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Executive Summary 
On June 5, 2019, the Office of Science (SC) organized a one-day roundtable to focus on 
enhancing access to high-quality and fully traceable research data, models, and computing 
resources to increase the value of such resources for artificial intelligence (AI) research and 
development and the SC mission.1 In this report, we consider AI to be inclusive of, for example, 
machine learning (ML), deep learning (DL), neural networks (NN), computer vision, and natural 
language processing (NLP). We consider “data for AI” to mean the digital artifacts used to 
generate AI models and/or employed in combination with AI models during inference. In part, 
this roundtable was motivated by the recognition that a large portion of science data currently 
are not well suited for AI. 
 
The roundtable participants represented expertise from 12 Department of Energy (DOE) 
national labs2, the National Institutes of Health (NIH), and the National Science Foundation 
(NSF), and they had wide-ranging knowledge in areas spanning the domain sciences, as well 
as from AI, data management, data curation, metadata, library sciences, storage systems and 
input/output (I/O), open data, big data, and edge computing. These experts also represented 
mission drivers across the six SC programs3 and the DOE Office of Scientific and Technical 
Information (OSTI) with ties to SC-supported research activities, scientific user facilities, and 
community data repositories. 
 
The fundamental finding of this roundtable is that there are opportunities to advance AI research 
and development (R&D) and increase the benefit of AI to science by improving the reusability of 
science data and AI models and through the development of methodologies and services to 
seamlessly and routinely integrate AI into science workflows. The roundtable participants 
identified three priority opportunities for data to advance AI in science: 

1) Influence the development of AI tools by democratizing access to benchmark science 
data 

2) Make AI operational in science with composable services for simulation, data analysis, 
and AI at all scales 

3) Address open questions in AI with frameworks for relating data, models, and tasks. 
These opportunities are presented in a broader context of open research challenges in AI and 
prerequisite, enabling capabilities in data science and data management. 

                                                
1 The focus for the roundtable is motivated by the Executive Order on Maintaining American Leadership in 
Artificial Intelligence, Feb. 11, 2019. https://www.whitehouse.gov/presidential-actions/executive-order-
maintaining-american-leadership-artificial-intelligence/  
2 Argonne National Laboratory, Brookhaven National Laboratory, Fermi National Accelerator Laboratory, 
Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National 
Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Princeton Plasma 
Physics Laboratory, Sandia National Laboratory, SLAC National Accelerator Laboratory, Thomas 
Jefferson National Accelerator Facility. 
3 The six Office of Science programs are: Advanced Scientific Computing Research (ASCR); Basic 
Energy Sciences (BES); Biological and Environmental Research (BER), Fusion Energy Sciences (FES), 
High Energy Physics (HEP), and Nuclear Physics (NP).  

https://www.whitehouse.gov/presidential-actions/executive-order-maintaining-american-leadership-artificial-intelligence/
https://www.whitehouse.gov/presidential-actions/executive-order-maintaining-american-leadership-artificial-intelligence/
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1. Introduction 
The U.S. Department of Energy (DOE) Office of Science (SC) has a unique combination of 
capabilities to lead the nation in artificial intelligence (AI) and machine learning (ML) research 
and development (R&D) for science: 

● A broad mission that presents new and unique research problems on a national and 
global scale to attract new talent 

● Sources of massive and/or complex science and engineering data from sensors, 
instruments, and from large-scale simulations 

● World-class high-performance computing (HPC) infrastructure, capable of world-leading 
AI research 

● World-class high-performance network infrastructure capable of integrating computing 
resources and data assets 

● An exceptional workforce with large numbers of domain scientists, computer scientists, 
and mathematicians currently engaged in AI and related fields. 

 
Current efforts, however, are impeded by difficulties in finding, accessing, preparing, sharing, 
reusing, and computing on science data. Researchers who want to develop new AI algorithms 
and techniques rely on data that are readily available and, preferably, curated with relevant 
metadata. Once generated, potential training datasets and models may go underutilized due to 
the lack of sharing platforms and practices, difficulty of moving or accessing data, and 
complexity in preparing data for computation. These challenges are particularly acute for the 
DOE SC because of the extreme scale and complexity of the data and, for many disciplines, the 
lack of established repositories and tools to facilitate best practices in data management, 
sharing, and preservation. Most of the data produced through SC-funded research are not used 
in AI applications, resulting in missed opportunities to use AI to make science more efficient and 
productive or to attract talent to the DOE mission in highly competitive AI areas. The SC mission 
and workforce are likely to benefit from a strategic approach to data for AI. 
 
On June 5, 2019, the SC organized a one-day roundtable to focus on enhancing access to high-
quality and fully traceable research data, models, and computing resources to increase the 
value of such resources for AI R&D and the SC mission.4 In this report, we consider AI to be 
inclusive of, for example, ML, deep learning (DL), neural networks (NN), computer vision, and 
natural language processing (NLP). We consider “data for AI” to mean the digital artifacts used 
to generate AI models and/or used in combination with AI models during inference. In part, this 
roundtable was motivated by the recognition that a large portion of science data currently are 
not well suited for AI. The roundtable participants represent expertise from 12 DOE national 
labs5, the National Institutes of Health (NIH), and the National Science Foundation (NSF). 
                                                
4 The focus for the roundtable is motivated by the Executive Order on Maintaining American Leadership in 
Artificial Intelligence, Feb. 11, 2019. https://www.whitehouse.gov/presidential-actions/executive-order-
maintaining-american-leadership-artificial-intelligence/  
5 Argonne National Laboratory, Brookhaven National Laboratory, Fermi National Accelerator Laboratory, 
Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National 
Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Princeton Plasma 

https://www.whitehouse.gov/presidential-actions/executive-order-maintaining-american-leadership-artificial-intelligence/
https://www.whitehouse.gov/presidential-actions/executive-order-maintaining-american-leadership-artificial-intelligence/
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Participants’ expertise spanned the domain sciences to AI, data management, data curation, 
metadata, library sciences, storage systems and input/output (I/O), open data, big data, and 
edge computing. These experts represented mission drivers across the six SC programs and 
the Office of Scientific and Technical Information (OSTI) with ties to SC-supported research 
activities, scientific user facilities, and community data repositories. 
 
In January 2018, the ASCR Basic Research Needs workshop on Scientific Machine Learning,6 
was convened to identify major ML opportunities and grand challenges as viewed through the 
lens of applied mathematics and scientific computing research. That workshop identified six 
Priority Research Directions (PRDs) for Scientific Machine Learning. The first three PRDs 
describe foundational research themes common to the development of all Scientific Machine 
Learning methods and correspond to the need for domain-awareness (PRD #1), interpretability 
(PRD #2), and robustness (PRD #3). The other three PRDs describe capability research themes 
and correspond to the three major use cases of Scientific Machine Learning for massive 
scientific data analysis (PRD #4), ML-enhanced modeling and simulation (PRD #5), and 
intelligent automation and decision-support of complex systems (PRD #6). Together, these 
PRDs define the SC research goals for ML (PRDs 1-3) and provide broad classes of use cases 
where ML can impact the SC mission (PRDs 4-6). As a complement to the Scientific Machine 
Learning workshop, this roundtable focused on the opportunities and challenges related to data 
needed to advance these areas of research, as well as to advance the impact of AI and ML on 
the SC mission. The roundtable participants carefully considered the role of data in modern 
science applications of AI and in AI R&D, including issues around data generation and curation. 
 
The roundtable began with discussions around how to make science data FAIR7 (Findable, 
Accessible, Interoperable, and Reusable) for AI (Figure 1). The creation of FAIR, annotated 
training data currently requires human expertise and curation. There are ongoing discussions in 
various science communities about the actual processes and feasibility of enabling data sharing 
and implementing the FAIR8 principles. 
 
Metadata and standards are key enablers of FAIR data, and, throughout the roundtable, these 
topics were at the heart of many discussions. Standards are recognized as powerful enablers of 
FAIR data. However, they must be designed carefully to avoid limiting systems to narrow syntax 
or semantics. Furthermore, most of the currently defined standards are not used consistently, 
and it is challenging to enforce their use outside of large repositories.  

                                                
Physics Laboratory, Sandia National Laboratory, SLAC National Accelerator Laboratory, Thomas 
Jefferson National Accelerator Facility.  
6 Baker, Nathan, Alexander, Frank, Bremer, Timo, Hagberg, Aric, Kevrekidis, Yannis, Najm, Habib, 
Parashar, Manish, Patra, Abani, Sethian, James, Wild, Stefan, Willcox, Karen, and Lee, Steven. 
Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for 
Artificial Intelligence. United States: N. p., 2019. Web. doi:10.2172/1478744. 
7 Wilkinson, M. D. et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. 
Sci. Data 3:160018 doi: 10.1038/sdata.2016.18 (2016).  
8 e.g., Research Data Alliance, https://www.rd-alliance.org/, and GO-FAIR https://www.go-fair.org/  
initiatives. 

https://www.rd-alliance.org/
https://www.go-fair.org/
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Figure 1: Graphical depiction of FAIR data principles from LIBER, the Association of European 
Research Libraries (https://libereurope.eu/wp-content/uploads/2017/12/LIBER-FAIR-
Data.pdf). 

The findability, accessibility, interoperability, and reusability of AI models emerged in the 
roundtable discussions as important considerations. An AI model is an inference method that 
can be used to perform a “task,” such as prediction, diagnosis, classification, etc. Conceptually, 
AI models fall somewhere between data and theory—neither entirely empirical nor wholly 
derived from first principles. When used for control or autonomous decision making in a 
scientific workflow, the trained model may be an important digital artifact for reproducibility of the 
results. It also may be an important element of provenance for the resulting scientific dataset. In 
other cases, the model may be better viewed as an approximation of data—either the data used 
to train it or the data it generates, as in the case of Generative Adversarial Networks (GANs). 
However, as digital research objects, AI models are in their infancy with very few schemas for 
syntax, ontologies (or even controlled vocabulary), or metadata standards. 
 
The fundamental finding of this roundtable is that there are opportunities to advance AI R&D 
and increase the benefit of AI to science by improving the reusability of science data and AI 
models and through the development of methodologies and services to seamlessly and 
routinely integrate AI into science workflows. These opportunities are presented in a broader 
context of open research challenges in AI and prerequisite, enabling capabilities in data science 
and data management (Figure 2). This report follows the Figure 2 structure by addressing each 
of the framework elements in turn in the next section entitled, Findings. 
Section 2.1 provides details on the four open challenges in AI highlighted by the roundtable 
participants: 

● Current AI tools and methods are not always a good fit for science.  
● Science workflows with AI need human oversight. 

https://libereurope.eu/wp-content/uploads/2017/12/LIBER-FAIR-Data.pdf
https://libereurope.eu/wp-content/uploads/2017/12/LIBER-FAIR-Data.pdf
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● There is no theory encompassing data, AI models, and tasks. 
● Applying FAIR principles to science data is challenging. 

 
Section 2.2 presents each of the key priority opportunities for data to advance AI for science: 

● Influence the development of AI tools by democratizing access to benchmark science 
data 

● Make AI operational in science with composable9 services for simulation, data analysis, 
and AI at all scales 

● Address open questions in AI with frameworks for relating data, models, and tasks. 
 

Section 2.3 describes underlying capabilities in data science and data management needed to 
address the key priority opportunities: 

● Data management support and incentives for teams generating data  
● Automated collection of metadata, provenance, and annotations at scale   
● Scalable, human interfaces for data 
● Strategic approaches to managing data management costs and resources. 

 

 
Figure 2: Open challenges in AI (top); opportunities to address these through data (middle); and 

prerequisite, enabling capabilities in data science and data management (bottom). 

2. Findings  

2.1 Challenges  
The roundtable participants identified several current challenges to advancing AI R&D and using 
AI to advance the DOE SC mission. These challenges point to needs in technology 

                                                
9 Composable services are created from interoperable modular components that can be assembled 
flexibly into multiple well-defined functional and usable tools or capabilities. 
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development; fundamental research; and new types of collaborations that bring together experts 
in domain science, AI, and data management.  

2.1.1 Current AI tools and methods are not always a good fit for science 

Roundtable participants identified three reasons why current AI tools are not always a good fit 
for science use cases: 1) because the data used to develop them differ from science data in 
fundamental ways, 2) because science applications of AI can have goals that differ from 
traditional AI tasks, and 3) because of the often extreme conditions under which AI is used in 
science.  
 
Advances in AI have exploited readily available data from images, sound, natural language, and 
game-like environments. However, science data can be high-dimensional, multimodal, complex, 
structured, and/or sparse. AI tools are sensitive to data representations, for example, 
differences in how data are sampled, averaged, or organized. Therefore, it is not clear about 
how to represent and organize science data for AI applications. In general, the distinguishing 
features, dependencies, and fundamental relationships within and among science data mean 
that traditional AI tools, which are typically designed for discrete, combinatorial, and 
unstructured data representations and analysis, may miss the scientific phenomena of interest. 
 
SC-funded research generates large amounts of science data across a variety of domains 
through HPC simulations and experiments, many of which are single-facility multimodal 
experiments. Examples include the “onion”-style detectors of high energy physics and nuclear 
physics accelerator-based experiments, which have long integrated diverse detector types to 
measure different particle types and parameters. Increasingly, photon science experiments also 
combine multiple sources, for example, combining photon, ion, and electron yields in chemical 
studies. At X-ray free electron laser facilities (XFELs), users commonly integrate sample 
measurements with facility diagnostics to clean, correct, or enhance datasets. The Nanoscale 
Science Research Centers (NSRCs) also employ multimodal experiments. In these cases, data 
are generated through multimodal means from a variety of sensors and often are correlated in 
space and time, reflecting the underlying structures and processes being examined. The data 
usually are high-dimensional as well because of the large number of parameters needed to 
specify the experimental conditions and system state. Once synthesized into physical events or 
traces, data can be sparse with respect to learning task categories. Another layer of 
multimodality can result when data from multiple experiments or simulations are combined in a 
single AI application. 
 
Error, uncertainty, and resolution add complexity to multimodal science data. Heterogeneous 
data sources have variable error sources, uncertainty levels, and resolution. For instance, 
consider the seemingly straightforward task of combining simulation and experimental data, 
which have different types and sources of uncertainty and error. At a minimum, confidence 
levels and error sources need to be captured explicitly as parameters or contained in metadata. 
 
Science applications of AI can have different goals than traditional AI tasks and may pursue 
different data management challenges. Current AI capabilities that appear to dramatically 
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outperform human intelligence include recognizing recurring patterns in images, sounds, natural 
language, and game-like environments. Scientists, however, are interested in tasks not 
necessarily modeled on human intelligence such as identifying atypical and anomalous cases—
often under extreme computational environments of large, complex data; extreme data rates; 
and low latency tolerances. There are significant associated challenges in data management, 
data movement, and data preparation. 
 
The single-facility, multimodal experiments previously described exemplify the data 
management challenges associated with science applications of AI. Rapid alignment and 
preparation of multimodal, high-dimensional science data for AI remain an important challenge. 
In addition, experimental facilities, such as the Large Hadron Collider (LHC) and Relativistic 
Heavy Ion Collider (RHIC), are generating data at rates in the TB/s range for raw data with data 
volumes quickly approaching the exabyte scale10. Experiments using the High-Luminosity 
upgrade to the LHC will archive exabyte-scale datasets every year. DOE Leadership Computing 
facilities also run some of the largest-scale simulations for applications such as lattice quantum 
chromodynamics (LQCD), fusion energy, molecular dynamics (MD) of computational chemistry 
and biology, and direct numerical simulation (DNS) of computational fluid dynamics on 
combustion and climate. The volume of these simulations can be petabytes even without 
exascale supercomputers. The LHC experiments that discovered the Higgs boson in 2017 
archived 200 PBs, which is equivalent to 3,000 years of ultra-high-definition video streaming. 
Deploying AI in these circumstances with extreme data volumes and rates poses challenges in 
establishing I/O data streams, staging and tiering storage, offering sustained computational 
performance, and providing accurate supporting metadata.  
 
Controlling either extreme-scale simulation or experimental facilities with AI requires low-latency 
analysis and inference. Currently, most analyses of experimental and simulation data are done 
post hoc, after the experiment or simulation has run. To enable AI-driven automated control for 
faster scientific discovery, these high-volume, high-velocity data need to be analyzed in real 
time.  
 
AI can aid science by generating hypotheses for questions such as: what kinds of experiments 
need to be done, or what kinds of questions need to be asked? Many science questions require 
a combinatorial approach, for example, to select and combine different raw materials to design 
a new functional material that has attractive properties or to identify biological conditions and 
genes to engineer and yield the best biofuel. The number of permutations to consider is well 
beyond what would be possible for humans or naive automation to explore.  
 
The opportunity to “influence the development of AI tools by democratizing access to 
benchmark science data” (described in the next section) directly addresses these challenges.  

                                                
10 Albrecht, Johannes, et al. “A Roadmap for HEP Software and Computing R&D for the 2020s.” 
Computing and Software for Big Science 3.1 (2019): 7. 
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2.1.2 Science workflows with AI need human oversight 

Roundtable participants described many inhibitors to efficient use of AI technologies in science 
applications, ranging from I/O capabilities for HPC systems to insufficient storage and access to 
data to the siloed software stacks for HPC, big data, and AI. Often, these challenges are 
overcome in ad hoc ways with bespoke solutions, requiring human oversight.  
 
Science data are generated across a diverse set of facilities, instruments, and sensors that span 
a range of complexity and scales. In some cases, the data are too large to be stored and must 
be processed at the detector or streamed directly into a supercomputer for analysis in real time. 
In other cases, data generated at different facilities need to be integrated, which requires 
collocation of the datasets in common storage and computing resources.  
 
The software used to process and wrangle data, build and deploy AI applications, and analyze 
results often are developed by distinct communities with little attention to facilitating combined 
workflows. Bridging these software silos is a major challenge.  
 
The computation for a given research effort may take place on a variety of platforms, distributed 
geographically and with very different computing capacities (e.g., edge to HPC). There is a need 
for ensuring AI applications can be deployed seamlessly across platforms and on new and 
emerging architectures.  
 
Per the roundtable participants, there is an opportunity to “make AI operational in science with 
composable services for simulation, data analysis, and AI at all scales.”  

2.1.3 There is no theory encompassing data, AI models, and tasks 

Educated trial and error continues to guide advances in science applications of AI. Currently, 
there is no holistic theoretical approach unifying data, AI models, and the tasks performed by 
models that would help answer critical, foundational questions, such as: what information about 
a dataset can be deduced from a model trained on the data? Do models inherit the access 
limitations or classifications of the training data? For a given dataset and task, what are the best 
model, hyperparameters, and training method? When are more data needed, and how much 
incremental information will they have? Which data would make the biggest improvement? In 
what circumstances can a model be transferred to new data? 
  
Presently, many science applications of AI begin with the desire to perform a particular task on 
a given dataset or data stream. Training data are chosen and prepared. Then, a model is 
identified and trained. The choice of model often involves some educated guess work. 
Furthermore, to improve the model’s accuracy, it is not clear if more training data, a different 
model or hyperparameters, or the addition of domain knowledge would be beneficial. Currently, 
it is not possible to relate the models to previously collected data or determine what other tasks 
are relevant. The missing theoretical framework for data, AI models, and tasks has important 
implications for performance and optimization of AI in science, as well as overall productivity of 
AI applications and the reusability of models.  
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The lack of a unifying theory also influences decisions regarding the sharing of AI models and 
techniques. Because it is not known what attributes of a dataset can be derived from a model 
trained on that data, AI models trained on restricted data are not shared more broadly than the 
data themselves. Having a better understanding of the relationships between data and models 
would have an enormous impact in connecting research on restricted data with advances in 
open science.  
 
The Workshop Report on Basic Research Needs for Scientific Machine Learning identified 
foundational PRDs in domain-aware, interpretable, and robust ML. These PRDs call for 
mathematical approaches for developing a foundational understanding of AI/ML, the lack of 
which is described here. In the next section, the opportunity to “address open questions in AI 
with frameworks for relating data, models, and tasks” describes a computational and data-driven 
approach for identifying key features of such a theory. 

2.1.4 Applying FAIR principles to science data is challenging 

AI research may have substantially different requirements for reusing data than other more 
domain-specific reuse cases. Roundtable participants showed unanimous support for FAIR 
principles but noted there are unique challenges in making science data FAIR for AI. 
Furthermore, there currently is much less attention on how to make AI models FAIR.  
 
Scientific workflows can now involve several AI steps across different stages of the data life 
cycle, from data generation (from experiments or simulations) to data reduction (filtering, 
transformation, compression, etc.) to drawing conclusions from the data. Historically, when all 
the involved data could be tabulated on paper, scientific results were disseminated in written 
format. For example, a manuscript usually included details of the performed experiment, data 
acquired, and contributions based on the data, meaning that all of the required information, 
steps, and data to validate and replicate the experiment results would be found in the published 
paper. Now, data and models live outside the manuscript, and reproducibility of the results is 
contingent on the data and models being FAIR. 
 
There are specific challenges associated with each of the FAIR principles when considering 
science data for AI: 
 
Findability: How will the AI community search or browse for data? What attributes are 
important to include in the metadata that will further enable search and queries by AI 
researchers? The advancement of AI depends on large, well-characterized training datasets. 
Enabling researchers to find data requires an understanding of the relevant metadata that will 
be used for a search—either by a human or machine. We speculate that properties such as the 
structure, dimensionality, sparseness, and multimodality of the data, as well as information 
about the types of models trained on the data, will be, at least, as relevant as attributes such as 
discipline domain, source, author, and other information found in current metadata standards.  
 
Some attributes relevant to search are contained within the data, and scalable queries across 
these resources require precomputing values across large amounts of raw or processed data. 
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These data need to flow between repositories to enable computations across the whole corpus 
of available data. Furthermore, the metadata standards and models have been established 
across a number of fields, but the application and enforcement of these standards are 
challenging, manual, and offer few incentives to curate metadata.  
 
Accessibility: AI applications in science present new data access patterns, for example, 
training over federated data or distributed training and inference. AI applications also introduce 
different and unpredictable I/O patterns. In some cases, AI algorithms must be trained over 
geographically dispersed data repositories. This presents unique challenges when attempting to 
scale up access as certain AI algorithms require the storage system to read and reread entire 
datasets. This means that when a scientist wants to train a method on a large amount of data 
that may be stored in a High Performance Storage System (HPSS), these data must be 
restored to a file system or other storage that enables rapid and/or random access.  
 
Interoperability: For data to be interoperable in the sense intended by the FAIR principles, a 
machine needs to be able to ingest and interpret data from different repositories. This implies 
that the data and metadata are described by vocabularies that follow FAIR principles. For 
instance, the metadata are linked to established ontologies to enable systematic linking 
between the datasets. Although there are many efforts underway to standardize metadata and 
create semantic links between datasets, this remains a difficult problem. 
 
Beyond these challenges, there are fundamental open questions about how to use data from 
different sources in AI applications. Even sources producing the same type of data can 
introduce hidden biases and behave differently when presented to the same model. Some 
applications call for different types of data to be integrated, such as experimental and simulation 
data, and there is no principled way to do this currently.  
 
Reusability: Machine readability of metadata, provenance, and annotations are essential for AI. 
Yet, the metadata needed for a given AI application can be difficult or impossible to know in 
advance. Metadata are critical for understanding biases in data and for interpreting results from 
AI applications. Like other types of data analysis, AI applications require detailed metadata, 
provenance, and annotation for interpretable, reliable, and transparent results.  
 
Beyond FAIR data, there is value in extending the FAIR principles to AI models. However, there 
are even more challenges in making AI models FAIR. As for data, the challenges around 
findability of models are further complicated by insufficient study into how the AI R&D 
community searches and uses models. However, challenges involving accessibility, 
interoperability, and reusability reflect inherent open research questions about, for example, 
what can be inferred from a model about the underlying dataset, or if the model should inherit 
access limitations of the training set; transfer learning; explainability; the scarcity of standard 
structures and schemas for AI models; and the lack of a unifying framework for data, models, 
and tasks. 
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Currently, there are several different types of formats for storing models, and there are 
compatibility issues that arise among them. In the case of traditional ML, model storage may be 
interpreted as the storage of the source algorithm and required input parameters. For DL, 
storage will require storing parameters (e.g., weights), network architecture, and dynamic 
execution graphs. The weights are driven by the training data, and there is a question of how 
much training data need to be stored with the model for validation and reproducibility. There 
have been efforts to standardize DL model formats. Two of the most promising model exchange 
formats are NNEF (Neural Network Exchange Format) and ONNX (Open Neural Network 
eXchange), which is supported by major DL frameworks, such as PyTorch, CNTK, MXNet, and 
TensorFlow. The current model exchange format is not, however, linked back to the data used 
in training. 
 
Addressing this challenge will require collaborations between domain scientists, AI experts, and 
data management experts to better understand the needs of the AI community, as well as to 
refine what is needed to reuse science data as data for AI. Such collaborations could form 
around, for example, science benchmark data or the creation of frameworks for data and AI 
models (detailed in the next section). 

2.2 Opportunities 
This section describes opportunities for the DOE SC to advance AI R&D and improve the 
impact of AI tools for the SC mission. Each opportunity addresses one or more of the 
aforementioned research challenges.  

2.2.1 Influence the development of AI tools by democratizing access to benchmark science data 

Making science data available to AI researchers and developers will improve the utility and 
performance of AI tools for science. Benchmark datasets are used to compare analysis, AI, or 
other computational methods. It has been argued that the ImageNet11 competition and 
benchmark dataset sparked the DL revolution, specifically by demonstrating the capabilities of 
convolutional neural networks in object recognition tasks in natural images. Similarly, the 
advancement of AI research for DOE SC applications starts with facilitating access to science 
data. This opportunity directly addresses the challenges outlined in Section 2.1.1 and 2.1.4. 
 
Envisioned here are published benchmark datasets that exemplify the distinguishing attributes 
of science data (Section 2.1.1) with appropriate storage, access rights, and integration with 
computational capabilities and analysis tools to focus the development of AI tools and 
techniques on science needs. Benchmark datasets will have greater impact if domain experts 
help define the data and metadata and provide explanations about what phenomena they 
describe and the nature of tasks that can be performed on them. Challenges, citizen science 
competitions, and partnerships can provide a formal context and focus for developing the 
necessary metadata and documentation and also attract new talent to the SC mission. 
 

                                                
11 www.image-net.org 
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Metadata, provenance, and annotations are key components for making data FAIR for AI. 
These can be improved for a benchmark dataset through coordination and feedback from the AI 
community. A feedback loop of discoveries, annotation, and updates to metadata should make it 
possible to associate learned information with benchmark datasets. One way to facilitate this 
feedback loop is to ensure that systems provide full visibility into the workflow and data 
provenance characteristics of the datasets. 

2.2.2 Make AI operational in science with composable services for simulation, data analysis, 
and AI at all scales  

Composable services can enable the efficient execution of scientific workflows of simulation, 
data analysis, and AI across the computing continuum, from edge to HPC. The vision is for 
combined infrastructure and software capabilities that reduce data movement and analysis at all 
scales; federate data and computing resources for seamless AI workflows, incorporating data 
collection, edge computing, and AI; optimize data placement and organization in storage and 
memory hierarchies to reduce data movement and associated processing latencies; and 
integrate heterogeneous computing architectures and new hardware. 
 
To support the data flow from geographically dispersed sources, the networking and software 
infrastructure must, in some cases, perform computations where the data are stored, and, in 
others, move the data to where the computations can be performed. This may require federated 
access to resources at different facilities so that, for example, analyses and data transfers 
between facilities can be initiated programmatically without human intervention. Intelligent 
infrastructure design is needed to ensure that the data movement (communication) is minimized 
to avoid bottlenecks. Data movement services that span facilities, supercomputer memory 
hierarchies, file systems, and tape archives will enable scientists to focus their efforts on the 
analysis as opposed to data management. In certain AI algorithms, data are read and reread 
many times to train models. Therefore, reducing latencies in data access can diminish the 
training time for ML techniques dramatically.  
 
To meet increased demands for computing, hardware accelerators are needed to reduce the 
overall power footprint. Scientists need access to new hardware tailored for different AI 
applications as it becomes available in order to adapt or develop algorithms optimized for the 
new architectures. Access to cutting-edge testbeds in the DOE ecosystems can be enabled 
through a common application program interface (API) and federated identity management 
across the DOE SC.  
 
There is an opportunity to advance AI research with appropriate computing resources to run and 
cross validate models on different datasets without having to worry about dependencies or 
specific hardware architecture tuning. Container12 technology is helpful in this regard, but it is 
not readily usable by non-experts because the technology itself continues to evolve. HPC 
facilities could maintain sets of optimized containers for the various architectures they support. 

                                                
12 A container is a way to encapsulate software and library dependencies into a single package that can 
run on a variety of systems, requiring relatively minimal underlying system configurations.  
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Research is needed to make containers easier to build and port across cloud and HPC 
resources. In addition, published datasets and models need to be easily accessible through 
extensions to the data science software stack in the same way image recognition benchmark 
datasets can be directly imported into a DL workflow. 

2.2.3 Address open questions in AI with frameworks for relating data, models, and tasks 

Frameworks for tracking relationships among data, models, and tasks can address strategically 
important open questions in AI research, such as those highlighted in Section 2.1.3 and the 
challenge of making data findable for the AI R&D community. Envisioned here is a framework 
that would link all salient aspects of an AI workflow, including the data, AI model, task, training 
methodology, and accuracy metrics and measures. An important feature of this framework is the 
holistic view of this workflow.  
 
With the accumulation of many such workflows in the framework, researchers will be able to 
discover higher-level patterns among the workflows that reveal a deeper understanding of the 
relationships between data, models, and tasks. Some of these higher-level patterns are already 
known. For example, in the context of DL, it is known that convolutional neural networks 
currently work best as a model for image-based tasks (image recognition, segmentation, 
deblurring). Finding similar connections between other science-relevant data modalities and 
abstract models is an open research question. There also are examples where transfer learning 
(where a model trained for a specific task or dataset is used for a different task with minimal to 
no modifications) works well, and examples where it has failed. The framework envisioned here 
could help identify reasons for these successes and failures. The framework would inform 
investigation on topics, such as active learning, AutoML, and transfer and lifelong learning.  
 
Some current large-scale services enabling the findability and accessibility of data and models 
include OSTI’s DataID Service13, DLHub14, OpenML15, and Zenodo16. Unique and persistent 
identifiers, such as digital object identifiers (DOIs), are central to these efforts.  
 
Relationships among data, models, and tasks could be efficiently captured at the point of 
publication by including these elements as part of the scholarly record. Almost all data science 
development platforms and languages now offer “notebooks,” an interactive interface to 
interleave analysis code with formatted text, figures, and equations. Jupyter notebooks are 
arguably the most popular medium for AI practitioners to develop and share AI models and the 
models’ provenance, including various forms of different model cross-validation techniques and 
hyperparameter tuning recipes (automatic or manual). MATLAB and R also offer similar features 

                                                
13 https://www.osti.gov/data-services  
14 Chard, Ryan, et al. “DLHub: Model and Data Serving for Science.” arXiv preprint arXiv:1811.11213 
(2018). 
15 Vanschoren, Joaquin, et al. “OpenML: networked science in machine learning.” ACM SIGKDD 
Explorations Newsletter 15.2 (2014): 49-60. 
16 https://zenodo.org/record/2541184#.XSOLvOhKju0 

https://www.osti.gov/data-services
https://zenodo.org/record/2541184#.XSOLvOhKju0
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through MATLAB live editor17 and R Notebooks18, respectively. There also is support for running 
these notebooks on various Leadership Computing Facility resources (JupyterHub) and cloud 
computing services (Google Colab). Publishing a scientific manuscript with its accompanying 
dataset and the analysis notebook that includes all the data transformations and visualizations 
could help to capture the relationships among data, models, and tasks.  

2.3 Enabling Capabilities 
This section presents a number of prerequisite, enabling capabilities for addressing the 
aforementioned opportunities, as well as a broad range of data science and data management 
options. Like the opportunities, these enabling capabilities identify areas where additional DOE 
SC investments would be impactful. However, the opportunities described in Section 2.2 directly 
address the challenges identified in Section 2.1. By contrast, these enabling capabilities are 
more foundational and would impact data science more broadly than the AI-focused 
opportunities.  

2.3.1 Data management support and incentives for teams generating data  

There is a need to support domain science teams in the production of FAIR data by linking them 
with data science and data management experts and providing incentives for data 
management. Improving access to expertise in data science and data management, AI best 
practices, metadata standards and ontologies, and data sharing and retention opportunities can 
help research teams make their data FAIR and ready for AI. Researcher engagement with AI 
experts, research libraries, archives, and community organizations, such as the Research Data 
Alliance,19 can increase capabilities and ensure alignment between best methods, community 
standards, and DOE research needs. The engagements and application of the FAIR principles 
should run from experimental design through to final data publication. 
 

                                                
17 https://www.mathworks.com/products/matlab/live-editor.html 
18 https://bookdown.org/yihui/rmarkdown/notebook.html 
19 https://www.rd-alliance.org/  

https://www.mathworks.com/products/matlab/live-editor.html
https://bookdown.org/yihui/rmarkdown/notebook.html
https://www.rd-alliance.org/
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Figure 3: Diagram showing the: “FAIR-ification of Data” (https://www.go-fair.org/fair-

principles/fairification-process/). 

Figure 3 shows a generic pipeline for making data FAIR with the possibility of linking FAIR 
datasets from different sources (yellow boxes). For SC-relevant applications, Step 3 is 
particularly challenging and requires both deep domain knowledge of the data and expertise in 
best practices for metadata and ontologies. In some cases, ontologies already exist and can be 
adopted. However, in many DOE scientific domains, such ontologies need to be defined and 
built from the ground up. Replacing semantic models with domain-specific forward models is an 
alternative approach. For instance, in X-ray diffraction imaging experiments, the underlying 
physics forward model of how a diffraction pattern image from a sample is measured on a 
pixelated detector is known to experimentalists in this field. Therefore, the semantic model 
parameters of a diffraction dataset are defined as the forward model constants that led to the 
data generation process. In this specific case, they can include parameters like X-ray beam 
energy used, scanning parameters, optics and beamline configurations, detector and sample 
properties, and/or noise models due to various sources of error. These parameters aid in 
defining the dataset metadata (Step 6), which, in turn, enable combining and linking FAIR 
datasets together. 
 
Roundtable participants envisioned data scientists and data management experts to be 
embedded within domain teams. Embedding should begin as early in the process as possible, 
from experimental design through the final analysis. Domain experts bring years of experience 
and understanding of data, metadata, and provenance. On the other hand, domain scientists 
may find it challenging to adopt the mindset of non-specialists or fail to document deeply 
embedded assumptions about the data. A close collaboration between domain and data experts 
can capture the best of both worlds: domain expertise and robust, scalable pipelines to produce 
high-value FAIR data. 

https://www.go-fair.org/fair-principles/fairification-process/
https://www.go-fair.org/fair-principles/fairification-process/
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Such relationships also will play a role in educating domain scientists about AI and data 
management. As the power of AI techniques progresses, domain scientists in the DOE must 
become data and AI conversant. Processes and incentives to build a data-savvy workforce are 
important pieces in the overall puzzle. Given the challenge of hiring and retaining data 
scientists, modernizing the skill sets of on-staff domain scientists across SC is critical, including 
retraining programs.  
 
Roundtable participants recognized challenges in attracting and retaining data science and data 
management expertise into partnerships with science domains. For example, publication cycles 
in some domain science fields are much longer than in data science and data management. It is 
important to support mechanisms that allow for collaborations between domain scientists and 
data scientists to publish on the timescale that is natural for each of their fields. Offering 
authorship to data scientists on domain science papers is helpful but not enough to drive 
recognition. New career paths or re-imaginings of existing paths (e.g., data librarians, data 
curators, etc.) may also help. These roles increase capacity for important expertise that may not 
fit in the current scheme for career advancement. Finally, hiring and retention are complex 
problems, especially given salaries for equivalent work are higher in industry. It is important to 
emphasize the SC mission, impact, and freedom of inquiry to attract a capable workforce. DOE 
SC also may choose to embrace its role as an early-stage developer of data science and data 
management talent for industry.  
 
One opportunity in this space is finding a way to recognize members of the scientific community 
for contributions to a repository (either through curation or data contributions), perhaps with 
some formal incorporation into their impact score. The recognition could include indicators for 
quality and FAIR-ness. Such recognition could be used by funding agencies as part of funding 
decisions or by research institutions as part of promotion decisions. Data repositories could help 
report and share information about contributions made to the repository. This could be 
supported further through measures of the number of downloads or uses of the data with 
attribution awarded to the data contributor. Other incentives can be provided in the form of 
additional storage space or bandwidth to the system to facilitate access. 
Community data repositories play a strategic role as keepers of domain-specific ontologies and 
standards and can provide incentives for data submitters to adhere to quality standards. Clearer 
and more detailed expectations from funding agencies and journals with respect to data 
management also can help incentivize best practices and maintain alignment with researcher 
career goals. 

2.3.2 Automated collection of metadata, provenance, and annotations at scale   

There is a need to reduce researcher burden and improve the quality of data with the automated 
collection of metadata, provenance, and annotations at scale. Machine-readable metadata, 
provenance, and annotations with standards would dramatically increase the FAIR-ness of data 
for AI and other analyses. The ability to automatically collect this information at scale so that 
data and metadata are “born digital” (rather than imported from paper copies) can reduce the 
burden on researchers and improve the quality of this information. Automated collection of 
metadata, provenance, and annotations are needed because the scale (volume and velocity) of 
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data often outstretch human capabilities and AI, in turn, is introducing autonomous decisions 
and transformations into science workflows.  
 
Acquisition, curation, and storage of data frequently are the dominant bottlenecks for reusing 
science data for AI. Data producers encounter an array of challenges, including decisions 
regarding which data to acquire, which data to save, how to record metadata, and how to 
preserve provenance of the data pipeline. These are particularly challenging problem areas 
because science datasets tend to be very large (and so require specialized acquisition, storage, 
and access technologies), complex (and may not fit in many popular tabular formats), and highly 
distributed (many different labs and principal investigators [PIs] may contribute data relevant to 
any given scientific question). Data management is further complicated by the need for 
appropriate long-term retention policies (i.e., some datasets may be truly irreplaceable but 
expensive to store in full) and for access policies that can support a wide variety of users with 
the appropriate level of security for the storage facility. With an end goal of creating FAIR data 
at scale, there is a need for “smart” data collection and processing infrastructure that can 
automate the entire data pipeline with on-the-fly compression, cleaning, alignment, and 
annotation. 
 
The need for automated data pipelines starts during acquisition itself. High-fidelity simulations 
and high-velocity experiments produce extreme quantities of data, straining retention policies 
and requiring in situ data analysis with irreversible compression or rejection. For the most 
extreme cases, ML algorithms are needed at the edge, i.e., at the sensor or simulation node 
itself. In situ analysis also can guide science “in the loop,” adapting experiments to measure the 
highest value parameters or choosing (and even recommending) to run the most critical 
simulations. Finally, data acquisition should be designed with ML applications in mind. For 
instance, multimodal measurements should be captured at the detector and labeled with time 
stamps to permit correlation analyses. As data rates grow, automation-for-AI and AI-driven 
automation will become intrinsic to the data collection process.  
 
To preserve the dataset’s value after acquisition, producers should record detailed metadata of 
methods, conditions, and manipulations. Complete metadata enables analysis by subsequent 
data consumers who did not participate in the acquisition. Metadata should capture details of 
compression or rejection during acquisition (which might bias data), data processing 
(backgrounds, noise, systematics), and experimental or computational parameters. Where ML 
models are used in the data pipeline (e.g., denoising), the models themselves should be 
captured as metadata. A detailed history of sample preparation empowers data reuse and 
enables applications in AI algorithm development.  
 
Even after a dataset is recorded or published, user interaction has value to downstream data 
consumers. At present, no framework is widely accepted for capturing usage as metadata. 
Opportunities here include recording annotations of the data acquisition (e.g., logbooks), data 
“likes” from previous analysis (i.e., popularity of subsets of the data in prior analysis), statistics 
of data interactions, and archiving of ML models used throughout the analysis. Today, human-
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data interface typically is one way, displaying data for the user. An opportunity exists in the 
other direction by capturing the users’ interactions in the dataset. 
 
Part of the challenge for data provenance is cultural with a need to incentivize data producers to 
maintain value for unrelated data consumers (e.g., through data citations). Automation also can 
play a role in promoting FAIR data by lowering barriers to capturing provenance, metadata, and 
annotations. 
 
SC-supported research communities are producing science data at ever-increasing rates. 
Information, data, and metadata that are born digital can help minimize human effort needed to 
make data FAIR. For instance, each photo taken with an iPhone has certain associated 
metadata: GPS, time of day, phone model, user account, resolution—more than 460 tags. 
These tags make it possible to determine whether or not an image has been altered (reusable), 
if the format is compatible with other devices (interoperable), and also power many of the image 
recognition algorithms. This is all made possible because individuals do not need to enter these 
tags manually: they are automatically captured by the device. The roundtable participants 
envisioned something analogous for science sample collection that captures GPS, date/time, PI, 
and other data that could be automatically assigned when the samples are logged. Today, 
automatic tagging with a desired level of flexibility for AI is unavailable in a large class of 
machines. While large detector complexes (such as in high energy physics and nuclear physics) 
collect elaborate metadata, directing this toward AI purposes is a required capability. Data 
scientists and domain scientists can and will re-annotate and re-tag data with new information to 
improve their discovery pipelines, but the initial context provided by data that are born digital 
accelerates this process. The provenance and lineage of the data also become a part of the 
additional information associated with the metadata for a dataset, facilitating reusability, 
verification and validation, and trust.  

2.3.3 Scalable human interfaces for data  

Researchers need enhanced capabilities for extracting information from data through scalable 
human interfaces for data. Tools and frameworks are needed to help data users find, 
understand, and reuse data. There is an opportunity to go beyond keyword searches and hit 
lists to visual interfaces for data and their relationships so that missing information or 
corroborations among research findings can be easily identified. This interface should consider 
other research products, including models, code, and publications. There is an opportunity to 
search and discover data based on new attributes important to AI research, which may not be 
captured by current metadata standards that address discipline domain, source, author, etc., or 
for the interface to suggest new directions of inquiry or new datasets to explore. 
 
Data standards are critical to enabling interoperability among data and to facilitate the interface 
envisioned here. Standards, however, must be designed carefully to avoid inhibiting systems by 
narrowly building to a limited set of syntax (formats) or semantics.  
 
As the amount of available data continues to grow, scalable technologies to find and retrieve 
datasets will revolutionize AI and allow scientists to harness the AI innovations to apply to the 
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datasets in their field. Exposing preexisting datasets into this interface will require revisiting, 
scanning, and re-annotating data, especially those datasets not born digital. Formatting and 
structuring such datasets in an automatic manner, albeit with human oversight, remain a 
continuing challenge. 
 
Once relationships among datasets are established, there is an additional challenge in creating 
useful human interfaces and recommender systems. Such developments would benefit from a 
deeper understanding of how research communities interact with data and reason about the 
information they contain.  

2.3.4 Strategic approaches to managing data management costs and resources  

As data volumes increase, strategic approaches to managing cost and resources with respect to 
storage, data preparation, and curation are needed. These will depend on evaluating potential 
impact from data as a way to guide investments and support for curation and preservation, as 
well as exploiting new technologies and economies of scale, particularly with respect to storage. 
Although the cost of data storage has decreased rapidly over the past two decades, it has been 
outpaced by the demand for storage due to the growth of science data. This will force the 
science community to come up with judicious cost models and approaches to provide scalable 
storage and associated data handling capabilities for data for AI.  
 
An important driver of investments will be the evaluation of the utility of the datasets. Valuable 
datasets, such as those collected from non-replicable experiments (e.g., observational 
astronomy), will need to be stored in as pristine a manner as possible. On the other hand, 
simulation-generated datasets may not be preserved if the cost of rerunning the simulation is 
less than the cost of storing the dataset for the long term. These decisions and trade-offs will 
need to span the data life cycle. 
 
Quantifying the value of a dataset is an open research question. A sound methodology for 
defining dataset quality is in its early stages and, ideally, requires an information-theoretic 
understanding of how the collected data impacts AI model selection. Data value should include 
principled ways of understanding what data are collected, what is worth retaining, and when it 
can be reproduced or regenerated. The value may vary according to the domain use and the 
particular models and tasks that employ the data. There are many potentially conflicting metrics 
for value, including the potential cost to reproduce the data and frequency of use. Certain 
datasets can appear poor in quality in isolation but prove invaluable when combined with other 
datasets. The value of a dataset also may grow in the future as new analysis methods or related 
datasets emerge.  
 
Assessing the value of datasets will necessarily foster questions of ownership and 
responsibility. There is an opportunity for the DOE SC to engage scientific communities in 
discussions concerning these issues. Guidance from SC, informed by these discussions, would 
help to reduce ambiguities around roles and responsibilities for data retention and curation.  
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3. About the Roundtable 
This one-day roundtable included 35 experts from 12 DOE national labs, NIH, and NSF. 
Participants had wide-ranging expertise in areas such as AI/ML, data management, data 
curation, metadata, library sciences, storage systems and I/O, open data, big data, and edge 
computing. These experts represented mission drivers across the six DOE SC programs and 
OSTI with ties to Office of Science-supported research activities, science user facilities, and 
community data repositories. 
 
The discussions proceeded in four phases, indicated in the agenda (Figure 4). During the first 
part of the morning, participants presented lightning talks on using research data for AI/ML in 
science. Presenters were encouraged to share “success stories,” as well as “frustration stories.” 
Before and after lunch, there were parallel breakout sessions. The sessions before lunch had 
predetermined themes around the idea of making data FAIR (Findable, Accessible, 
Interoperable, Reusable)20 for AI. The afternoon breakouts focused on topics that emerged from 
the morning sessions: Storage and Data Placement at all Scales, the Role of the Data Scientist, 
Metadata, and Making Data and Models FAIR Together. Finally, the day concluded with plenary 
readouts from the breakout sessions and a discussion about what was learned, potential 
synergies among the ideas presented, and potential gaps. Common cross-cutting themes that 
emerged included: Interoperability of Data from Different Facilities/Data Sources, the Need to 
Better Understand the Data Landscape, and the Need to Understand and Assess the Value of 
Data. 
 
Discussions in the breakouts and final plenary session were highly interactive. Participants were 
encouraged to form small groups for brainstorming and exploring ideas in depth. The breakouts 
had facilitators who set expectations, guided conversations, and kept the participants on 
schedule. The discussions were mediated with the help of sticky notes, white boards, flip charts, 
and digital media. Organizers and scribes took care to record all of the conversation artifacts.  
 
After the roundtable, a writing team of six experts from across the DOE SC labs synthesized the 
materials collected through the day into the findings and framework presented in this report. A 
summary of these findings was first presented at a meeting of the Advanced Scientific 
Computing Advisory Committee on September 23, 2019.21  
 

                                                
20 Wilkinson MD et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci 
Data. 2016;3:160018 DOI: 10.1038/sdata.2016.18  
21 Presentation slides from the September, 2019 ASCAC meeting can be found here:  
https://science.osti.gov/ascr/ascac/Meetings/201909  

https://science.osti.gov/ascr/ascac/Meetings/201909
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Figure 4: Office of Science Roundtable on Data for AI Agenda 

4. Conclusions 
The fundamental finding of this roundtable is that there are opportunities to advance AI R&D 
and increase the benefit of AI to science by improving the reusability of science data and AI 
models and through the development of methodologies and services to integrate AI seamlessly 
and routinely into science workflows. The roundtable participants identified three priority 
opportunities for data to advance AI in science: 
 

1) Influence the development of AI tools by democratizing access to benchmark science 
data 

2) Make AI operational in science with composable services for simulation, data analysis, 
and AI at all scales 

3) Address open questions in AI with frameworks for relating data, models, and tasks. 
 
These opportunities are presented in a broader context of open research challenges in AI and 
prerequisite, enabling capabilities in data science and data management.   
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5. Appendix A: Glossary 
 
AI Artificial Intelligence. In this report, we consider AI to be inclusive of 

machine learning (ML), deep learning (DL), neural networks (NN), 
computer vision, and natural language processing (NLP). 

AI model  An AI model is an inference method that can be used to perform a “task,” 
such as prediction, diagnosis, classification, etc. The model is developed 
using training data or other knowledge.  

AI task The inference activity performed by an artificially intelligent system. 
AI tools AI tools, such as PyTorch and TensorFlow, used to build and deploy AI 

applications.  
Active learning A research field focused on data-efficient machine learning algorithms 

that are able to query the dataset or data source for new training 
samples.  

AutoML  Stands for automated machine learning, not to be confused with a Google 
toolkit with the same name. It also is the process of automatically finding 
the model and model hyperparameters that best describe a particular 
training dataset.  

Composable Composable services are created from interoperable modular 
components that can be assembled flexibly into multiple well-defined 
functional and usable tools or capabilities. 

Data for AI The digital artifacts used to generate AI models and/or used in 
combination with AI models during inference. 

DL Deep Learning 
Lifelong learning  Also continuous learning. A strategy for dealing with a well-known 

shortcoming of artificial neural network approaches, namely catastrophic 
forgetting, where the model’s performance degrades on previously 
learned tasks as new tasks are introduced. 

ML Machine Learning 
Ontology The models of knowledge and associated definitions and relationships 

among terms or categories that are essential for interoperability among 
datasets.  

Transfer learning  The act of using pre-trained models for tasks/data other than what the 
models were originally designed for.  

 
  



Cover design by Y. Belyavina, Brookhaven National Laboratory (2019).

 This report was prepared as an account of work sponsored by an agency of the United States government. 
Neither the United States government nor any agency thereof, nor any of their employees, makes any 

warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, 
or usefulness of any information, apparatus, product, or process disclosed, or represents that its use 

would not infringe privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its 

endorsement, recommendation, or favoring by the United States government.


	DATA AND MODELS: A FRAMEWORK FOR ADVANCING AI IN SCIENCE (Cover)
	Data and Models: A Framework for Advancing AI in Science (Title Page)
	Contents
	Executive Summary
	1. Introduction
	2. Findings
	2.1 Challenges
	2.1.1 Current AI tools and methods are not always a good fit for science
	2.1.2 Science workflows with AI need human oversight
	2.1.3 There is no theory encompassing data, AI models, and tasks
	2.1.4 Applying FAIR principles to science data is challenging

	2.2 Opportunities
	2.2.1 Influence the development of AI tools by democratizing access to benchmark science data
	2.2.2 Make AI operational in science with composable services for simulation, data analysis, and AI at all scales
	2.2.3 Address open questions in AI with frameworks for relating data, models, and tasks

	2.3 Enabling Capabilities
	2.3.1 Data management support and incentives for teams generating data
	2.3.2 Automated collection of metadata, provenance, and annotations at scale
	2.3.3 Scalable human interfaces for data
	2.3.4 Strategic approaches to managing data management costs and resources


	3. About the Roundtable
	4. Conclusions
	5. Appendix A: Glossary

	Back Cover



