

LA-UR-19-32569

Approved for public release; distribution is unlimited.

Title: Machine learning analyses for characterization of oil, gas and water production from unconventional tight-rock reservoirs

Author(s): Vesselinov, Velimir Valentinov

Intended for: AGU Fall meeting, 2019-12-09 (San Francisco, New Mexico, United States)

Issued: 2019-12-17

Disclaimer:

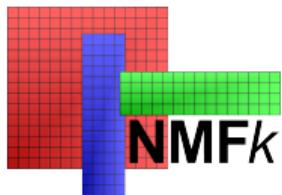
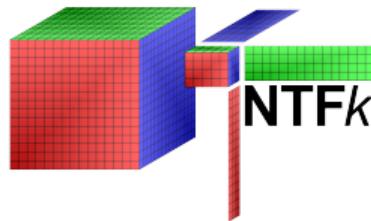
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Machine learning analyses for characterization of oil, gas and water production from unconventional tight-rock reservoirs

Velimir V. Vesselinov (monty) (vvv@lanl.gov)

Earth and Environmental Sciences Division
Los Alamos National Laboratory, NM, USA

<http://tensors.lanl.gov>



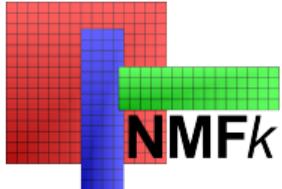
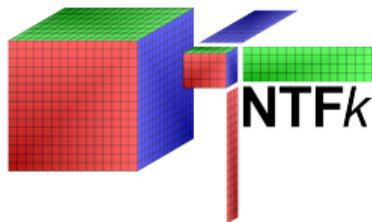
- ▶ **Supervised** ML: learns everything from data
 - ⇒ requires big training datasets
 - ⇒ highly impacted by noise
 - ⇒ cannot discover something that we do not know already
- ▶ **Physics-informed** ML: learns from data but includes preconceived knowledge about the governing processes
 - ⇒ requires smaller training datasets
 - ⇒ produces better predictability with lower uncertainty
 - ⇒ robust to data noise
- ▶ **Unsupervised** ML: extracts features from data that can be applied for categorization and prediction
 - ⇒ unbiased analyses not impacted by data labeling and physics assumptions

- ▶ **Supervised** ML: learns everything from data
 - ⇒ requires big training datasets
 - ⇒ highly impacted by noise
 - ⇒ cannot discover something that we do not know already
- ▶ **Physics-informed** ML: learns from data but includes preconceived knowledge about the governing processes
 - ⇒ requires smaller training datasets
 - ⇒ produces better predictability with lower uncertainty
 - ⇒ robust to data noise
- ▶ **Unsupervised** ML: extracts features from data that can be applied for categorization and prediction
 - ⇒ unbiased analyses not impacted by data labeling and physics assumptions

- ▶ **Supervised** ML: learns everything from data
 - ⇒ requires big training datasets
 - ⇒ highly impacted by noise
 - ⇒ cannot discover something that we do not know already
- ▶ **Physics-informed** ML: learns from data but includes preconceived knowledge about the governing processes
 - ⇒ requires smaller training datasets
 - ⇒ produces better predictability with lower uncertainty
 - ⇒ robust to data noise
- ▶ **Unsupervised** ML: extracts features from data that can be applied for categorization and prediction
 - ⇒ unbiased analyses not impacted by data labeling and physics assumptions

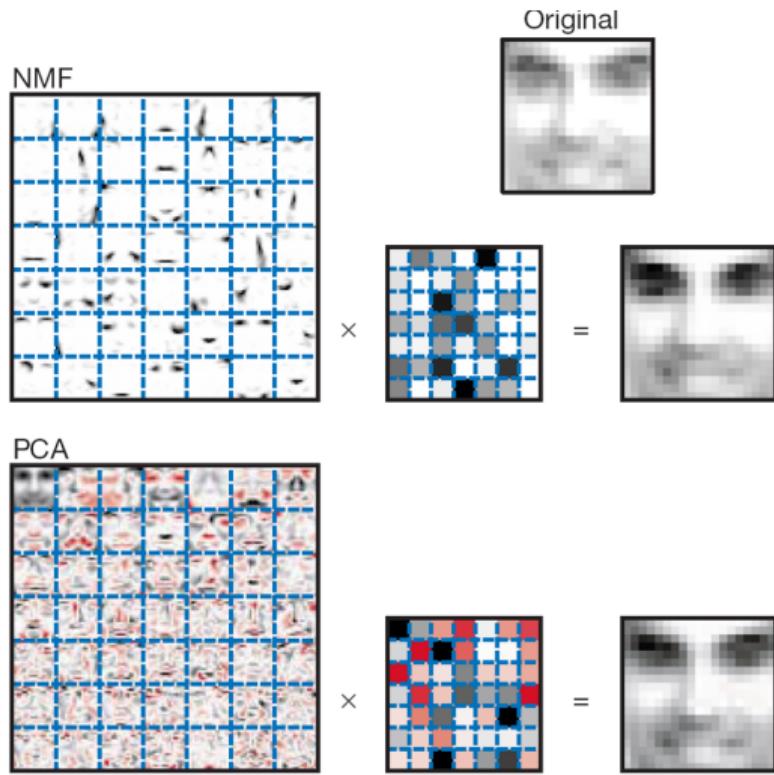
- ▶ Feature extraction (**FE**)
- ▶ Blind source separation (**BSS**)
- ▶ Detection of disruptions / anomalies
- ▶ Image recognition
- ▶ Separate physics processes
- ▶ Discover unknown dependencies and phenomena
- ▶ Develop reduced-order/surrogate models
- ▶ Identify dependencies between model inputs and outputs
- ▶ Guide development of physics models representing the data
- ▶ Make predictions
- ▶ Optimize data acquisition
- ▶ “Label” datasets for supervised ML analyses

- ▶ Novel LANL-patented, open-source, unsupervised Machine Learning (ML) methods and computational techniques
- ▶ Based in matrix/tensor factorization coupled with custom k -means clustering and nonnegativity/sparsity constraints:
 - NMF k : Nonnegative **Matrix** Factorization
 - NTF k : Nonnegative **Tensor** Factorization
 - <https://github.com/TensorDecompositions>
- ▶ Capable to efficiently process large datasets (TB's) utilizing GPU's, TPU's & FPGA's
⇒ **julia**, Flux.jl, Knet.jl, AutoOffLoad.jl, Zygote.jl, TensorFlow, PyTorch, MXNet



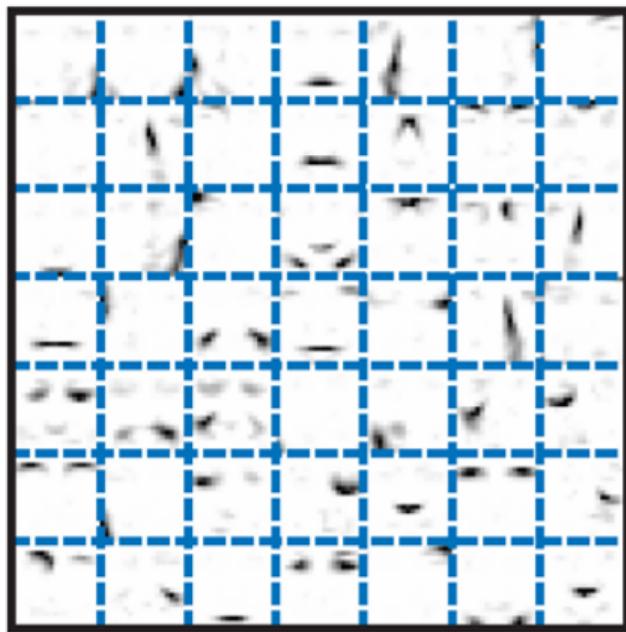
Why nonnegativity?

- ▶ NMF vs PCA (Lee & Seung, 1999)
- ▶ NMF: Nonnegative Matrix Factorization
- ▶ PCA: Principal Component Analysis

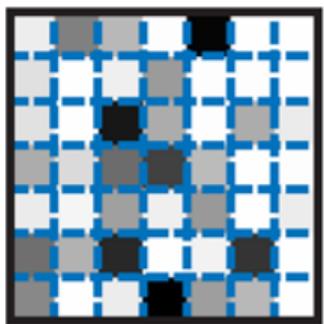


Nonnegativity constraints provide meaningful and interpretable results (+sparsity)

NMF: Nonnegative Matrix Factorization

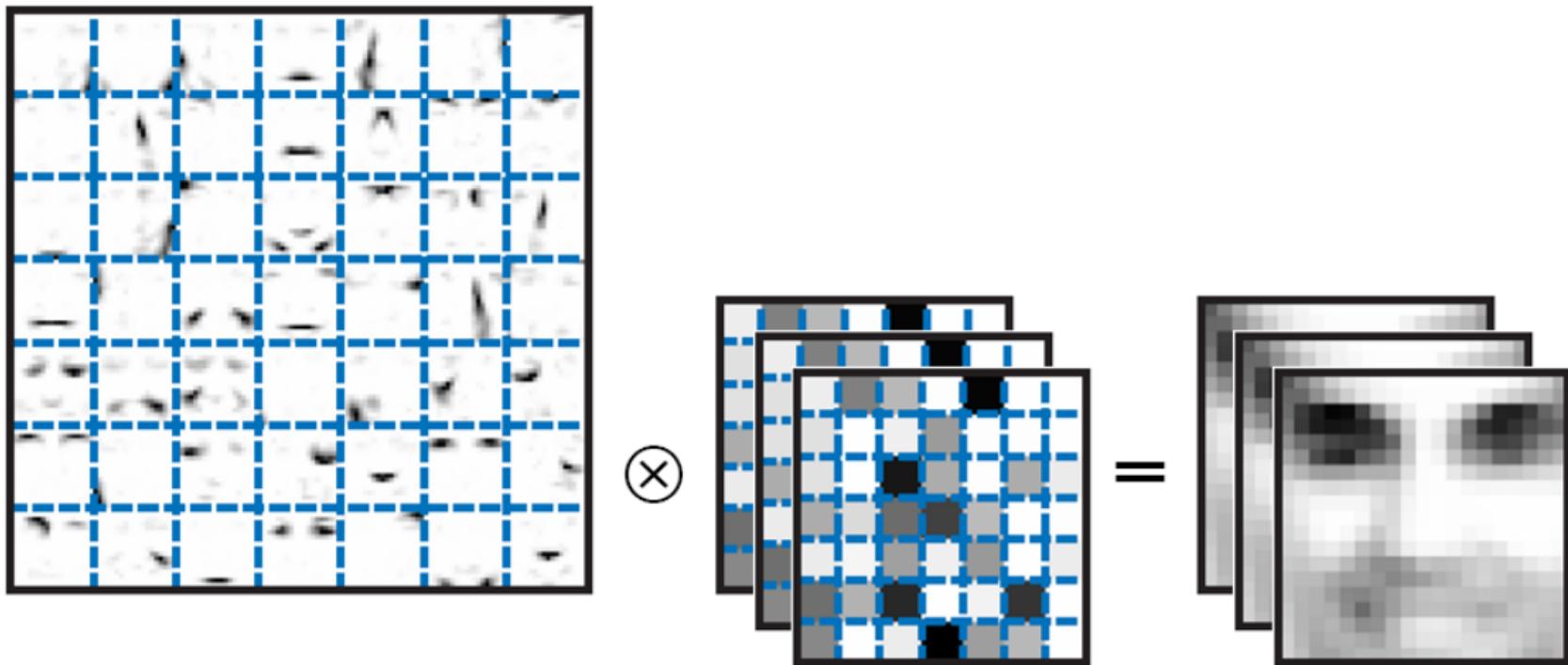


×

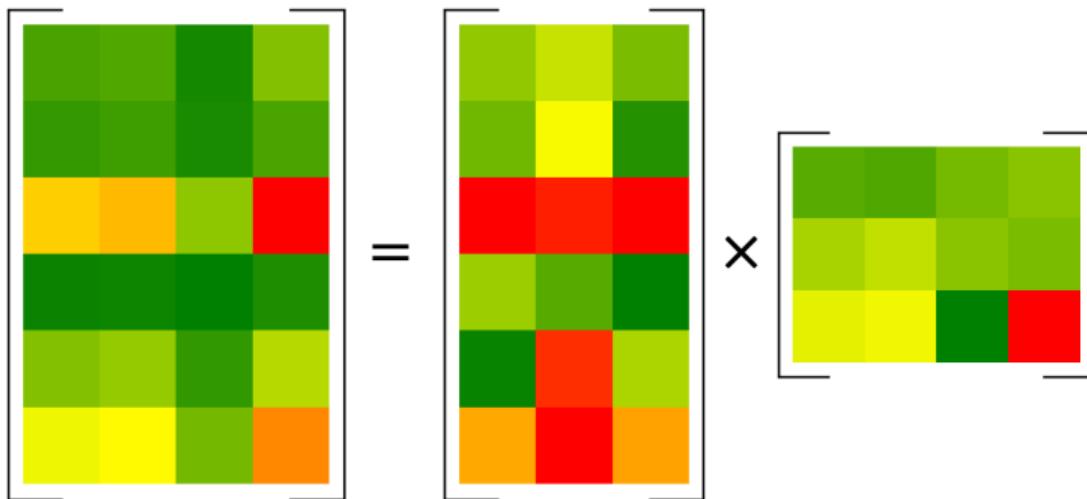


=

NTF: Nonnegative Tensor Factorization



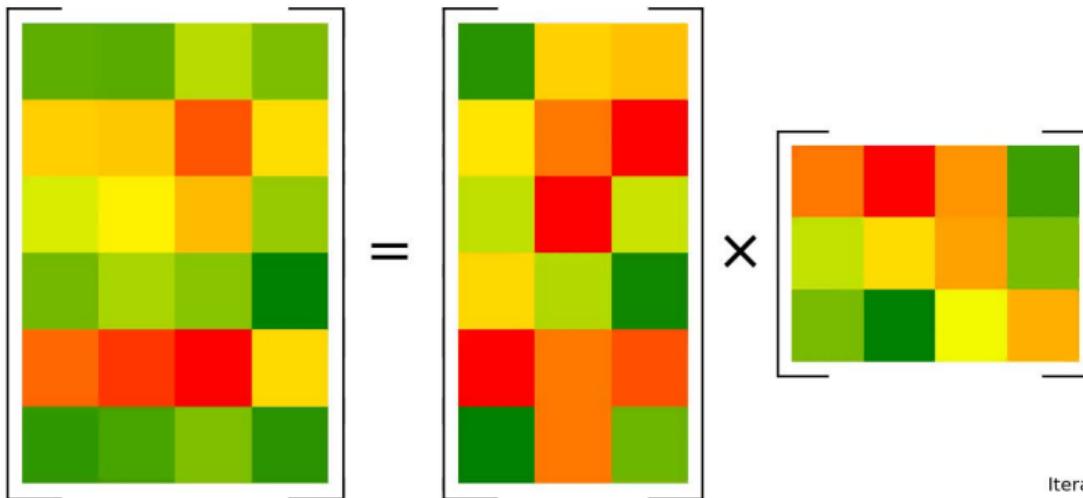
$$X = W \times H$$


$$X = W \times H$$

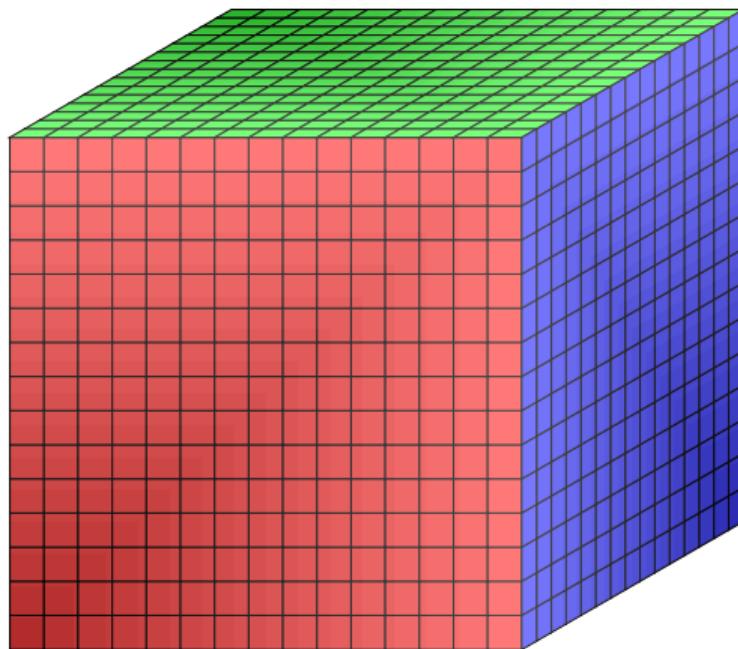
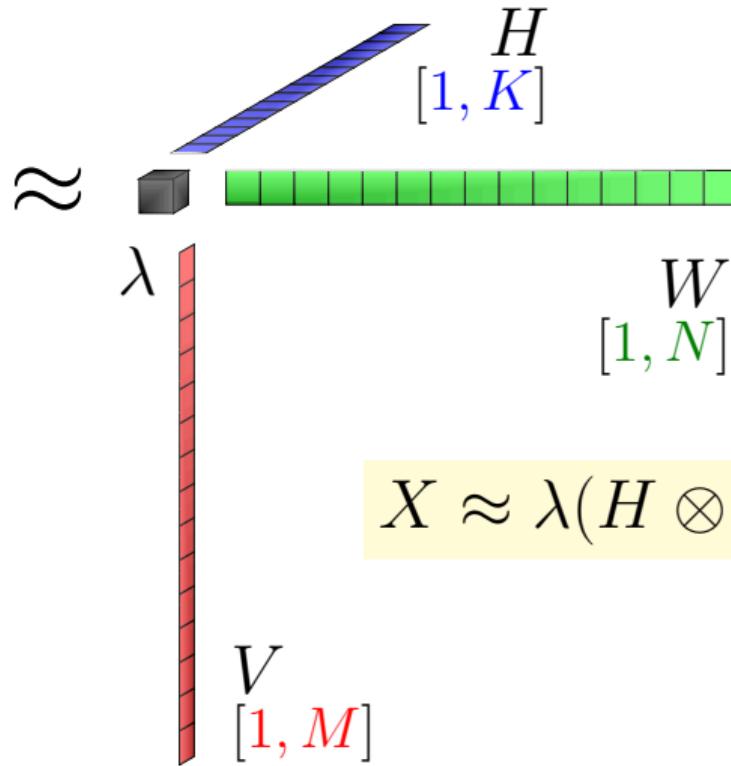
24 knowns $(6 \times 4) \rightarrow$ 30 unknowns $(6 \times 3) + (3 \times 4)$
number of features k is also unknown (here, $k = 3$)

NMFk: Factorization process

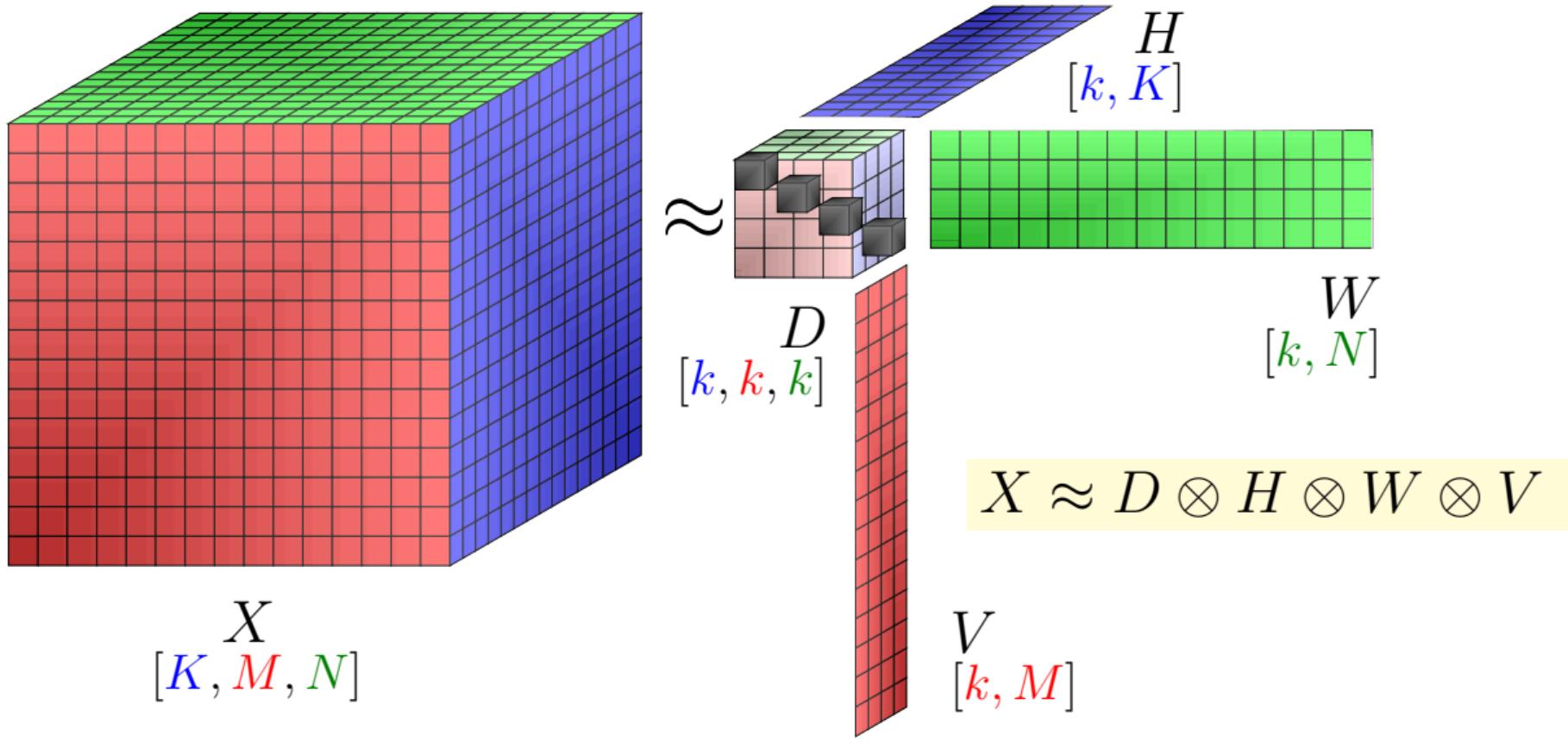
$$X = W \times H$$



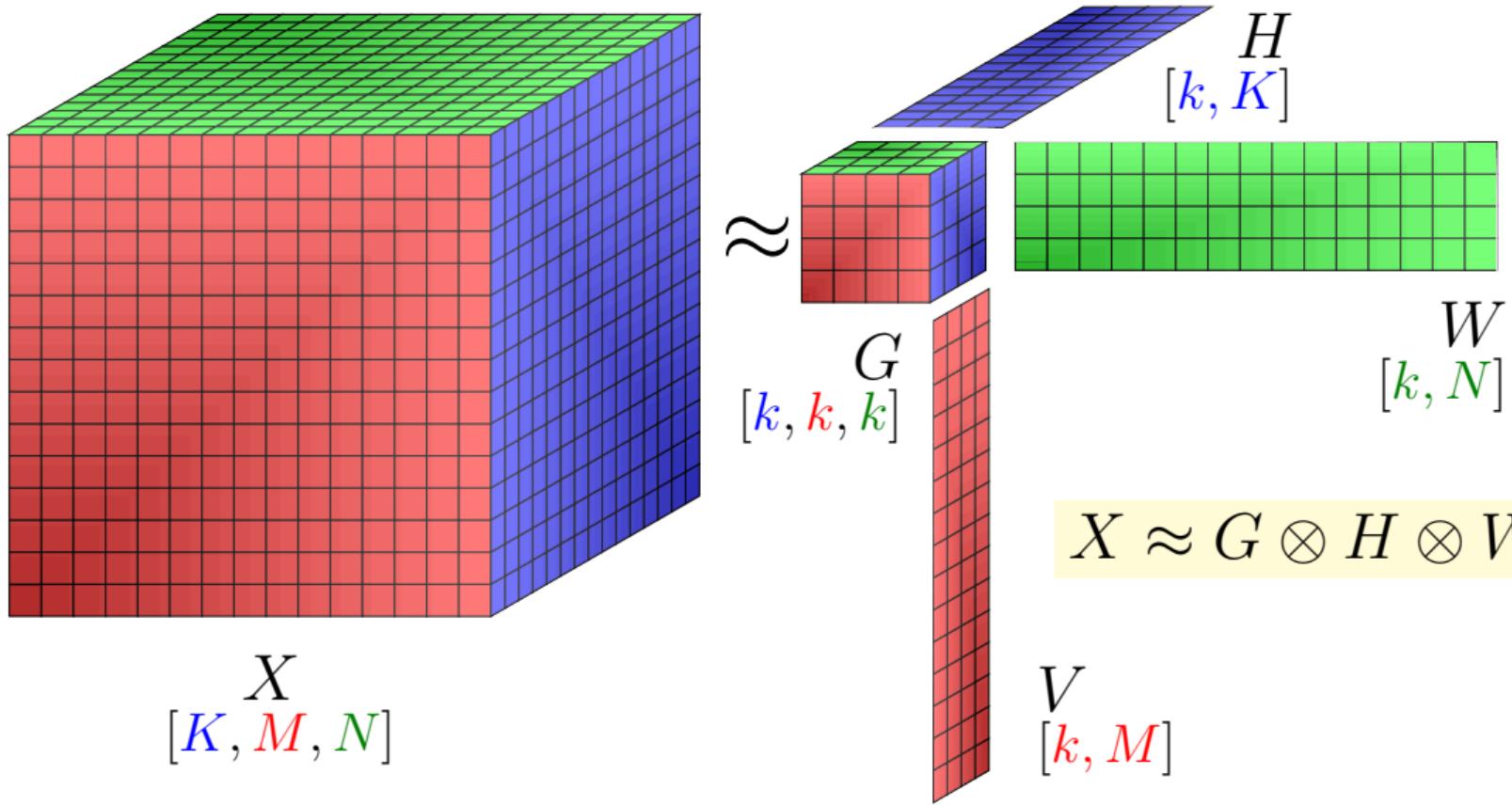
Tensor Decomposition (3D case): Rank-1 tensor



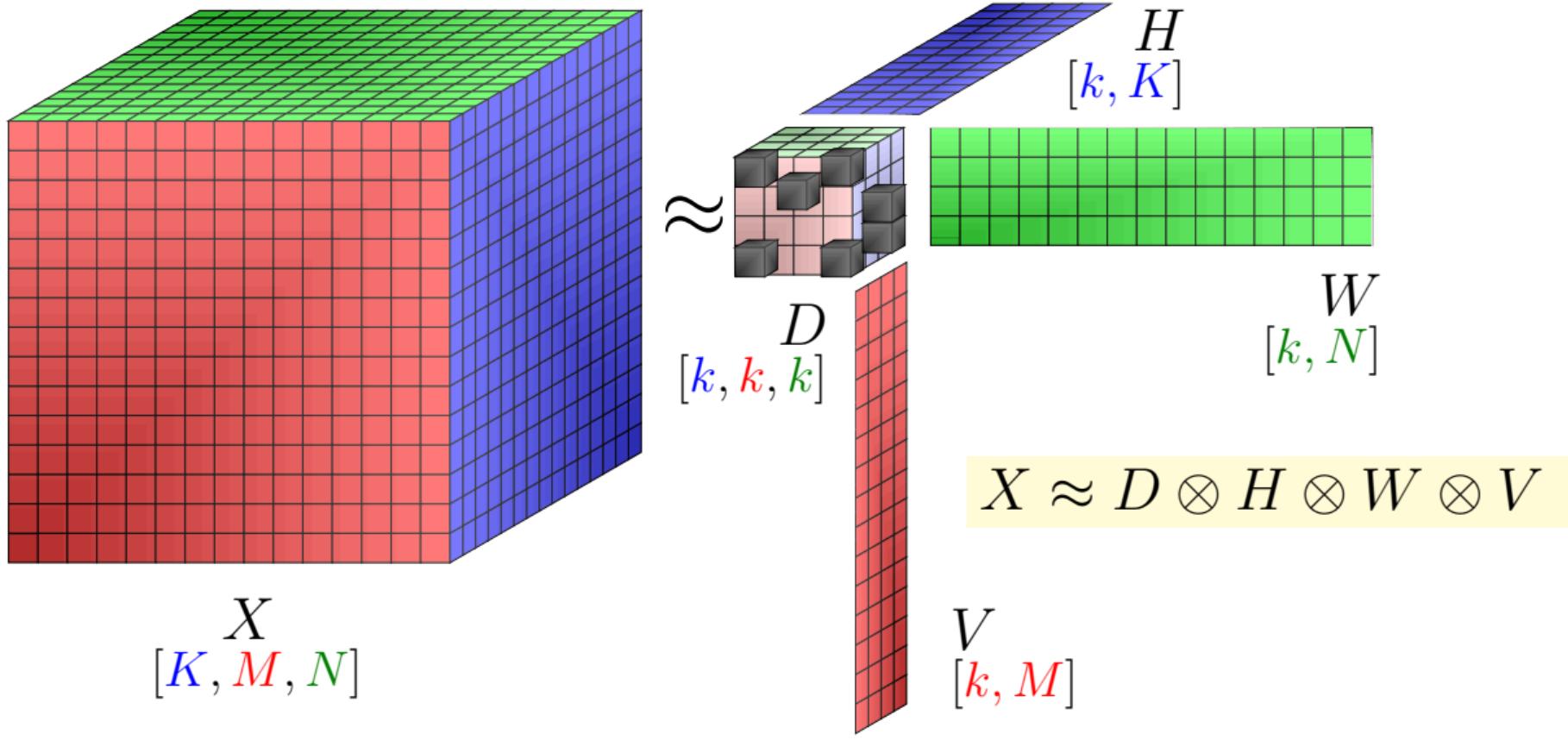
Tensor Decomposition (3D case): Rank-4 tensor



Tensor Decomposition (3D case): Multirank-(4,4,4) tensor



Tucker Tensor Decomposition (3D case): Tucker-3 Multirank-(3,2,4)



► **Field Data:**

- Contamination
- Climate
- Geothermal
- Seismic
- Oil/gas production

► **Lab Data:**

- X-ray Spectroscopy
- UV Fluorescence Spectroscopy
- Microbial population analyses
- Isotope fractionation

► **Operational Data:**

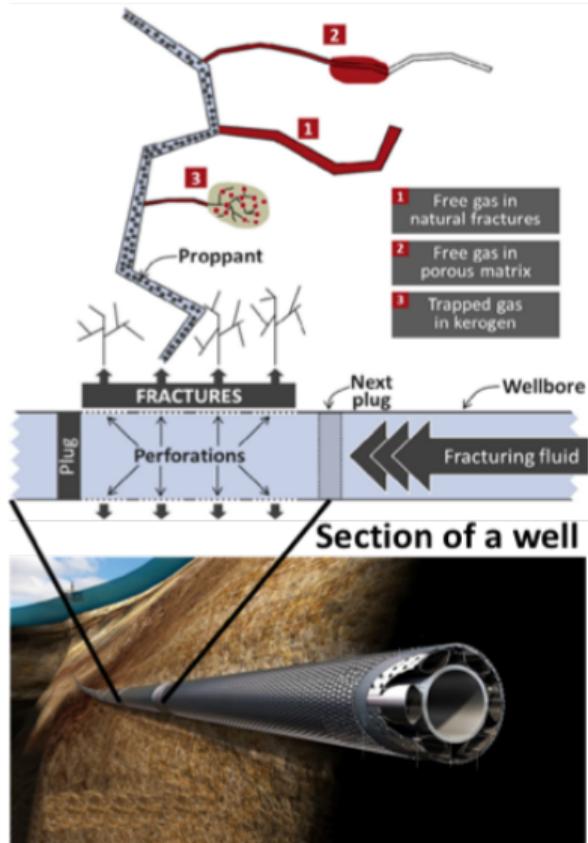
- LANSCE: Los Alamos Neutron Accelerator
- Oil/gas production

► **Model Outputs:**

- Reactive mixing $A + B \rightarrow C$
- Phase separation of co-polymers
- Molecular Dynamics of proteins
- Climate modeling

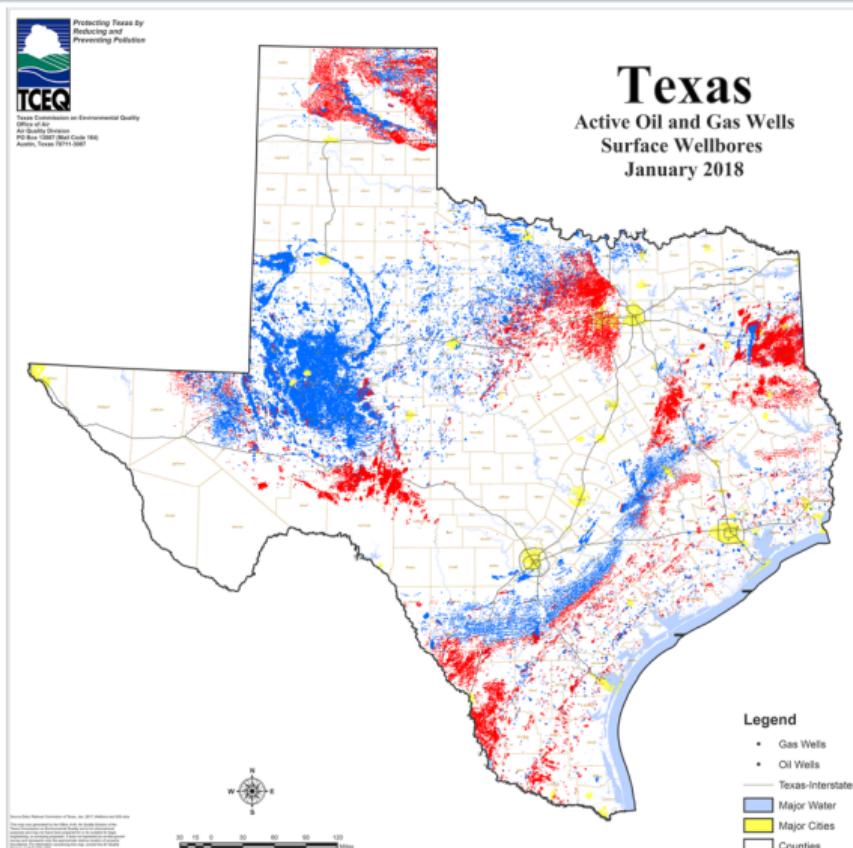
- ▶ Vesselinov, Munuduru, Karra, O'Maley, Alexandrov, Unsupervised Machine Learning Based on Non-Negative Tensor Factorization for Analyzing Reactive-Mixing, **Journal of Computational Physics**, Special issue: Machine Learning, 2019.
- ▶ Stanev, Vesselinov, Kusne, Antoszewski, Takeuchi, Alexandrov, Unsupervised Phase Mapping of X-ray Diffraction Data by Nonnegative Matrix Factorization Integrated with Custom Clustering, **Nature Computational Materials**, 2018.
- ▶ Vesselinov, O'Malley, Alexandrov, Nonnegative Tensor Factorization for Contaminant Source Identification, **Journal of Contaminant Hydrology**, 2018.
- ▶ O'Malley, Vesselinov, Alexandrov, Alexandrov, Nonnegative/binary matrix factorization with a D-Wave quantum annealer, **PLOS ONE**, 2018.
- ▶ Vesselinov, O'Malley, Alexandrov, Contaminant source identification using semi-supervised machine learning, **Journal of Contaminant Hydrology**, 2017.
- ▶ Alexandrov, Vesselinov, Blind source separation for groundwater level analysis based on nonnegative matrix factorization, **WRR**, 2014.

- ▶ Oil/Gas production from unconventional reservoirs extracts a small portion of the available resources (<10%)
- ▶ Oil/Gas production is challenging to predict and optimize
- ▶ Physics processes during well development (including hydrofracking) and extraction are poorly understood and challenging to simulate
- ▶ Alternative is to learn to predict system behavior based on the observed oil/gas production at existing wells

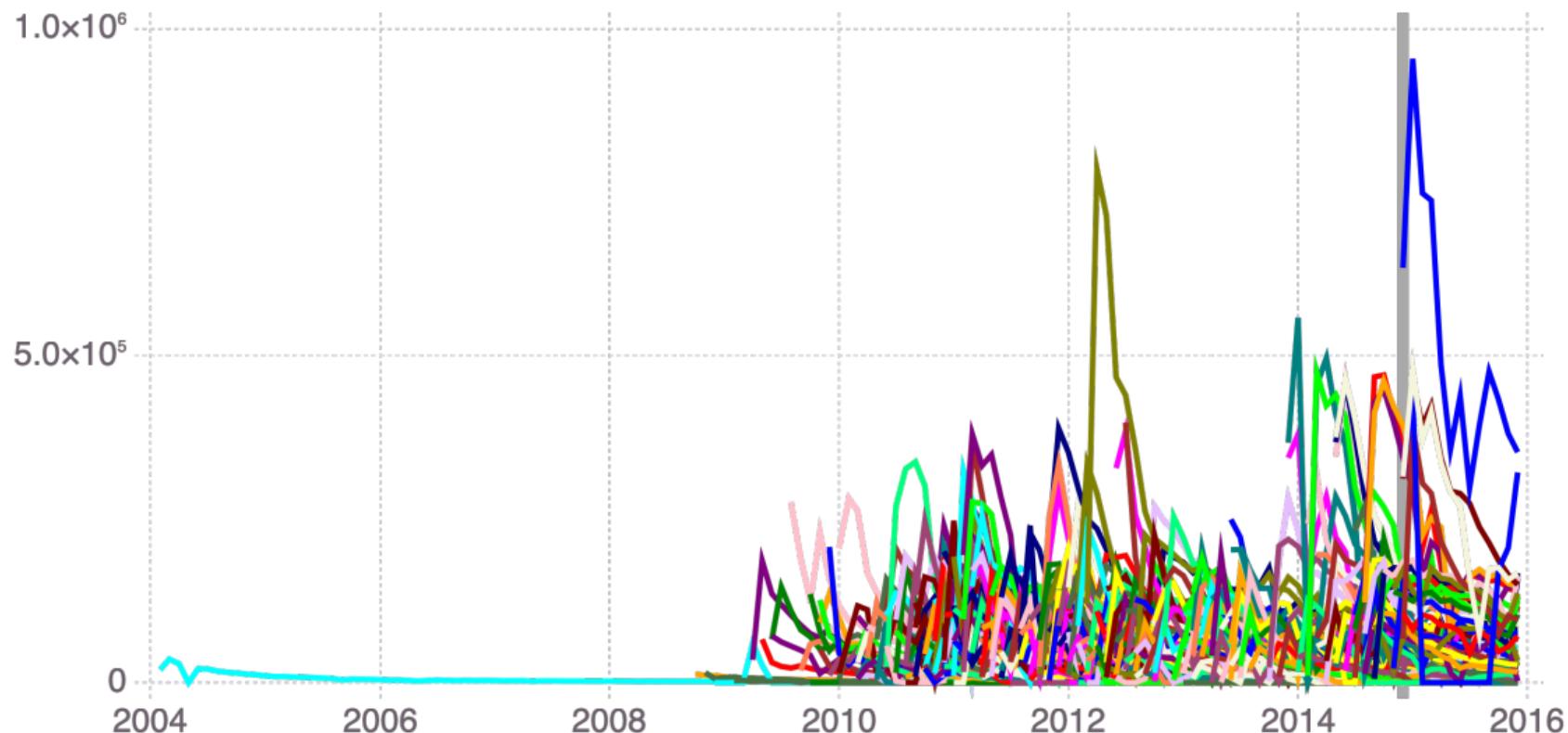


Oil/Gas Production Data

- ▶ Large public datasets are available representing unconventional oil and gas production (U.S. and world wide)
- ▶ Data represent monthly production rates (oil, gas, water) + many other well attributes
- ▶ ~ 2,000,000 wells in U.S.
- ▶ > 300,000 wells in Texas
- ▶ > 20,000 wells in Eagle Ford Shale Play
- ▶ 327 gas wells in Eagle Ford Shale Play selected for preliminary analyses



Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells



ML
oooooo

NMFk/NTFk
ooooooo

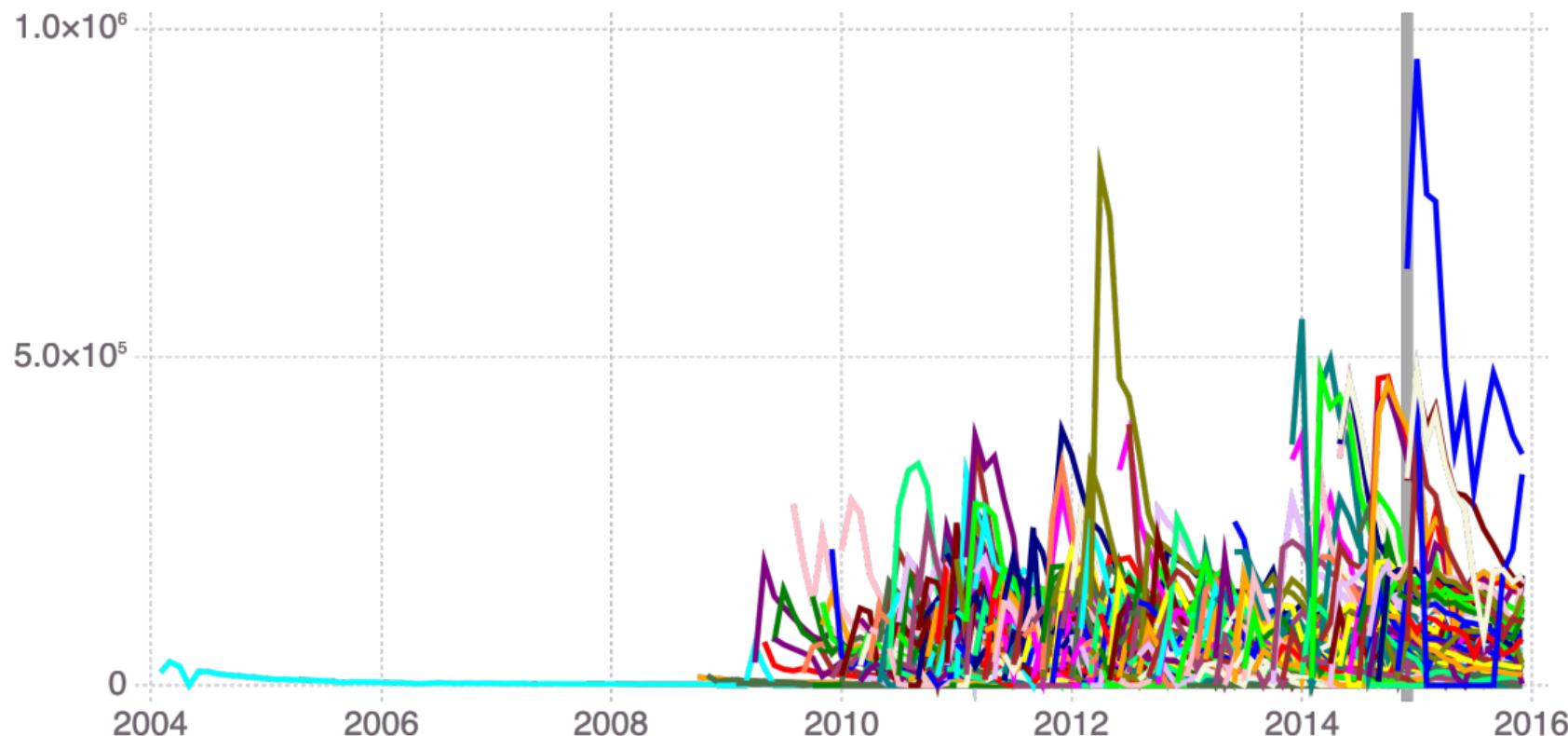
Studies
oo

Oil/Gas Production
ooo●oooooooooooo

Summary
oo

- ▶ Use all the data up to a given cutoff date (e.g. 2015)
- ▶ Apply ML to learn behavior of the “known” well transients
 - Identify and group wells which behave similarly (having similar production transients)
 - Discover the optimal number of **master decline curves** required to represent the observed transients
 - **master decline curves** = production **features** or **signatures**
- ▶ Apply ML to predict **blindly** the unknown production transients beyond the cutoff
- ▶ Prediction is obtained by discovering to which type (group) the wells producing beyond the cutoff belong
- ▶ i.e., discovering what combinations of the **master decline curves** can represent the wells producing beyond the cutoff
- ▶ ML analyses performed using **NMFk/NTFk**

Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells



ML
oooooo

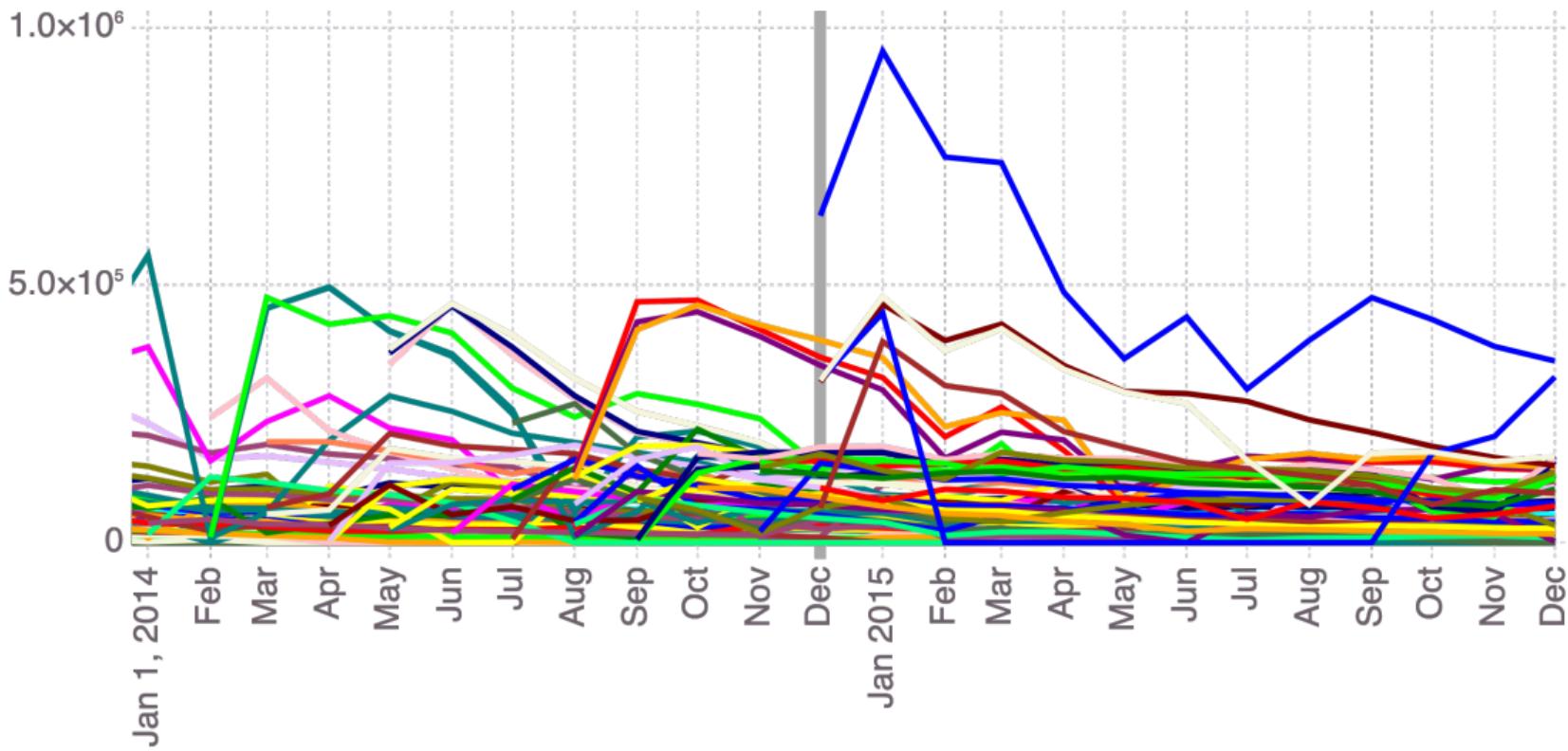
NMFk/NTFk
ooooooo

Studies
oo

Oil/Gas Production
oooo●oooooooo

Summary
oo

Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells



ML
oooooo

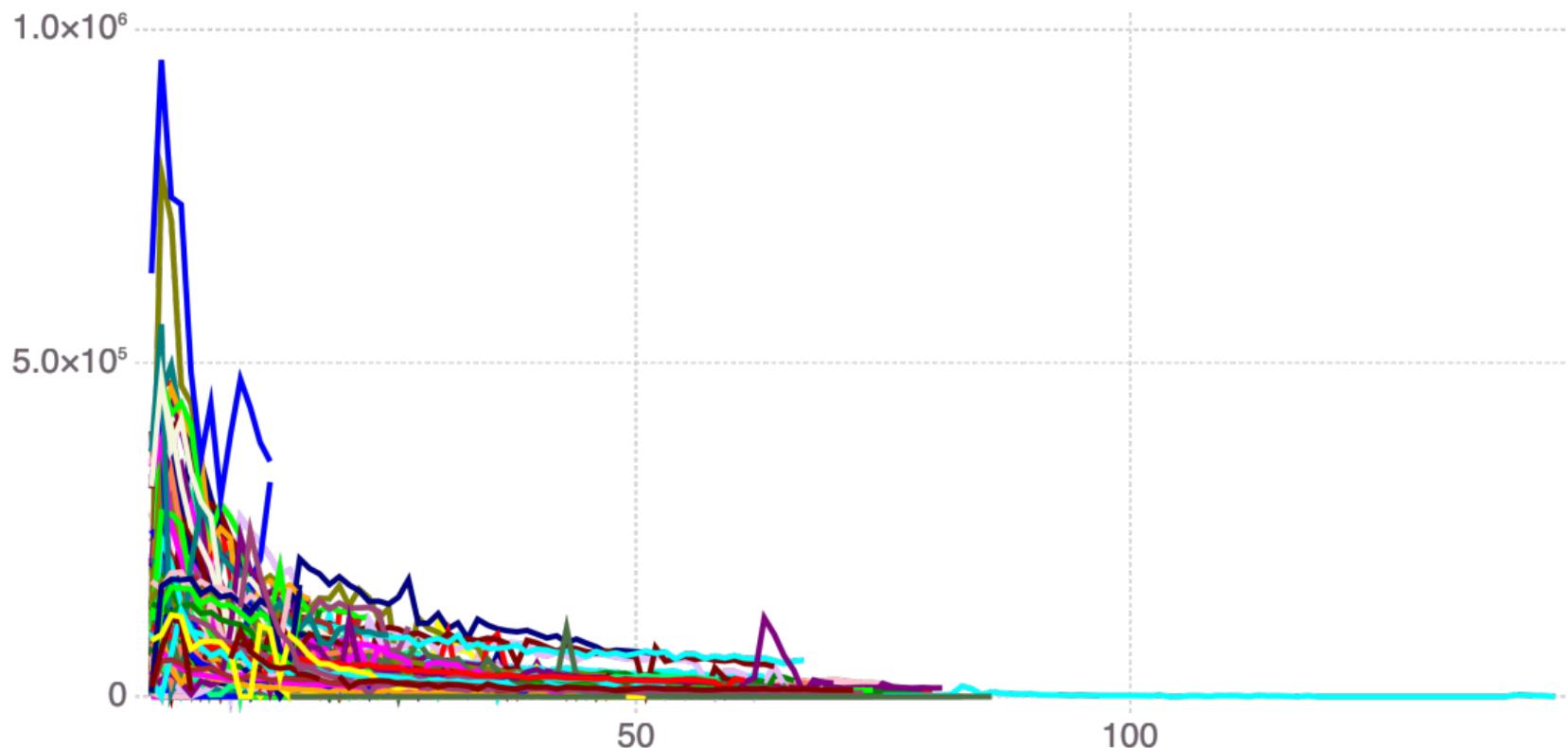
NMFk/NTFk
ooooooo

Studies
oo

Oil/Gas Production
oooooooo●oooooooooooo

Summary
oo

Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells



ML
oooooo

NMFk/NTFk
ooooooo

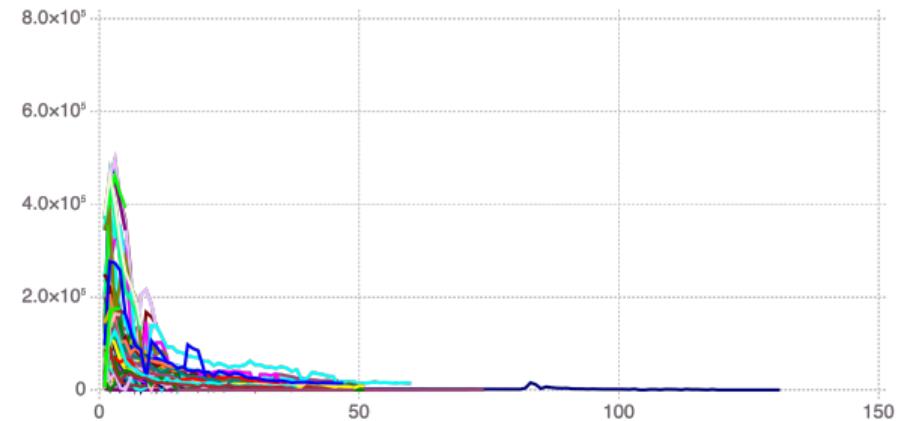
Studies
oo

Oil/Gas Production
oooooooo●oooooooooooo

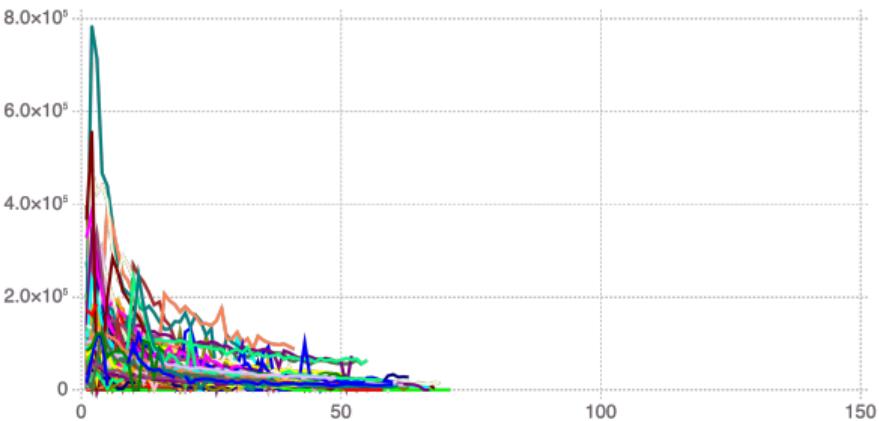
Summary
oo

Eagle Ford Shale Play: Wells split into 2 groups

‘Fast’ declining (135)



‘Slow’ declining (192)



ML
oooooo

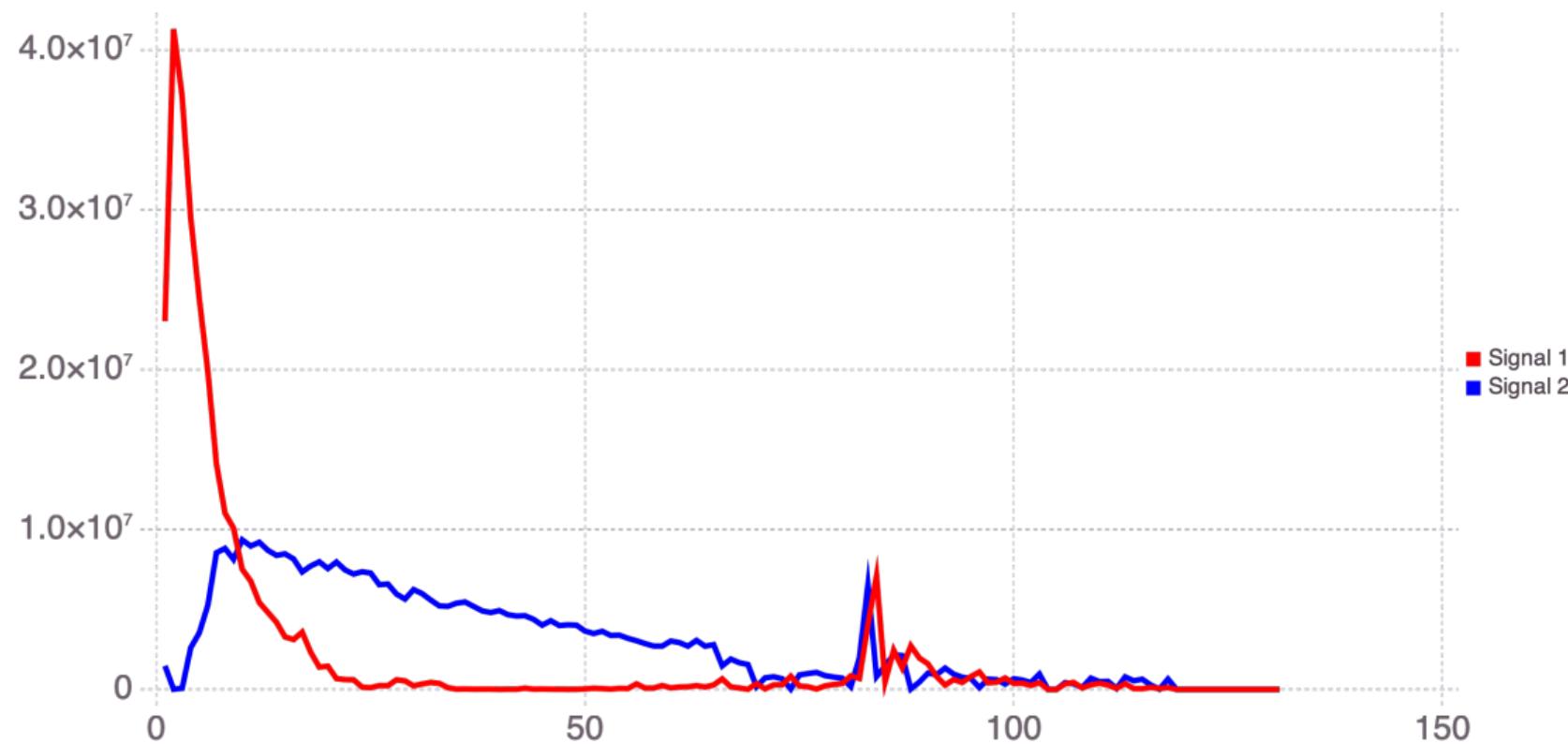
NMFk/NTFk
oooooo

Studies
oo

Oil/Gas Production
oooooooo●oooooooo

Summary
oo

Eagle Ford Shale Play: Master Decline Curves [MCF over months]



ML
oooooo

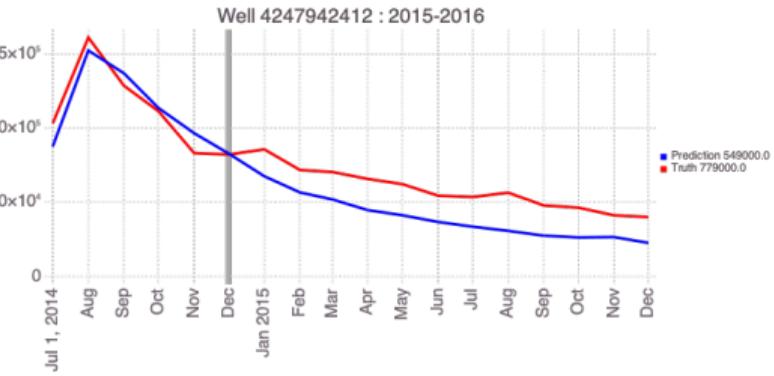
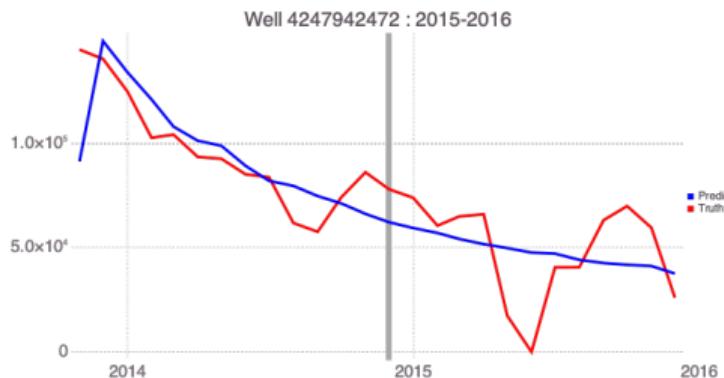
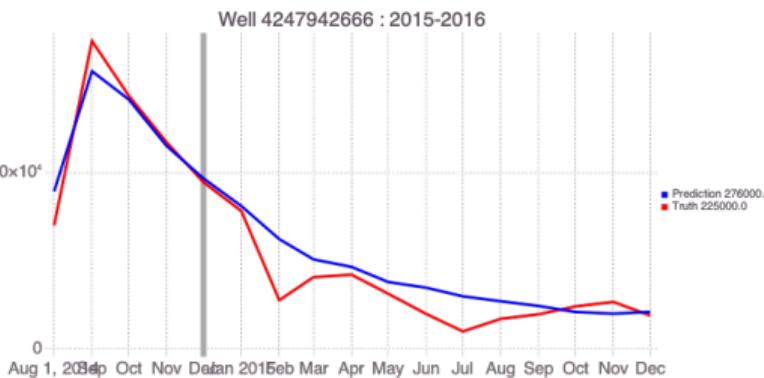
NMFk/NTFk
ooooooo

Studies
oo

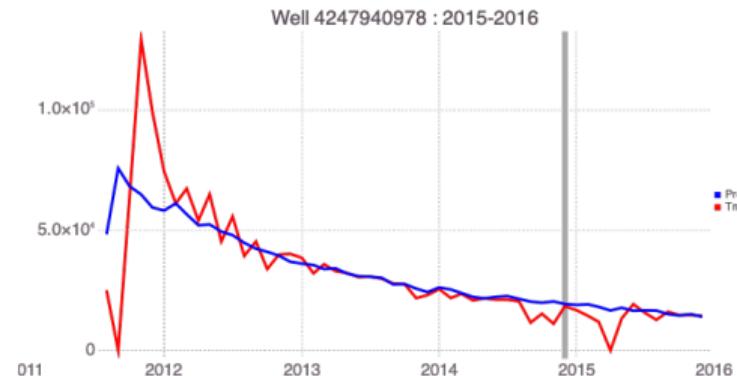
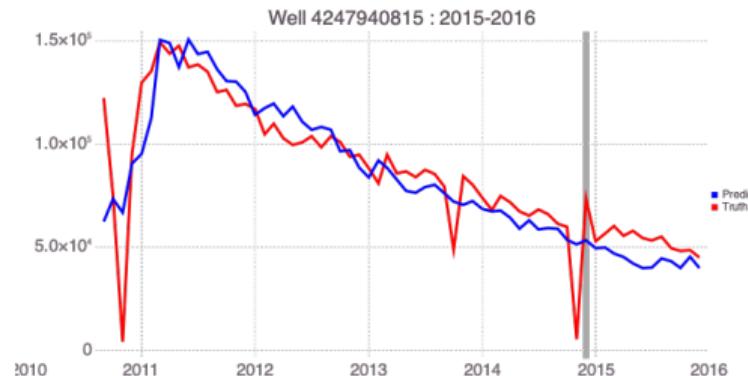
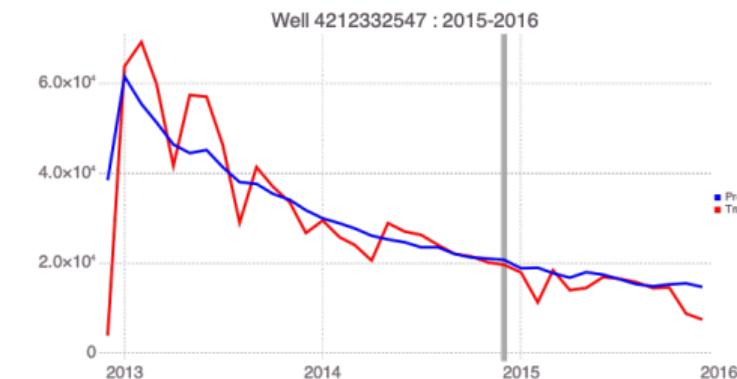
Oil/Gas Production
oooooooo●oooooooo

Summary
oo

Eagle Ford Shale Play: Blind predictions beyond 2015



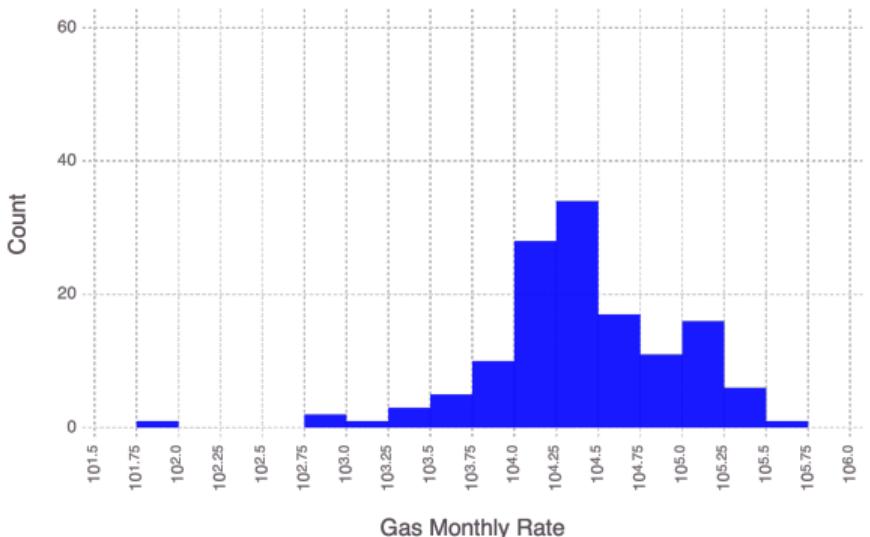
Eagle Ford Shale Play: Blind predictions beyond 2015



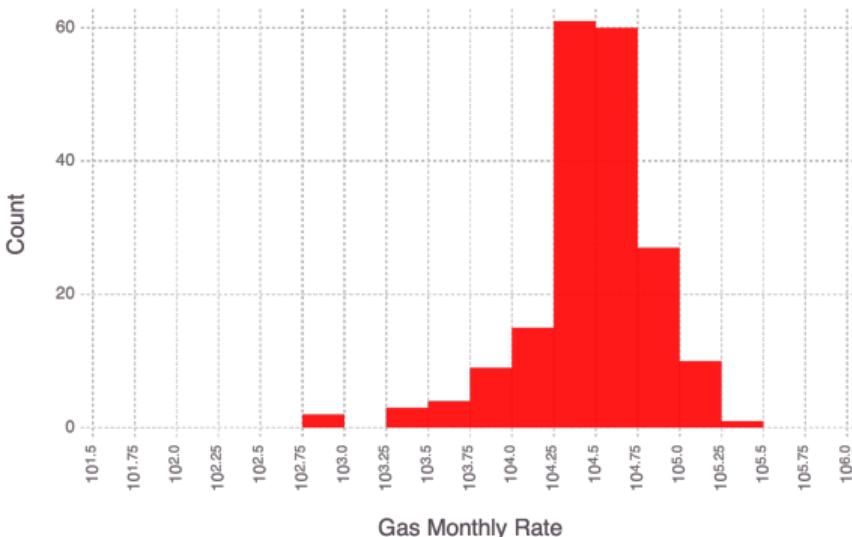
Eagle Ford Shale Play: Wells split into 2 groups

Monthly rate histograms

‘Fast’ declining (135)

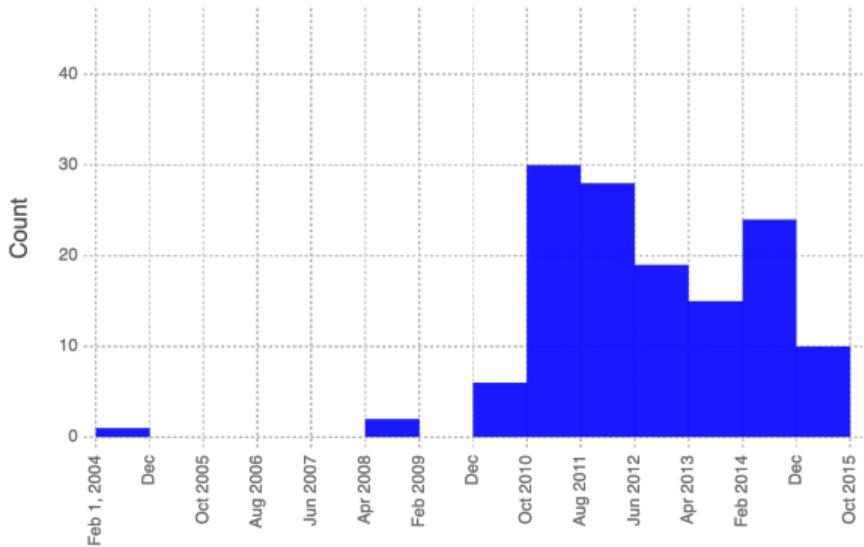


‘Slow’ declining (192)

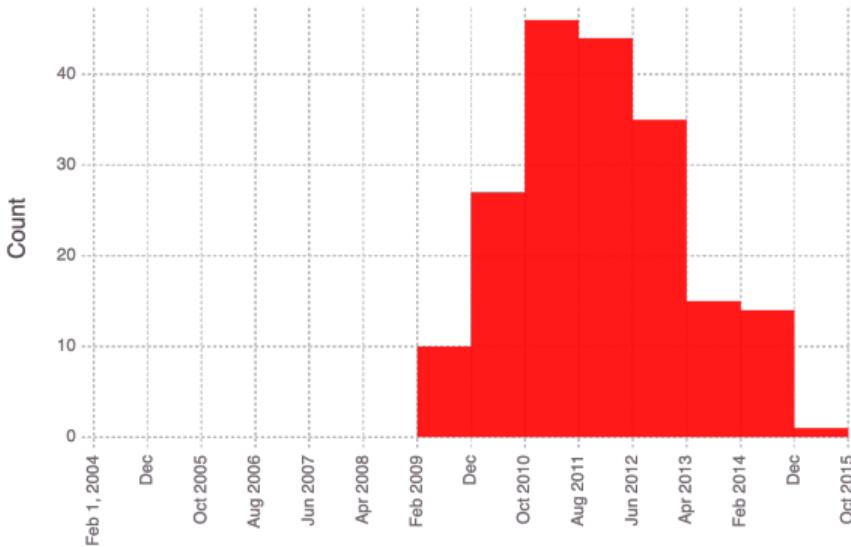


Drilling date histograms

‘Fast’ declining (135)



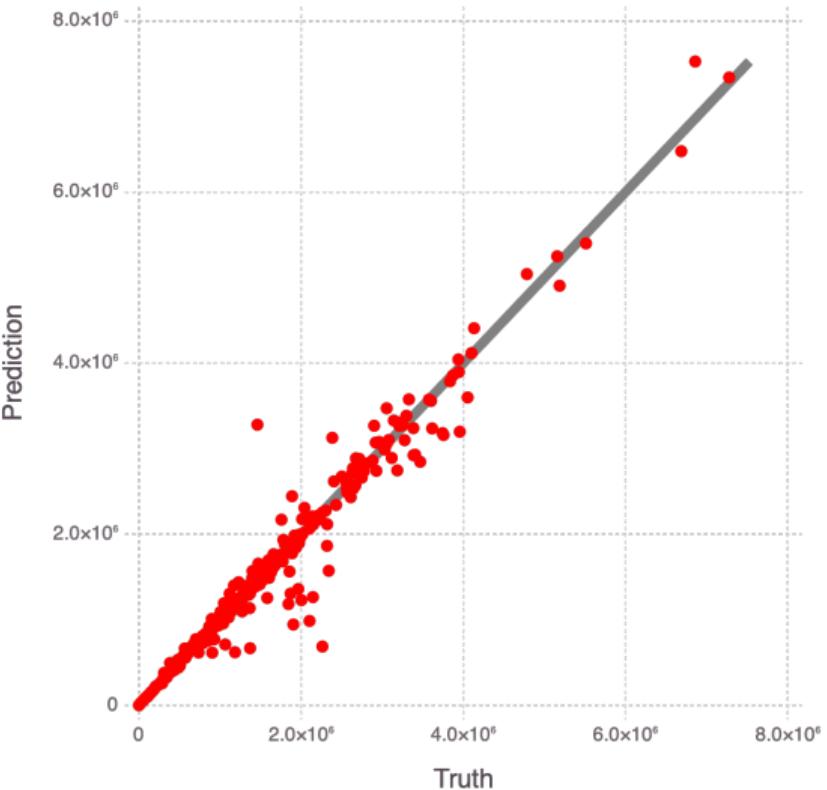
‘Slow’ declining (192)



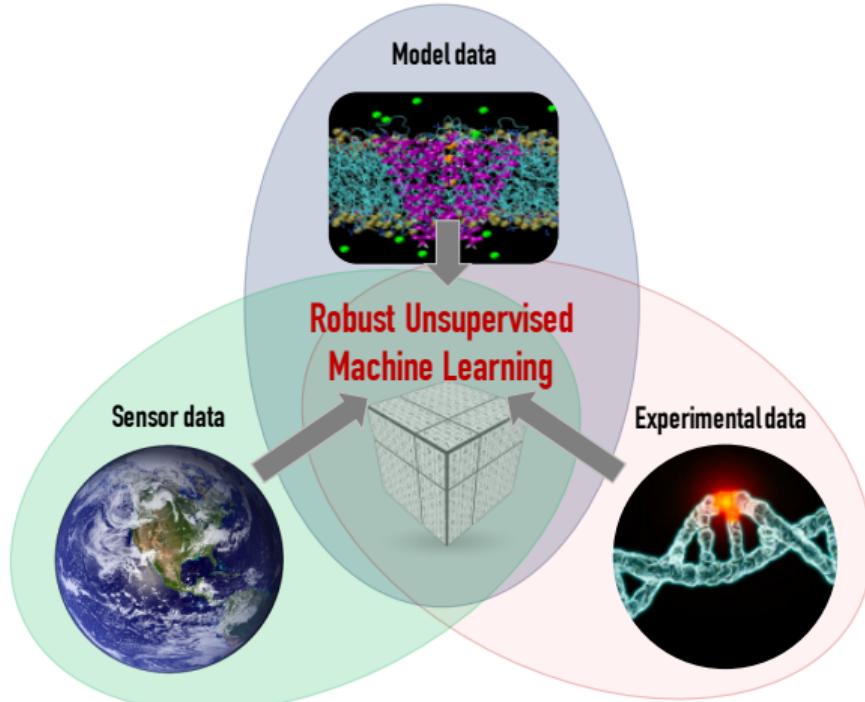
- ▶ Other well attributes also differ between the 2 groups
- ▶ For example:
 - Operators
 - Proppant mass
 - Injected fluid volumes
 - ... work in progress

Eagle Ford Shale Play: Blind predictions beyond 2015

- ▶ 300 wells continue producing beyond 2015
- ▶ $r^2 = 0.96$

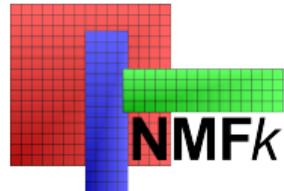


- ▶ Developed **novel** unsupervised and physics-informed ML methods and computational tools
- ▶ Our ML methods have been used to solve various real-world problems (brought breakthrough discoveries related to human cancer research)
- ▶



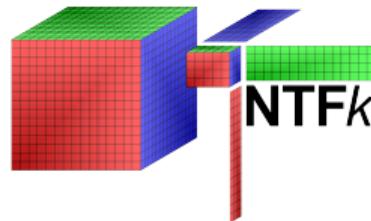
► Codes:

NMF k



MADS

NTF k



► Examples:

http://madsjulia.github.io/Mads.jl/Examples/blind_source_separation

<http://tensors.lanl.gov>

<http://tensordecompositions.github.io>

<https://github.com/TensorDecompositions>

<https://hub.docker.com/u/montyvesselinov>

