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Abstract

To be competitive in the electricity markets, various technologies have been reported to increase profits of wind farm owners.
Combining battery storage system, wind farms can be operated as conventional power plants which promotes the integration of
wind power into the power grid. However, high expenses on batteries keep investors away. Retired EV batteries, fortunately,
still have enough capacity to be reused and could be obtained at a low price. In this work, a two-stage optimization of a wind
energy retired EV battery-storage system is proposed. The economic performance of the proposed system is examined concerning
its participation in the frequency containment normal operation reserve (FCR-N) market and the spot market simultaneously. To
account uncertainties in the wind farm output, various electricity market prices, and up/down regulation status, a scenario-based
stochastic programming method is used. The sizing of the equipment is optimized on top of daily operations of the hybrid system
which formulates a mixed-integer linear programming (MILP) problem. Scenarios are generated with the Monte Carlo simulation
(MCS) and Roulette Wheel Mechanism (RWM), which are further reduced with the simultaneous backward method (SBM) to
increase computational efficiency. A 21 MW wind farm is selected as a case study. The optimization results show that by integrating
with a retired EV battery-storage system (RESS) and a bi-directional inverter, the wind farm can increase its profits significantly
when forwarding bids in both of the aforementioned electricity markets.
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m Scenario probability

Echarse Absolute charge content of the RESS
ERESS RESS capacity

N Optimized battery number of RESS

pactiup Potential electricity inflow into FCR-N market
from upward regulation

pehdown Potential electricity inflow into RESS from down-
ward regulation

petup Potential electricity inflow into RESS from upward
regulation

pehwt The power that is used for charging RESS from
wind farm

Pt The charging power for RESS

pdis The power discharged from RESS

pim The bi-directional inverter power

pspotwt The power traded in spot market generated from
wind farm

pspet Bidden electricity in spot market

R The bidden capacity for upward regulation

SoC State of charge

Z Binary variables indicating options being chosen

1. Introduction

Electrical Vehicles (EVs) have been scoped as the transition
transportation technology to replace internal combustion engine
vehicles (ICEVs) [1, 2], however, despite academic consensus,
the deployment of EVs remains low with a representation of,
less than 1% of the combined global vehicle fleet [3]. Multi-
ple reasons for the slow transition have been examined rang-
ing from battery performance [2], vehicle costs [4], range lim-
itations [5], etc., and are frightening similar as determined a
decade ago [6]. Simultaneously, advocates for EVs have been
using the arguments of vehicle-to-grid (V2G), which enables
strategic storing and exchange of electricity [4]. However, few,
if any studies have adequately examined the potential usage of
EVs and EV batteries after the expired lifetime in combination
with multi-megawatt wind turbines. Instead recent studies have
focused on the combination of PV and retired EV batteries, and
found that a) residual capacities can be exploited [7], b) power
management and selection strategies are required to optimize
the value of the retired battery [8], and c¢) the environmental,
social and economic profiles of EV batteries are improved due
to a minimization of the recycling rate [9]. Assuming the same
consequences for retired EV batteries, it would inevitably in-
crease the value of lifetime EVs, and potentially add to the pol-
icy mechanisms, which especially seems to be lacking in Den-
mark [1]. As a matter of fact, only 8,746 EVs (plug-in hybrids
and all-electric vehicles) were registered in Denmark by the end
of 2017 [10], which is far less than the Scandinavian neighbours
Norway (209,122) [11] and Sweden (50,304) [12]. This being
despite the fact that Denmark has excellent wind resources [13],
a high penetration of wind power in its electricity mix (44% of
the demand in 2017) [14], and several days with a surplus of
electricity and thereby negative electricity prices [15].

Using batteries for electrical storage system (ESS) is not a
novel thought, and especially lithium-ion battery was brought

up in several studies as a prominent technology for load shift-
ing and peak shaving demands [16-19], and highlighted for its
capabilities of low standby losses and high energy efficiencies
(60 - 95%) [20]. Using batteries to increases the profitability
of wind farms have also been proposed before [21], as sev-
eral studies demonstrated methods for lucrative bidding strate-
gies on the day-ahead markets when combining batteries and
wind farms [22, 23]. Furthermore, applying batteries as the
cornerstone technology in ESS was concluded to be the most
profitable approach to provide primary frequency service in the
Danish reserve electricity market almost a decade ago [24].

This study will investigate solutions to a) The fluctuations
in Danish electricity prices due to the heavy reliance on wind
power, and b) The investment opportunities of installing retired
EV batteries in Danish operational offshore wind farms.

In order to examine such challenges, the hybrid wind farm
- retired EV batteries system is expected to participate in both
the day-ahead and the FCR-N market. As a comparison, an-
other case in which the wind farm only participates in the spot
market is also studied, both shown in Fig. 1. According to the
rule of Danish transmission system operating, the balance re-
sponsible parties (BRPs, referring to the hybrid system in this
study) merely need to provide a small amount of energy to mit-
igate the frequency deviation and get remunerated mainly by
the bidden power capacity. Therefore, the electricity generated
from the wind turbines can be sold at the spot market or caters
for upward regulations of the FCR-N market, with part energy
or the surplus going into the RESS or possibly both.

Since discharging the battery will incur high cost and re-
duce the battery lifetime and performance obviously, the RESS
works as downward regulation medium and receives electricity
from the FCR-N market when downward regulation is needed.
The upward regulation in the FCR-N market can be handled by
controlling the wind turbines in the de-rated mode and releasing
those when needed.

The research materials and methods are based upon the ex-
amination of the potential profitability of integrating retired EV
batteries in a Danish operational offshore wind farm. Further-
more, web searches have been conducted to inform about statis-
tics of EVs and the market prices in Denmark. The following
sections describes the methodology and materials applied for
the core elements of this research.

2. Problem Formulation

In this work, a scenario-based stochastic programming
method is employed to cope with the inherent uncertainties of
the optimization problem, including the power generation, the
spot market prices, the FCR-N market prices, the regulating
market (upward and downward) prices and the FCR-N service
activation states. The framework has been examined in [25, 26]
and concluded to be an efficient and effective method to ac-
count uncertainties for scheduling problems. To convexify the
problem, the big M method is adopted to linearize the bi-linear
term. The scenario generation and reduction are specified at
the beginning of this part while the mathematical model of the
optimization problem is given in the end.
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Figure 1: Hybrid wind farm-RESS system schematic layout

2.1. Scenario generation

The uncertain parameters listed in the previous paragraph are
determined with generated scenarios by Monte Carlo Simula-
tion (MCS) and Roulette Wheel Mechanism (RWM). Although
other methods such as rejection method [27] and alias method
[27] can be used to generate random variables with discrete dis-
tribution, RWM is simpler and does not require complex set-up
procedure. Indeed, RWM has been applied in [25, 26, 28]. Nu-
merical results show the capability of this method [28]. The
realization process is summarized as follows.
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Figure 2: Discretization of forecast errors distribution

The Probability Distribution Function (PDF) is used to gen-
erate a set of possible options and corresponding probabilities
based on forecast errors of the power generation and the dif-
ferent market prices, while for the FCR-N service activation
states, the historical frequency is assumed as the probability for
each possible state. As shown in Fig. 2, discretization and nor-
malization are performed on the continuous probability distri-

bution, generating 7 segments with an interval of standard de-
viation (o) [25]. The probability distribution of reserve service
activation states is shown in Fig. 3. To be more specific, the
prediction error of the wind power can be obtained from [29].
In our case, its o is taken as 5% for Denmark. From [30, 31], a
o of 10% is a reasonable estimation of the prediction error for
day-ahead market price. The prediction errors are also assumed
as 10% for the FCR-N market and regulating market price.

down o up

Figure 3: Reserve service activation state probability distribution
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Afterwards, random numbers (e, RN P P edown

€f) ranging from [0,1] are generated for each hour. As in Fig. 4,
the intervals where the random numbers fall in are taken as the
corresponding options for each uncertain parameter. A scenario
is therefore defined as a set of random numbers for each hour
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Figure 4: Accumulated probability distribution.(1):Power generation, FCR-N
market prices, spot market prices and regulating market prices. (2): Reserve
service activation states.
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A typical scenario is shown in Fig. 5, where the uncertain
parameters in a day are all determined with certain values. For
example, in the first hour, the power is no more uncertain pa-
rameter, but fixed at just below 15 MWh. With all the scenar-
ios, the stochastic programming problem is transformed into its
deterministic equivalent. It can also be observed that the spot
market prices intersect with the FCR-N market prices indicating
profitability of biding in the FCR-N market.

In order to obtain the probability of each scenario, Z,,; ; is
introduced to indicate the MCS results where i is the uncertain
parameter index and j is the interval index. The rule is that
originally Z,,,; ; are all set as 0. When the corresponding inter-
val is taken in the simulation, the related Z,,,; ; is changed into
1. Suppose m; ; is the probability of the corresponding interval
being taken, which is neither time nor scenario dependent, the
normalized probability [25] of scenario w is then:

T 1 J
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Zw H[:]
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7
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2.2. Scenario reduction

Large number of scenarios usually indicate better approxi-
mation of the original problem, but also with longer computa-
tion time and larger complexity. In this research, the simulta-
neous backward method (SBM) which concurrently considers
scenario distance and scenario probability is employed. Nu-
merical tests have shown that SBM provides accurate solutions
to the optimal reduction problem [32] and is also used in re-
searches such as [25]. The principle of scenario reduction is
to reduce the scenario amount by deleting scenarios with lower
probability and bundling similar scenarios, while keeping the
characteristics as much as possible. The SBM is described as
follows:

1. Consider Q as the initial scenario set. The distance matrix
DT is defined where w, w’ € Q:

T.1J
DT, . = \/thl,izl,j:I(ZstiJ -
' Inf

/
Zw’,t,i,j)z w#*F w
w=w
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Figure 5: A typical scenario for 2nd November, 2017 with 1 indicating upward
regulation, -1 being downward and 0 being reserve services not activated.

2. Define probability-distance matrix PD as :

PD, . = 1,DT, @)
3. Select d, r where PD,, is the smallest entry in the matrix
PD. Delete scenario d in scenario set Q, n, = 7, + 7.

4. Delete the row d and column d in distance matrix DT.
5. Repeat the steps 2-4 until the required scenario amount is
obtained.

2.3.

In order to verify the financial benefit of integrating the RESS
and participating the FCR-N market, three cases are studied. In
the base case, the wind farm without the storage system partici-
pates the spot market only and bids all the predicted power gen-
eration into the spot market, the revenue of which for a whole
year is as Eq. (5). In case 1, the wind farm purchases RESS
and participates the spot market, while bids are made in both
the spot market and the FCR-N market in case 2.

Mathematical model

T

D Q
Rbase — Zzﬂ“”dz EthdP,wdl}
d w=1 =1

2.3.1. Case l

After the RESS is introduced into the system, the wind farm
can perform arbitrage in the spot market. The yearly revenue
is:

&)

T

Reasel _ Z Z Td Z EP,,w,dPiZ(j;l}

d w=l

(6)

The benefit is considered as revenue difference before and
after RESS introduction. The economic analysis is performed
with 20 year’s period since this is the wind turbine’s lifetime.
The net present value (NPV) of benefit is:

0 Rcasel _ Rbase

—NPV-RP = — —
(1 +d)y!

NPV-B! = NPV-R! (7)

y=1
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where the superscript b and 1, 2 (in following section) stand for
the base case, case 1 and case 2 respectively.

The cost is considered as three parts: the initial investment of
the RESS and the bi-directional inverter, the replacement cost
(the cost of replacing the RESS and inverter with new one at
the end of their lifetime), and the operation and maintenance
cost (1% of investment each year for both) [33]. In case 1 and
2, two scenarios are considered concerning the price of retired
battery, which is 15% of the brand new EV battery price in the
optimistic scenario and 30% in the pessimistic scenario. The
NPV of the cost is therefore:

20

inv i 1 roam
NPV-C = P™A"™[1 + +
[ (1+d)0 ; (1 +d,))"‘1]
20
+a;NEEVBAEVE[] + ! + ! + Z fosm
l 1+d)"  (A+d)* (1 +dy!

y=1

®)

where the inverter is assumed to be replaced after 10 year’s
operation, while the replacement for the RESS is done each 7
years, as specified in Table 1.

Obj.

Max. NPV-P = NPV-B! — NPV-C )

S.t. '
Ptnv 2 O (10)
E“P? = NEFVPSoH,N > 0 (11)

o, d.
P = Pl + Pl N Y, Vd (12)
Py PO = P N Y w, Vd (13)
P = PN YW, Vd (14)
. Pdis

Ehrse = Mg o (el peh Lod 31t Y, ¥d (15)

twd ndis ninv

S0CinE? < E" < §0C,pan EP Nt Nw,¥d  (16)

B = B = B Vo, vd an
0< PP <P VY0, Yd (18)
0< P < Py VYW, Yd (19)
0< P! < P™ Vi, Yw,Vd (20)
0< P, < P™ VYo, Vd (21)

P P = 0,Y1,Yw,Yd (22)

The objective function is the minus NPV of profit of the
wind farm owner. In (10) and (11), the capacity of inverter
and RESS are constrained as continuous and discrete variables
respectively. (12) states the bidden electricity in the spot mar-
ket while (13) shows the electricity balance of the wind farm.
(14) indicates that wind power is the only charging source. The
SoC balance, and upper/lower limits of SoC are shown in (15) -
(16). To guarantee the energy will be used out at the end of each

day, (17) is applied as boundary conditions. (18) and (19) en-
sures the energy that flows into the spot market or the RESS is
less than the generated energy. In (20) and (21), the constraints
from inverter size are applied. By nature, the RESS cannot be
charged and discharged simultaneously, which is stated in (22)
as a combinational constraint.

Binary pair of variables, 6,“}[’0 al 6;{5’ ;4 are introduced to help
linearize (22), which represent the charging/discharging state
of the RESS. The big M method is implemented in this work to
linearize the bi-linear term, where M| and M, in later paragragh
are arbitrarily big number, which substitutes (22) with:

Ok Ol €0, 1),68  + 60 <1 VLYW,V (23)
0< P <M NVt Yw,Yd (24)
0< P <M Nt Vw,Yd (25)
2.3.2. Case?2

In case 2, the yearly revenue for the wind farm owner com-
prises the revenue from the day-ahead electricity market, from
the bidden capacity in the FCR-N market and from the FCR-
N service activation energy which is settled per MWh with the
regulating power prices (RPP) [34]. For the FCR-N market, the
Danish TSO Energinet requires simultaneous and symmetrical
upward and downward regulation reserve bid [34]. Therefore,
the upward bids and downwards bids can be described with one
term R; ., 4.

D Q T
R =3 N Tia Y (EPwaP1 + Ry aFCRN, 1,4
d t=1

w=1

+P{MPRPPY 1 — PO RPPIOT )

tw,d
(26)
Obj.
Max. NPV-P = NPV-B2 - NPV-C 27)
S.t.
(10) - (12)
PR PO = P Ripa VY0, YA (28)
Pt = Py p y pdown it w,Yd (29)
(15) - (17)
PP = S Reoas V1, Y, ¥d 30)
0< P < (1= 3"")5! RywaVt.Nw,¥d  (31)
P = """ 810 R V1w, ¥d (32)
Riwa > 03V R, g =0,V1, Yo, ¥d (33)
Riwa < P, 4Vt Yw,¥d (34)

Riwal < min{SoCpaE<? — ET“% P™1} Vi, Yw,¥d  (35)

tawd

(18) = (21),(23) - (25)

The objective function is the net present value of profit,
where the NPV-C can be calculated as (8), and R 4 has to
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be replaced as R.,s» for the NPV-B in Eq. (7). (28) sets the
new electricity balance of the wind farm considering the re-
served capacity for upward regulation. The charging power is
stated as (29) where PCh "7 and P denoting the potential
inflow of electricity from the actlvated wind turbines if upward
regulation is needed and from activated RESS if downward reg-
ulation is needed, respectively. (30) - (32) defines aforemen-
tioned P?zl;p ,Pf/;”f nd PdejW” where, 6,7 b, and 6"‘”27 are a
set of known bmary numbers indicating if the TSO requires up-
ward/downward regulations, and 77 and n%"", both assumed
to be 10%, are the percentages of electricity flowing into or re-
ceiving from the FCR-N market since the capacity is what the
FCR-N market really needs to maintain the frequency stability.
When secondary frequency reserves (aFRR) are activated, the
TSO releases the FCR-N reserve services, which happens 150
seconds [34] after the frequency deviation, and the wind farm
owner can collect the rest electricity generated from the wind
turbines with the RESS. The minimum bidden FCR-N capacity
is 0.3MW [34], which is constrained as (33). Hourly bidden
upward and downward regulation capacities are constrained as
(34) and (35) respectively. The constraints (10) - (12), (15) -
(17), (18) - (21) and (23) - (25) still apply to case 2.

Likewise, the big M method with binary variables 6;(0, g/
612’0), , indicating whether is forwarded to the FCR-N market is
performed on constraint (33). Then, it can be rewritten as:

sl

tod Oroa €10,1),8] 4+ 6704 = 1YL, Y, Vd (36)

-My(1-6,, ) < Riwa < My(1=6,, ). Vt.Yw,¥d  (37)

~My(1 -6, +0.3 <R ya. 1.V, Yd (38)

The aforementioned model can be implemented by the wind
farm owner for daily operations with a much shorter optimiza-
tion span. However, for the strategy maker who needs to in-
clude the equipment sizes as the optimization variables and
usually performs the optimization with a year’s span (with con-
straint (17) as daily boundary conditions), such binary variables
with high dimensionality in the model will severely undermine
the computation efficiency and can even cause the model un-
tractable with existing commercial solvers. In order to enhance
the implementation performance of the large-scale MILP prob-
lem, following assumptions concerning the wind farm owner’s
behaviours are made to avoid the binary variables in the model:
a) Always and only forward bids in the FCR-N market when
power generation is over 0.3 MW and the predicted FCR-N
market price is higher than 80% of spot market price and b)
Never bids RESS-stored electricity in the spot market if pre-
dicted price is non-positive.

The first assumption is made with respect to the minimum
bids requirement in the FCR-N market and taking into account
the potential electricity inflow and revenue from the reserve ser-
vice activation. Afterwards, constraint (33) can be transformed
as:

3 o4
Riwa2 0.3 6'3“5’“4 L vivevd  (39)
Riwa=0 5twd twd — 0

with 6t3w , indicating if the power generation is over 0.3 MW,

6;‘70)’ , indicating if the FCR-N market price is over 80% of the
spot market price.

Simultaneous charging and discharging will incur electricity
waste due to inefficiency, which definitely results in revenue
loss when the spot market price is positive [21]. Therefore,
the constraint (22) can be decoupled naturally with the above
assumptions. As a result, the constraints (23) - (25) can be re-
placed with:

P < Ms{[1-6,,, /01,400 ,+870 IV (1-6) )LV, VY, Vd

(40)
where 65 wd will be zero if the spot market price is non-positive.
In essence, the constraint (40) limits that the RESS cannot dis-
charge if the spot market price is non-positive or if the reserve
services are activated.

2.4. Assumptions

Apart form the assumptions made above, some other assump-
tions are made in the follows.

a) The predicted values for the power generation, the spot
market prices, the FCR-N market prices, the regulating market
prices, and the reserve activation states are assumed to be based
on historical data for scenario generation.

b) The wind farm is assumed to be able to make predictions
before the market closure, which is usually a day before real-
time transaction.

c¢) The bids in the spot market and the FCR-N market are both
assumed to be fully accepted.

d) To account for the impacts on performance of retired EV
battery, the capacity, and the maximum and minimum charg-
ing/discharging is limited to short range in this work. The re-
tired batteries are not designed to perform market arbitrage ei-
ther, which means electricity from the day-ahead market is not
used to charge the RESS.

3. Case Study

In this part, several cases are studied to demonstrate the pro-
posed method. The FCR-N market prices are from Energinet
[35] while the spot market and regulating market prices are
from Nordpool [36]. The mathematical model is solved with
CPLEX [37] based on YALMIP [38] toolbox on MATLAB.
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Figure 6: The spot market prices for a year
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Table 1: Economical analysis parameters

Parameter Values References
Wind turbine lifetime 20 years
Bi-directional inverter lifetime 10 years [39]
RESS secondary service lifetime 7 years [40, 41]
Discount rate d, 5%

O&M ratio rpgy for RESS and inverter 1%/year [33]
Bi-directional inverter price/kWh 1000 DKK

Brand new EV battery price/kWh 1787 DKK [42]
Brand new EV battery stack capacity 24kWh

SoHof retired EV batteries 80% [43-45]
Maximum charging/discharging rate By inverter
Charging/discharging efficiency 95% [43]
Inverter efficiency 98% [46]
Maximum SoC 80%

Minimum SoC 20%
Initial(End-of-day) SoC(case 1) 20%
Initial(End-of-day) SoC(case 2) 35%

* State of health, the ratio between usable capacity and nominal capacity.

3.1. Reference wind farm

The wind farm near the Danish island Sprogoe consist of
seven Vestas V90-3 MW wind turbines. Using WindPro and the
mesoscale wind data from ERAS, the hourly electricity produc-
tion from each of the wind farm has been calculated between
November 1, 2017 and October 31, 2018. The expected life-
time of an offshore wind farm is 20-25 years [47]. The location
of Sprogoe is in the middle of the Great Belt of Denmark, which
had 11,357,037 personal vehicles passing by in 2018 [48], mak-
ing it an ideal position for a nearby EV charging station.
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Figure 7: The FCR-N market prices from 31/12/2017 to 28/1/2018

3.2. Retired EV battery

Nissan Leaf is the bestselling EV model in Norway (over
50,000 in total) [49], and had a market share of 50% of the
Danish EV market in 2018 [50]. The first 24kWh Leaf model
entered the Danish market around 2011 and was warrantied for
8 years life span or 100,000 mileage [51], which makes today
around the peak of retirement for this model. The retired EV
batteries are connected in stack to work as a RESS for the hy-
brid system, the capacity of which (i.e. number of connected
batteries) and the installed inverter capacity are optimized to
achieve maximum profit. The specification of the RESS and
inverter can be found in Table 1. Two scenarios concerning the
price of retired EV battery are considered. In the optimistic sce-
nario, the price is 15% of its brand new model price. While in
the pessimistic scenario, the price is considered as 30% of that.
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Figure 8: Bids in the spot market and the reserve market in the optimistic sce-
nario

3.3. Optimization results

In the implementation of the stochastic programming frame-
work, to account the uncertainties in the model, a large number
of scenarios (1000 in this case) have been generated with MCS
and RWM. A SBM is afterwards applied to reduce the gener-
ated scenarios to 20 remained, in line with [28]. A sensitivity
analysis is provided in section 3.4 to investigate the influence
of the amount of the remained scenarios on the final results.

In this study, two cases with both the optimistic and pes-
simistic scenarios are examined. As in Table 2, the wind farm
cannot recover its investment introducing a RESS and an in-
verter even in the optimistic scenario in case 1, where the wind
farm only forwards bids in the spot market, which is primar-
ily due to the high inverter and battery prices considering the
spot market prices are highly variable as in Fig. 6, with a daily
average standard deviation of 66.8 DKK/MWh .

While in case 2 under the optimistic scenario, the wind farm
would like to install 1615 single retired batteries to form a
RESS with a disposable capacity of 30.0 MWh due to battery
degradation and an inverter of 13.9 MW, which would lead to
an annual revenue increase of 6.4 MDKK. As the result indi-
cates, the wind farm will recover its initial investment after 4.3
years, with a overall return on investment (Rol) of 72.1% over
20 years. In the pessimistic scenario, the wind farm would pur-
chase a much smaller system with 895 single retired batteries
and a 9.4 MW inverter. Even though with the yearly revenue
dropping down by 1.8 MDKK, payback year increasing by 1.1
year, and almost halved Rol, the hybrid system is still on a fi-
nancially competitive level.

The bids forwarded in both the spot market and the FCR-N
market are taken as scenario-weighted mean values. In a typi-
cal day the spot market prices cross the FCR-N market prices,
which is usually the case as shown in Fig. 7 where the FCR-N
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Table 2: Optimization results

Scenario’ Battery Number Inverter Size Yearly Revenue = NPV-C  NPV-P Rol>’ PBY’
Base case 18.20 M*

Case 1(optimistic) 0 0 18.20 M 0 0

Case 1(pessimistic) 0 0 18.20 M 0 0

Case 2(optimistic) 1615 13.88 MW 2459 M 48.60M 35.04M T72.10% 4.27
Case 2(pessimistic) 895 9.41MW 22.75M 43.44M 16.10M 37.07% 5.34

! The optimization span is a year with the daily boundary conditions and a time resolution of an hour.

2 Return on Investment, Rol = Nev-B

3 Payback Year: time when the net present benefit equals investment.
4 Million DKK.
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Figure 9: Bids in the FCR-N market and reserve service activation in the opti-
mistic scenario

market prices show a strong regularity of starting at a high level,
dropping down drastically and bouncing back a little within a
day. As a result, the bids made in the FCR-N market shows a
similar pattern as in Fig. 8, being on a high level during the start
as well as end of the day and around 0 in the middle of the day,
when most of the wind power is transmitted to the spot market.
Despite of this, the wind farm still receives a NPV of profit in-
crease of 35.0 MDKK over 20 years in the optimistic scenario,
verifying the high profitablity of participating the FCR-N mar-
ket.
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Figure 10: Energy content and charge/discharge in the optimistic scenario

In Fig. 9, the reserve service activation is depicted in two dif-
ferent directions, indicating upward regulation and downward
regulation for a certain scenario respectively. In the hours (3rd,
5th 6th, 22nd and 24th), the reserve services are not activated,

I Wind turbines
[ upward regulation i
[ Downward regulation

charging power/MW

Iﬂ

1 2 3 45 6 7 8 9101112131415161718192021222324
t/h

Figure 11: Charging power source in the optimistic scenario

though bids are forwarded to the market, which incurs loss in
the revenue since the FCR-N market prices in the 22nd hour
(334 DKK/MW) are lower than that of the spot market (344
DKK/MWh). However, this does not indicate the model is de-
fected, since assuming the wind farm can precisely predict the
frequency regulation directions a day before to make decisions
as dictated in the model with binary variables is far too ide-
alistic. The assumption that the wind farm always bids in the
FCR-N market as long as the price is over 80% of the spot mar-
ket price is a compromise between situations when service is
upwards activated so extra electricity can be reserved thus with
extra revenues and cases when there is no activation so with
economic losses, which makes the model more down to earth
and the profit result more reliable.

In a typical scenario, the electricity flow profile of the RESS
is as Fig. 10, where the RESS discharges with a high rate at
some moment in order to level off the charged energy within a
day to satisfy the boundary conditions, which results in a high-
capacity inverter. The charging profile is further divided in Fig.
11 indicating that the wind power and the reserve service acti-
vation by upward regulations are the major sources of battery
charging power.

3.4. Sensitivity analysis

In this section, a sensitivity analysis is employed to inves-
tigate the influence on the planning and financial results of the
remained scenarios number after applying the SBM. We specit-
ically focus on case 2 for the optimistic scenario. The case
when the stochastic framework is not applied is also included,
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Table 3: Sensitivity analysis results

Remained scenarios Battery Number Inverter size NPV-P Normalized computation time
Non-stochastic 1622 1299 MW 30.96 MDKK 0.015
5 1640 13.83 MW  34.98 MDKK 0.09
10 1615 13.89 MW 35.08 MDKK 0.25
20 1615 13.88 MW 35.04 MDKK 1
in which the markets prices, wind power and regulating sta- References

tuses are all historic data. The solving time is normalized based
on the case where 20 scenarios remain after the scenario reduc-
tion technique. The equipment sizes and the normalized solving
times are shown in Table 3.

From the sensitivity analysis results, following conclusions
can be obtained: 1) The computation time is highly influenced
by the number of remained scenarios. When the scenario num-
ber doubles, the solving process takes 3-4 times longer. 2) The
planning results stabilise at larger number of scenarios. In this
case, 10 remained scenarios give almost the same results as 20
scenarios. 3) In this case, 10 remained scenarios gives the best
performance in terms of optimization accuracy and computa-
tion time.

4. Conclusion

In this study, a hybrid wind turbine-retired battery storage
system is proposed to participate both the spot market and the
FCR-N market to increase the wind farm owner’s profit. The
uncertainties are modelled with a scenario-based stochastic pro-
gramming method. The scenarios are generated with MCS and
RWM. Afterwards, they are applied to SBM to be reduced to
enhance the computational efficiency. The hybrid system are
investigated in two cases. In the first case, the wind farm par-
ticipate in the spot market only. While in the second case, the
wind farm also forwards bids in the FCR-N market. Two sce-
narios (optimistic/pessimistic) are raised in terms of the price
of retired EV batteries to examine its influence on the planning.
A sensitivity analysis is performed at last to provide insights
regarding the influence of remained number of scenarios on the
optimization results.

The optimization results show that by integrating the retired
EV batteries and forwarding bids in the FCR-N market, the sys-
tem can increase the net present value of profit by 35.0 MDKK
in the optimistic scenario and 16.1 MDKK in the pessimistic
scenario. Compare case 1 with case 2, participating FCR-N
market is the major reason of the increased profit when the
winf farm integrates retired EV batteries. The sensitivity anal-
ysis concludes that 10 remained scenarios would have the best
performance regarding optimziation accuracy and computation
efficiency. Considering the fact that brand new EV battery price
was dropping dramatically over the years (73% drop from 2010
-2016) [42] and is expected to be further decreased down to 109
$/kWh in 2025 and 73 $/kWh in 2030 [42], the proposed sys-
tem is highly financially favourable and provides an alternative
to repurpose the retired EV batteries.
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