predicted their 

distributions in selected cases. Formation of uranyl cages prevents hydrolysis reactions that 

would result in formation of insoluble uranyl solids under alkaline conditions, and these 

spherical clusters reach concentrations that require close packing in solution. 

 

 Vlaisavljevich, B. et al. (2010) Journal of the American Chemical Society 41 

Understanding the Structure and Formation of Uranyl Peroxide Nanoclusters by Quantum 

Chemical Calculations. For the first time, density functional theory was applied to 
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understand the formation of nanoscale uranyl peroxide cage clusters. We investigated the 

uranyl-peroxide-uranyl interaction and compared the geometries of clusters with and 

without such interactions. We showed that a covalent interaction along the U-O-peroxo 

bonds causes the U-O2-U dihedral angle to be bent, and it is this inherent bending of the 

configuration that encourages curvature and cage cluster formation. The U-O2-U dihedral 

angle of the peroxo bridge can be tuned to some extent by the size or electronegativity of 

the counterion present. 

 

 Falaise, C. and Nyman, M. (2016) Chemistry – A European Journal64 

The Key Role of U28 in the Aqueous Self-Assembly of Uranyl Peroxide Nanocages. Here 

we exploited the high solubility of the UO2
2+/H2O2/LiOH aqueous system to address the 

effect of the hydroxide concentration. Important techniques of this study are single-crystal 

X-ray diffraction, small-angle X-ray scattering, and Raman spectroscopy. When the 

LiOH/U ratio is around three, U28 forms rapidly and this cluster can be isolated in high 

yield and purity. This result was most surprising and challenges the hypothesis that alkali 

templating is the most important determinant in the cluster geometry. Moreover, analogous 

experiments with KOH, NH4OH, and TEAOH (TEA=tetraethylammonium) also rapidly 

yield U28, which suggests that U28 is the kinetically favored species. Complete mapping of 

the pH–time phase space reveals only a narrow window of the U28 dominance, which is 

why it was previously overlooked as an important kinetic species in this chemical system, 

as well as others with different counterions. 

 

 

Research Theme 2: Complex Ceramic and Metallic Materials 

 

A wide suite of actinide materials is important for nuclear technology, and a much deeper and 

more accurate understanding of their properties is critical. From a fundamental perspective, this 

variety offers exciting opportunities for comparative studies that expand fundamental knowledge 

of actinide chemistry and physics. The functionality of refractory actinide materials, their phase 

diagrams, and stability to corrosion and radiation damage all depend on the interplay of structural, 

chemical, and electronic configurations. The emphasis of this research theme is development of 

methodologies and measurements of thermodynamic parameters of important actinide materials. 

 

In order to achieve our objectives in this research theme, we developed new calorimetry facilities 

for measurements of thermodynamic data for transuranium materials.65,66 We also developed 

resonant ultrasound spectroscopy to measure aging of plutonium alloys directly for the first time.67    

 

Selected highlights of this research effort are: 

 

- Measurement and characterization of the aging of plutonium alloys in real time using 

spectroscopic techniques.67–70 

- Measurement of thermodynamic properties of various uranium-based minerals71–75 and 

hybrid materials,73 including coffinite,71,76–78 which has resisted studies for many years. 

- Synthesis and characterization of an extensive family of actinide borates, including 

examples of cationic frameworks with anion exchange properties.79–91 
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- Determination of thermodynamic properties of a broad range of actinide and lanthanide 

oxides important as nuclear fuels and nuclear waste forms, often including computational 

models. 65,71,74,92–111 

- Studies of X-ray amorphous U2O7 that forms upon heating of the uranyl peroxide studtite 

and that caused pressurization of drums of yellowcake that resulted in contamination and 

injuries. 112 

- Determination of formation energetics and order disorder in fluorite oxides.93,96,98,100–

103,107,110 

- Discovery and characterization of complexity of radiation damage and annealing in 

pyrochlores, including short range weberite structural motifs.66,95,111,113 

- Developing calorimetric techniques applicable to higher actinides at the University of 

Notre Dame and at Los Alamos National Laboratory.65,66 

 

We summarize the results and impact of some of the more important papers: 

 

 Ennaceur, S. and Migliori, A. (2018) Philosophical Magazine Letters69  

Toward an understanding of aging in plutonium from direct measurements of stored 

energy. We present here the first direct measurement of the radiation-damage-induced 

energy stored in delta-phase plutonium. Each decay imparts about 85 keV of recoil energy 

to the uranium byproduct, 5.2 Mev to the alpha particle, and a spectrum of mostly low 

energy gamma rays with the most probable at 51 keV. Most of the decay energy is 

converted immediately to heat, releasing about 1.9 mW/g. However, some thermally-

recoverable energy remains trapped. We report measurements of that stored energy using 

differential scanning calorimetry (DSC) applied to Pu-239-2.0 at.%Ga delta-phase alloy. 

Retained energy of similar to 2 J/g saturates at about 5 months and is unchanged after 30 

years. The magnitude of the stored energy agrees with a short-bond defect model that that 

we present. This model treats radiation damage as a Pu impurity with shortened bond 

lengths. It explains the change in known properties with age and predicts that density 

increases with age, contrary to current thinking. The short-bond impurities proposed are 

expected to act like other impurities, affecting strength, phase transitions, grain boundaries 

and other metallurgical properties. 

 

 Odoh et al. (2016) Inorganic Chemistry112 

Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U2O7. Recent accidents 

resulting in worker injury and radioactive contamination occurred due to pressurization of 

uranium yellowcake drums produced in the western U.S.A. The drums contained an X-ray 

amorphous reactive form of uranium oxide that may have contributed to the 

pressurization. Heating hydrated uranyl peroxides produced during in situ mining can 

produce an amorphous compound, as shown by X-ray powder diffraction of material from 

impacted drums. Subsequently, studtite, [(UO2)(O2)(H2O)2](H2O)2, was heated in the 

laboratory. Its thermal decomposition produced a hygroscopic anhydrous uranyl peroxide 

that reacts with water to release O2 gas and form metaschoepite, a uranyl-oxide hydrate. 

Quantum chemical calculations indicate that the most stable U2O7 conformer consists of 

two bent (UO2)
2+ uranyl ions bridged by a peroxide group bidentate and parallel to each 

uranyl ion, and a mu2-O atom, resulting in charge neutrality. A pair distribution function 

from neutron total scattering supports this structural model,as do H1 and O17 nuclear 
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magnetic resonance, spectra. The reactivity of U2O7 in water and with water in air is higher 

than that of other uranium oxides, and this can be both hazardous and potentially 

advantageous in the nuclear fuel cycle. 

 

 Zhang et al. (2018) Journal of Nuclear Materials65 

Experimental thermochemistry of neptunium oxides: Np2O5 and NpO2. Although high 

temperature oxide melt solution calorimetry has proven very useful in obtaining 

thermodynamic data for the formation of uranium and thorium oxide materials, it has not 

yet been applied to transuranium compounds. Continuing a program at Notre Dame to 

study the thermodynamics of transuranium compounds, we report the first determination 

of the enthalpies of drop solution of well-characterized neptunium oxides (Np2O5 and 

NpO2) using oxide melt solution calorimetry in molten sodium molybdate solvent at 973 

K. The calorimetric methodology is straightforward and produces reliable data using 

milligram quantities of radioactive materials, and can be applied to many other 

transuranium compounds. 

 

 Alexandrov et al. (2011) Journal of Physical Chemistry Letters102 

Actinide Dioxides in Water: Interactions at the Interface. A comprehensive understanding 

of chemical interactions between water and actinide dioxide surfaces is critical for safe 

operation and storage of nuclear fuels. Despite substantial previous research, understanding 

the nature of these interactions remains incomplete. In this work, we combined accurate 

calorimetric measurements with first-principles computational studies to characterize 

surface energies and adsorption enthalpies of water on two fluorite-structured compounds, 

ThO2 and CeO2. The results show a correlation between the magnitude of the anhydrous 

surface energy and the water adsorption enthalpy. Further, they suggest a structural model 

featuring one adsorbed water molecule per one surface cation on the most stable facet that 

is expected to be a common structural signature of water adsorbed on actinide dioxide 

compounds. 

 

 

Research Theme 3: Materials Under Extreme Environments 

 

Materials behavior under simultaneous high-irradiation, high-pressure and high-temperature 

conditions have significant implications for studies in condensed matter physics, materials science, 

nuclear engineering as well as the geological sciences. The large amount of energy deposited by 

relativistic heavy ions in materials under high pressure and temperature will have significant 

influences on the thermodynamics and kinetics of phase-transitions under pressure. Since the ion 

energy deposition involves extremely short time scales, non-equilibrium processes such as ion-

induced pressure/temperature waves may be expected. Their interaction with already applied static 

pressure and temperature may trigger new phase transitions in solids that are only present under 

static pressure. In addition, nano-scale materials behave very differently from the bulk material 

under extreme conditions. 

Prior to this research effort there were limited data available on how materials respond to the 

simultaneous exposure to energetic projectiles, high pressures, and high temperatures as a function 

of structure, composition, thermodynamic stability and crystallite size. Over the nine year period 
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of this EFRC, researchers in RT3 were able to investigate the behavior of important actinide 

ceramics, such as UO2, ThO2, actinide-bearing complex ceramics, such as pyrochlore, garnet, and 

apatite, as well as simple compounds or alloys that have applications in nuclear science, such as 

ZrN and high entropy metal alloys.  

 

Viewed broadly, the RT3 research team: 

  

 Systematically investigated these coupled processes with high-energy irradiations at 

elevated pressures and temperatures. We also performed high-pressure/temperature 

experiments on pre-irradiated samples (to investigate the influence of defects on phase 

transitions) and irradiation experiments of pre-pressurized/ thermally treated samples (to 

investigate the stability of high-pressure phases under ion irradiation). 

 Sought to understand the response of actinide materials to combinations of extreme 

conditions of temperature, pressure, chemical environments, and high-radiation fields as a 

function of crystallite size. 

 Sought to understand the structures and stabilities of the full range of U:O and Th:O 

compounds as a function of high pressures and temperatures that were subjected to intense 

radiation fields in order to determine their response under extreme conditions.  

 Investigated the response of actinide materials far from equilibrium using high-energy ion 

beams and high energy lasers to deposit extremely large amounts of energy into small 

volumes of actinide materials. 

 Synthesized new actinide materials under coupled conditions of high pressures and 

temperatures in an intensely ionizing radiation field and as a function of crystallite size. 

 

We also successfully addressed a number of fundamental scientific issues specific to actinide 

compounds 

 

 What are the high-pressure/temperature behaviors of different U:O stoichiometries? How 

are these related to the much simpler Th:O system? 

 What new actinide phases form under extremes of pressure and temperature? What is the 

effect of grain size on the energetics and dynamics of phase transformations? 

 What are the structural responses of different actinide materials to ionization and ballistic 

collision processes from energetic ion irradiation? 

 What are the effects of electronic configuration on the stability and defects of AnO2 

materials? 

 How do the microstructures evolve and what are the impacts of nano-grain size and 

stoichiometry on radiation stability? What is the nature of defects and structures produced 

by fission products (or similar ions) in AnO2 materials that do not exhibit track formation? 

 What is the structural response of actinide materials to the combined application of 

relativistic heavy ions, high pressure, and high temperature? Can we predictively model 

materials behavior under such extreme conditions? 

 Can the coupling of extreme conditions result in the formation of novel actinide phases 

with enhanced performance in harsh environments? 

 How is the production and nature of defects affected by ion irradiation at high pressures? 
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 How does radiation damage from energetic ions affect the thermal and ionic conductivity 

of AnO2 materials? What is the relationship of this damage to the underlying nanoscale 

damage morphology, microstructure evolution, and defect accumulation? 

 What is the effect of non-stoichiometry and grain size on these modifications? 

 Can very-high-energy ion irradiation be used to tailor nanoscale transport properties? 

 How can extremes in high-energy ion irradiation, pressure, and temperature be used to 

synthesize novel actinide materials? Do these new compounds have useful properties that 

enhance their use in extreme environments? 

 What is the response of different nanoscale uranyl cage topologies to high pressure? 

 

 

In order to address these issues, new, innovative experimental techniques had to be developed and 

applied. Much of the effort of the RT3 team was devoted to developing these new techniques. 

Three broad experimental efforts included: 

 

1. Coupling of extreme conditions (high-temperature- and high-pressure experiments in 

intense radiation fields): 

Research on materials exposed to swift heavy ion irradiation, high pressure, and temperature 

is based on a new experimental approach fulfilling three technical requirements: (i) the sample 

must be enclosed in a high-pressure cell, (ii) the ions require sufficient kinetic energy to travel 

completely through one of the pressure anvils to reach and traverse the sample under 

investigation, and (iii) a heating wire (or heating laser) must be connected with the pressure 

cell at the irradiation site (Fig. 2). High-pressure techniques have been successfully combined 

with the use of ion beams by injecting relativistic heavy ions of one of the world’s largest 

accelerator facilities (GSI Helmholtz Center for Heavy Ion Research, in Darmstadt, Germany) 

through a mm-thick diamond anvil of a high-pressure cell (DAC) into a pressurized target (Fig. 

2). During the EFRC project, experimental 

protocols have been continuously developed to 

routinely expose samples to controlled extremes 

of pressure (~1 Mbar) and irradiation (~1×1013 

ions/cm2). A wide range of actinide and 

surrogate materials (nanocrystalline and bulk 

materials) have been systematically irradiated 

with swift heavy ions at high pressures to 

investigate their response to coupled extremes. 

Material modifications were analyzed by 

means of in situ synchrotron-based X-ray 

diffraction which requires coordinated 

beamtimes at large user facilities 

(characterization at high pressure prior to ion irradiation and afterwards). 

 

2. Neutron total scattering characterization of ion irradiation materials: 

The investigation of radiation effects with conventional characterization techniques such as 

XRD and TEM has two major shortcomings: (i) both X-ray and electron probes are insensitive 

to low-Z elements (e.g., oxygen) and (ii) diffraction experiments provide no information on 

the local atomic arrangement and the medium-range structure. To overcome this, we have 

Fig. 2: Scheme of high-pressure irradiation 

experiments with relativistic heavy ions. In 

order to reach the sample pressurized between 

two diamond anvils (size ~100 μm), the initial 

beam energy must be ~50 GeV. Temperature 

can be controlled by heating wires or intense 

heating lasers (not shown). 
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developed neutron total scattering analysis for 

ion irradiated materials. Such experiments have 

not been performed in the past due to the low 

scattering cross sections and unattainable 

irradiated sample volumes. The Spallation 

Neutron Source (SNS) at Oak Ridge National 

Laboratory – the world’s most intense pulsed 

neutron source – has become operational 

during the EFRC project for materials research. 

In a pioneering experiment, we have coupled 

this unique DOE facility with one of the largest 

ion accelerators (GSI Helmholtz Center for 

Heavy Ion Research in Darmstadt, Germany) to 

characterize radiation damage by means of 

neutron scattering experiments. With a 

neutron flux of ~ 1×108 neutrons/cm2∙s and a 

large solid angle of detector coverage, the 

Nanoscale-Ordered Materials Diffractometer 

(NOMAD) beamline at the SNS requires very 

little sample mass to produce high-resolution 

pair distribution functions (PDF). The unique 

6-bank detector system at NOMAD together 

with the wide range of available neutron 

wavelengths (0.1 - 3 Å) are essential to 

produce PDFs with very high resolution to resolve subtle structural features within irradiated 

materials. Key to this experimental procedure is the use of GeV ions to produce sufficient 

sample material irradiated with a near uniform electronic energy loss. A new holder system 

was developed for such experiments to facilitate the preparation of ~100 mg sample with 

precision control of the thickness (Fig. 3). Several of such sample holders were irradiated 

simultaneously with a ~25 cm2 sized beam of energetic heavy ions (e.g., Au ions, 2.2 GeV). 

After ion-beam exposure the samples were removed from the irradiation holders, combined, 

ground into a fine powder, and loaded into sample holders for neutron analysis. The NOMAD 

instrument has also in situ capabilities enabling neutron scattering experiments at high 

temperatures of up to 1200 °C. We complemented therefore the characterization of radiation 

effects by studies on damage recovery and defect dynamics at elevated temperatures.  

 

3. High energy laser irradiations and pump probe experiments: 

One of the challenges of using ion beam irradiation as a source of induced damage was that 

the volume of material damaged was so small. We solved this problem by using a combination 

of HRTEM and SAXS experiments, but still the work was tedious. This led us to develop the 

use of higher energy lasers to move and observe systems far from equilibrium. Ultrafast optical 

pump-probe experiments were performed using a Ti:sapphire laser with a pulse duration of 50 

fs and central wavelength of 800 nm. Probe fluence was over an order of magnitude lower than 

the pump beam for all measurements, which were collected at elevated pressure using a 

diamond-anvil cell (DAC) at room temperature. We first demonstrated that the types of phase 

transitions observed from ion beam irradiations were the same as those induced by high-energy 

Fig. 3: Schematic representation of the ion 

irradiation experimental setup. Sample powders 

were uniaxially pressed into 50 - 100 µm deep, 1 

cm diameter cylindrical indentations that were 

machined into thin aluminum plates (grey). Nine 

sample holders were fixed on a 5 x 5 cm2 

aluminum plate for ion irradiation (top left). The 

cutaway side view (right) shows the orientation 

of the holder during ion irradiation. 
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lasers. The ability to temporally resolve ultrafast laser pulses allows one to directly observe 

the radiation damage process on the relevant timescales by using time-resolved pump-probe 

spectroscopy. The ultimate goal of this work was to be able to directly observe phase transitions 

at the atomic-scale. 

Over the nine-year period, this research group was remarkably productive. Referring to the 

tabulated list of publications for the MSA EFRC, RT3 researchers published: 102 papers fully-

funded by the EFRC, 46 papers that were completed with collaborators and 4 book chapters. We 

summarize the results and impact of some of the more important papers below (# indicates the 

listing in the tabulation of papers from the EFRC: 

 

 Zhang, J.M. et al. (2015) Journal of Materials Research114 

C60 and U ion irradiation of Gd2TixZr2-xO7 pyrochlore. Gd2TixZr2xO7 (x = 0 to 2) 

pyrochlore was irradiated by 30 MeV C60 clusters, which provide an extremely high 

ionizing energy density. High-resolution transmission electron microscopy revealed a 

complex ion-track structure in Gd2Ti2O7 and Gd2TiZrO7, consisting of an amorphous 

core and a shell of a disordered, defect-fluorite structure. As compared with the irradiation 

by 1.5 GeV U ions with the highest energy loss, the track structure is consistent with tracks 

created by monoatomic swift heavy ions, but the diameters (with the entire diameter of 17 

nm for Gd2Ti2O7 and 15 nm for Gd2TiZrO7) are significantly larger due to the much 

smaller velocity and higher energy density of the C60 ions. Ion tracks created by 

monoatomic ions are challenging to describe by HRTEM, as the boundary between 

disordered fluorite and pyrochlore matrix is less distinct. However, the C60 irradiation 

shows a clearly resolved ion track with completely crystalline, disordered, defect-fluorite 

structure around an amorphous core. Based on the distinct boundaries of the track 

morphology, inelastic thermal-spike calculations were used to describe the track size and 

extract critical energy densities for the interpretation of the complex core–shell 

morphologies for the different pyrochlore compositions.  

 

 Tracy, C.L. et al. (2015) Nature Communications115 and Cureton, W.F. et al. (2019) Journal 

of Nuclear Materials116 

Redox response of actinide materials to highly ionizing radiation. Energetic radiation can 

cause dramatic changes in the physical and chemical properties of actinide materials, 

degrading their performance in fission-based energy systems. Characterization of 

irradiated actinide oxides by advanced synchrotron techniques (X-ray diffraction and X-

ray absorption spectroscopy) showed that the redox behavior of actinides governs the 

radiation tolerance. The microstructure of the material plays a critical role in this process 

with a nanoscale grain size reducing significantly the radiation resistance. These findings 

suggest that by limiting the redox activity of actinide materials through control of 

composition or microstructure, one can mitigate radiation-induced swelling and 

microstrain. 



 

 14 

 
Fig. 4: (top) Cation reduction causes structural distortion in the actinide oxide lattice that 

are identical to that caused by Frenkel defects. (bottom) Radiation-induced swelling 

depends strongly on the electronic structure of the cation and the grain size of the material. 

 

 Shamblin et al. (2016) Nature Materials117 

Probing disorder in isometric pyrochlore and related complex oxides. Complex oxides are 

candidate materials for a wide range of energy-related applications, such as solid 

electrolytes for fuel cells, host materials for actinide immobilization, and thermal barrier 

coatings for gas turbine jet engines. When subjected to extreme environments, such as high 

temperatures or highly ionizing radiation, many of these compounds partially lose their 

ordered structure through, as previously thought, random mixing of their atomic 

constituents. Neutron total scattering experiments, however, revealed that the cations and 

oxygen atoms are not randomly arranged at the atomic level, but only appear so when 

sampling over longer length scales. This discovery indicates that discrepancies may arise 

when extrapolating the materials structure from the microscale to the atomic scale (or vice 

versa), which has significant implications for modelling properties and degradation 

phenomena in actinide-bearing materials. Structural heterogeneity across different length 

scales appears to be a universal phenomenon for both, intrinsically (e.g., chemical 

doping/substitution) and extrinsically (e.g., irradiation and mechanochemical processing) 

disordered complex oxides. 

 



 

 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: (left) The disordered cubic phase does not agree with the neutron scattering data 

on Ho2Zr2O7. (right) Despite an average cubic structure, an orthorhombic structure agrees 

well locally. 

 

 O’Quinn et al. (2017) Journal of American Chemical Society118 

Inversion in Mg1-xNixAl2O4 spinel. Given the ubiquity of the spinel structure in many 

engineering applications, a comprehensive understanding of its structure at the atomic-

scale is important, particularly under extreme conditions. The atomic arrangement of the 

isometric spinel structure is conventionally described by only three degrees of freedom. Of 

importance is the inversion parameter, which defines the degree of cation exchange and 

represents a direct measure of intrinsic disorder. Based on neutron total scattering 

experiments, we have determined that the local structure of spinel cannot be understood as 

simply being due to cation disorder. Rather, cation inversion creates a local tetragonal 

symmetry that extends over sub-nanometer domains. Consequently, the simple spinel 

structure is more complicated than previously thought, as more than three parameters are 

needed to fully describe the structure. This new insight provides a framework by which the 

behavior of spinel can be more accurately modeled under the extreme environments 

important for many geophysics and energy-related applications, including prediction of 

deep seismic activity and immobilization of nuclear waste in oxides. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: (left) Comparison of PDFs for the Mg1-xNixAl2O4 spinel series, highlighting the 

distances associated with coordination polyhedra in each series member and associated 

deviation from the isometric structure with increasing Ni-content. (right) The good 
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agreement of inversion parameter, from average structure refinement, and local tetragonal 

P4122 phase fraction, from PDF refinement indicate that cation inversion can be 

understood as locally-ordered structural distortion. 

 

 Tracy et al. (2017) Nature Communications119 

High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy 

CrMnFeCoNi. High-entropy alloys, near equi-atomic solid solutions of five or more 

elements, represent a new strategy for the design of materials with properties superior to 

those of conventional alloys. However, their phase space remains constrained, with 

transition metal high-entropy alloys exhibiting only face- or body-centered cubic 

structures. In this paper, we investigated the high-pressure synthesis of a hexagonal close-

packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic 

transformation begins at 14GPa and is attributed to suppression of the local magnetic 

moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al 

and the noble gases, the transformation is sluggish, occurring over a range of 440 GPa. 

However, the behavior of CrMnFeCoNi is unique in that the hcp phase is retained 

following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This 

demonstrates a means of tuning the structures and properties of high-entropy alloys in a 

manner not achievable by conventional processing techniques.  

 

 J. Shamblin et al. (2018). Acta Materialia120 

Similar local order in disordered fluorite and aperiodic pyrochlore structures.  A major 

challenge to understanding the response of materials to extreme environments (e.g., nuclear 

fuels/waste forms and fusion materials) is to unravel the processes by which a material can 

incorporate atomic-scale disorder, and at the same time, remain crystalline. Neutron total 

scattering was utilized to characterize the irradiation response of two pyrochlores, one that 

is known to disorder and the other to amorphize under ion irradiation. The data 

demonstrated that in both cases, the local pyrochlore structure is transformed into similar 

orthorhombic units even though the two compositions have distinctly different structures, 

aperiodic vs. disordered-crystalline, at longer length scales. This suggests that a material's 

propensity to disorder rather than to amorphize may not be fully determined by its ability 

to incorporate point defects, but rather on the structure's compatibility with meso-scale 

modulations of the local order in a way that maintains long-range periodicity. This 

discovery not only redefines the understanding of radiation resistance, but indicates that 

discrepancies may arise when extrapolating the material’s structure from the microscale to 

the atomic scale (or vice versa), which has significant implications for modelling properties 

and degradation phenomena in actinide materials. 
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Fig. 7: Neutron PDFs of pyrochlores before (blue) and after (red) being irradiated with 

2.2 GeV Au ions to a fluence of 8×1012 ions/cm2. (top) Er2Sn2O7, disorder is indicated by 

broadening and merging of the original pyrochlore peaks. (bottom) Dy2Sn2O7, after 

irradiation the peaks are significantly reduced in area, but do not show pronounced 

merging, indicative of partial amorphization. The local atomic arrangement changes in 

both cases from pyrochlore to weberite-type.  

 

 Rittman et al. (2018) Physical Rev. B121  

Anomalous behavior of nonequilibrium excitations in UO2.  Ultrafast optical pump-probe 

studies of UO2 under pressure were performed in order to better understand the material’s 

response to ionizing radiation. Photoexcitation generates oscillations in the time- resolved 

reflectivity at two distinct GHz-scale frequencies. The higher-frequency mode is attributed 

to a coherent longitudinal acoustic mode. The lower-frequency mode does not correspond 

to any known excitation under equilibrium conditions. The frequency and lifetime of the 

low-frequency mode are studied as a function of pressure. Abrupt changes in the pressure-

dependent slopes of these attributes are observed at ∼10 GPa, which correlates with an 

electronic transition in UO2. Variation of probe wavelength reveals that the low-k 

dispersion of the low-frequency mode does not fit into either an optical or acoustic 

framework. Rather, we propose that this mode is related to the dynamical magnetic 

structure of UO2. The implications of these results help account for the anomalously small 

volume of damage known to be caused by ionizing radiation in UO2; we propose that the 

existence of the low-frequency mode enhances the material’s transient thermal 

conductivity, while its long lifetime lengthens the timescale over which energy is 

dissipated. Both mechanisms enhance damage recovery.  

 

 Palomares, R.I. et al. (2019) Physical Review Materials122 

Oxygen point defect accumulation in single-phase UO2+x. Uranium dioxide is of primary 

technological importance as a nuclear fuel material. A unique feature of the uranium oxide 

system is the high degree of off-stoichiometry that the material exhibits upon varying 

oxygen partial pressure and temperature, such as under off-normal operating conditions. 
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Oxidation of UO2 is an exothermic process that proceeds largely through the incorporation 

of oxygen atoms into the UO2 matrix. These excess oxygen interstitials are expected to 

form small defect clusters with morphologies that are not fully understood. Experimental 

findings from Willis for example, although reproducible, remain at odds with theoretical 

models, which consistently show that the experimental defect configurations are unstable 

and decompose into smaller di-interstitial defects upon structural relaxation. Simultaneous 

modeling of multiple length scales using complementary Reverse Monte Carlo (RMC) and 

Molecular Dynamics (MD) methods on neutron total scattering data obtained with UO2.07 

confirm that excess oxygen primarily exists as small defects, such as mono-interstitials and 

di-interstitials. Employing a combination of analysis methods with varying length-scale 

sensitivities enabled more accurate assessment of the UO2+x defect structure. These 

findings provide experimental support for previously predicted di-interstitial defect 

morphologies in UO2+x that highly influence the accurate prediction of bulk 

physiochemical properties, such as oxygen diffusivity. 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Oxygen point defect configurations in UO2.07 at 600 and 1000 °C studied by neutron 

total scattering experiments, Reverse Monte Carlo (RMC) modelling, and Molecular 

Dynamics (MD) simulations. (left) The oxygen interstitials in the optimized RMC models 

cause the emergence of a small O-O correlation at ∼2 Å. (middle and right) Bond vector 

analyses show that these short (1.9–2.1 Å) O-O pairs are oriented primarily along <111> 

directions. 
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