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Executive Summary

On June 5, 2019, the Office of Science (SC) organized a one-day roundtable to focus on
enhancing access to high-quality and fully traceable research data, models, and computing
resources to increase the value of such resources for artificial intelligence (Al) research and
development and the SC mission.! In this report, we consider Al to be inclusive of, for example,
machine learning (ML), deep learning (DL), neural networks (NN), computer vision, and natural
language processing (NLP). We consider “data for Al” to mean the digital artifacts used to
generate Al models and/or employed in combination with Al models during inference. In part,
this roundtable was motivated by the recognition that a large portion of science data currently
are not well suited for Al.

The roundtable participants represented expertise from 12 Department of Energy (DOE)
national labs?, the National Institutes of Health (NIH), and the National Science Foundation
(NSF), and they had wide-ranging knowledge in areas spanning the domain sciences, as well
as from Al, data management, data curation, metadata, library sciences, storage systems and
input/output (1/0), open data, big data, and edge computing. These experts also represented
mission drivers across the six SC programs? and the DOE Office of Scientific and Technical
Information (OSTI) with ties to SC-supported research activities, scientific user facilities, and
community data repositories.

The fundamental finding of this roundtable is that there are opportunities to advance Al research
and development (R&D) and increase the benefit of Al to science by improving the reusability of
science data and Al models and through the development of methodologies and services to
seamlessly and routinely integrate Al into science workflows. The roundtable participants
identified three priority opportunities for data to advance Al in science:
1) Influence the development of Al tools by democratizing access to benchmark science
data
2) Make Al operational in science with composable services for simulation, data analysis,
and Al at all scales
3) Address open questions in Al with frameworks for relating data, models, and tasks.
These opportunities are presented in a broader context of open research challenges in Al and
prerequisite, enabling capabilities in data science and data management.

1 The focus for the roundtable is motivated by the Executive Order on Maintaining American Leadership in
Artificial Intelligence, Feb. 11, 2019. https://www.whitehouse.gov/presidential-actions/executive-order-
maintaining-american-leadership-artificial-intelligence/

2 Argonne National Laboratory, Brookhaven National Laboratory, Fermi National Accelerator Laboratory,
Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National
Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Princeton Plasma
Physics Laboratory, Sandia National Laboratory, SLAC National Accelerator Laboratory, Thomas
Jefferson National Accelerator Facility.

3 The six Office of Science programs are: Advanced Scientific Computing Research (ASCR); Basic
Energy Sciences (BES); Biological and Environmental Research (BER), Fusion Energy Sciences (FES),
High Energy Physics (HEP), and Nuclear Physics (NP).
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1. Introduction

The U.S. Department of Energy (DOE) Office of Science (SC) has a unique combination of
capabilities to lead the nation in artificial intelligence (Al) and machine learning (ML) research
and development (R&D) for science:
e A broad mission that presents new and unique research problems on a national and
global scale to attract new talent
e Sources of massive and/or complex science and engineering data from sensors,
instruments, and from large-scale simulations
e World-class high-performance computing (HPC) infrastructure, capable of world-leading
Al research
e World-class high-performance network infrastructure capable of integrating computing
resources and data assets
e An exceptional workforce with large numbers of domain scientists, computer scientists,
and mathematicians currently engaged in Al and related fields.

Current efforts, however, are impeded by difficulties in finding, accessing, preparing, sharing,
reusing, and computing on science data. Researchers who want to develop new Al algorithms
and techniques rely on data that are readily available and, preferably, curated with relevant
metadata. Once generated, potential training datasets and models may go underutilized due to
the lack of sharing platforms and practices, difficulty of moving or accessing data, and
complexity in preparing data for computation. These challenges are particularly acute for the
DOE SC bhecause of the extreme scale and complexity of the data and, for many disciplines, the
lack of established repositories and tools to facilitate best practices in data management,
sharing, and preservation. Most of the data produced through SC-funded research are not used
in Al applications, resulting in missed opportunities to use Al to make science more efficient and
productive or to attract talent to the DOE mission in highly competitive Al areas. The SC mission
and workforce are likely to benefit from a strategic approach to data for Al.

On June 5, 2019, the SC organized a one-day roundtable to focus on enhancing access to high-
guality and fully traceable research data, models, and computing resources to increase the
value of such resources for Al R&D and the SC mission.* In this report, we consider Al to be
inclusive of, for example, ML, deep learning (DL), neural networks (NN), computer vision, and
natural language processing (NLP). We consider “data for Al” to mean the digital artifacts used
to generate Al models and/or used in combination with Al models during inference. In part, this
roundtable was motivated by the recognition that a large portion of science data currently are
not well suited for Al. The roundtable participants represent expertise from 12 DOE national
labs®, the National Institutes of Health (NIH), and the National Science Foundation (NSF).

4 The focus for the roundtable is motivated by the Executive Order on Maintaining American Leadership in
Artificial Intelligence, Feb. 11, 2019. https://www.whitehouse.gov/presidential-actions/executive-order-
maintaining-american-leadership-artificial-intelligence/

5 Argonne National Laboratory, Brookhaven National Laboratory, Fermi National Accelerator Laboratory,
Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National
Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Princeton Plasma
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Participants’ expertise spanned the domain sciences to Al, data management, data curation,
metadata, library sciences, storage systems and input/output (I/O), open data, big data, and
edge computing. These experts represented mission drivers across the six SC programs and
the Office of Scientific and Technical Information (OSTI) with ties to SC-supported research
activities, scientific user facilities, and community data repositories.

In January 2018, the ASCR Basic Research Needs workshop on Scientific Machine Learning,®
was convened to identify major ML opportunities and grand challenges as viewed through the
lens of applied mathematics and scientific computing research. That workshop identified six
Priority Research Directions (PRDs) for Scientific Machine Learning. The first three PRDs
describe foundational research themes common to the development of all Scientific Machine
Learning methods and correspond to the need for domain-awareness (PRD #1), interpretability
(PRD #2), and robustness (PRD #3). The other three PRDs describe capability research themes
and correspond to the three major use cases of Scientific Machine Learning for massive
scientific data analysis (PRD #4), ML-enhanced modeling and simulation (PRD #5), and
intelligent automation and decision-support of complex systems (PRD #6). Together, these
PRDs define the SC research goals for ML (PRDs 1-3) and provide broad classes of use cases
where ML can impact the SC mission (PRDs 4-6). As a complement to the Scientific Machine
Learning workshop, this roundtable focused on the opportunities and challenges related to data
needed to advance these areas of research, as well as to advance the impact of Al and ML on
the SC mission. The roundtable participants carefully considered the role of data in modern
science applications of Al and in Al R&D, including issues around data generation and curation.

The roundtable began with discussions around how to make science data FAIR7 (Findable,
Accessible, Interoperable, and Reusable) for Al (Figure 1). The creation of FAIR, annotated
training data currently requires human expertise and curation. There are ongoing discussions in
various science communities about the actual processes and feasibility of enabling data sharing
and implementing the FAIR® principles.

Metadata and standards are key enablers of FAIR data, and, throughout the roundtable, these
topics were at the heart of many discussions. Standards are recognized as powerful enablers of
FAIR data. However, they must be designed carefully to avoid limiting systems to narrow syntax
or semantics. Furthermore, most of the currently defined standards are not used consistently,
and it is challenging to enforce their use outside of large repositories.

Physics Laboratory, Sandia National Laboratory, SLAC National Accelerator Laboratory, Thomas
Jefferson National Accelerator Facility.

6 Baker, Nathan, Alexander, Frank, Bremer, Timo, Hagberg, Aric, Kevrekidis, Yannis, Najm, Habib,
Parashar, Manish, Patra, Abani, Sethian, James, Wild, Stefan, Willcox, Karen, and Lee, Steven.
Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for
Artificial Intelligence. United States: N. p., 2019. Web. doi:10.2172/1478744.

7 Wilkinson, M. D. et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship.
Sci. Data 3:160018 doi: 10.1038/sdata.2016.18 (2016).

8 e.g., Research Data Alliance, https://www.rd-alliance.org/, and GO-FAIR https://www.go-fair.org/
initiatives.
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What is FAIR DATA?

......................................................

. Data and supplementary materials have . . Metadata and data are understandable .
. sufficiently rich metadata and a unique + - to humans and machines. Data is
and persistent identifier. .. deposited in a trusted repository.

Metadata use a formal, accessible, . Data and collections have a clear

; shared, and broadly applicable language 1 usage licenses and provide accurate
for knowledge representation. - information on provenance.

......................................................

Figure 1: Graphical depiction of FAIR data principles from LIBER, the Association of European
Research Libraries (https://libereurope.eu/wp-content/uploads/2017/12/LIBER-FAIR-

Data.pdf).

The findability, accessibility, interoperability, and reusability of Al models emerged in the
roundtable discussions as important considerations. An Al model is an inference method that
can be used to perform a “task,” such as prediction, diagnosis, classification, etc. Conceptually,
Al models fall somewhere between data and theory—neither entirely empirical nor wholly
derived from first principles. When used for control or autonomous decision making in a
scientific workflow, the trained model may be an important digital artifact for reproducibility of the
results. It also may be an important element of provenance for the resulting scientific dataset. In
other cases, the model may be better viewed as an approximation of data—either the data used
to train it or the data it generates, as in the case of Generative Adversarial Networks (GANS).
However, as digital research objects, Al models are in their infancy with very few schemas for
syntax, ontologies (or even controlled vocabulary), or metadata standards.

The fundamental finding of this roundtable is that there are opportunities to advance Al R&D
and increase the benefit of Al to science by improving the reusability of science data and Al
models and through the development of methodologies and services to seamlessly and
routinely integrate Al into science workflows. These opportunities are presented in a broader
context of open research challenges in Al and prerequisite, enabling capabilities in data science
and data management (Figure 2). This report follows the Figure 2 structure by addressing each
of the framework elements in turn in the next section entitled, Findings.
Section 2.1 provides details on the four open challenges in Al highlighted by the roundtable
participants:

e Current Al tools and methods are not always a good fit for science.

e Science workflows with Al need human oversight.
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e There is no theory encompassing data, Al models, and tasks.
e Applying FAIR principles to science data is challenging.

Section 2.2 presents each of the key priority opportunities for data to advance Al for science:
e Influence the development of Al tools by democratizing access to benchmark science
data
e Make Al operational in science with composable® services for simulation, data analysis,
and Al at all scales
e Address open questions in Al with frameworks for relating data, models, and tasks.

Section 2.3 describes underlying capabilities in data science and data management needed to
address the key priority opportunities:

e Data management support and incentives for teams generating data

e Automated collection of metadata, provenance, and annotations at scale

e Scalable, human interfaces for data

e Strategic approaches to managing data management costs and resources.

Current Al tools and o e - There is no theory Applying FAIR
%ec—‘ methods are not N encompassing data, principles to
Nee : with Al need ! !
el %P« always a good fit for o - Al models, and science data is
\)‘5‘“ e science L SRS tasks challengin
0 ot 8ing
k)
§of
. Make Al operational in g q
(\-\n\e Influence the i . P Address open questions in
o science with composable -
R0 ace® development of Al tools : 8 s Al with frameworks for
OPY et services for simulation, .
Pl o) by democratizing access to ; relating data, models, and
K \\20% : data analysis, and Al at all
e benchmark science data tasks
< scales
T X0 - - -
\0'\\'\"'\8s Data management / / Strategic approaches to \
IS A aa@ di . Automated collection of scalable. h ine d
o support and incentives calable, human managing data
e X metadata, provenance, .
e 'e“c'e' N for teams generating T e interfaces for data management costs and
o \ 508 data | | resources
.\(\(_, - -
Figure 2: Open challenges in Al (top); opportunities to address these through data (middle); and

prerequisite, enabling capabilities in data science and data management (bottom).

2. Findings

2.1 Challenges

The roundtable participants identified several current challenges to advancing Al R&D and using
Al to advance the DOE SC mission. These challenges point to needs in technology

9 Composable services are created from interoperable modular components that can be assembled
flexibly into multiple well-defined functional and usable tools or capabilities.
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development; fundamental research; and new types of collaborations that bring together experts
in domain science, Al, and data management.

2.1.1 Current Al tools and methods are not always a good fit for science

Roundtable participants identified three reasons why current Al tools are not always a good fit
for science use cases: 1) because the data used to develop them differ from science data in
fundamental ways, 2) because science applications of Al can have goals that differ from
traditional Al tasks, and 3) because of the often extreme conditions under which Al is used in
science.

Advances in Al have exploited readily available data from images, sound, natural language, and
game-like environments. However, science data can be high-dimensional, multimodal, complex,
structured, and/or sparse. Al tools are sensitive to data representations, for example,
differences in how data are sampled, averaged, or organized. Therefore, it is not clear about
how to represent and organize science data for Al applications. In general, the distinguishing
features, dependencies, and fundamental relationships within and among science data mean
that traditional Al tools, which are typically designed for discrete, combinatorial, and
unstructured data representations and analysis, may miss the scientific phenomena of interest.

SC-funded research generates large amounts of science data across a variety of domains
through HPC simulations and experiments, many of which are single-facility multimodal
experiments. Examples include the “onion”-style detectors of high energy physics and nuclear
physics accelerator-based experiments, which have long integrated diverse detector types to
measure different particle types and parameters. Increasingly, photon science experiments also
combine multiple sources, for example, combining photon, ion, and electron yields in chemical
studies. At X-ray free electron laser facilities (XFELS), users commonly integrate sample
measurements with facility diagnostics to clean, correct, or enhance datasets. The Nanoscale
Science Research Centers (NSRCs) also employ multimodal experiments. In these cases, data
are generated through multimodal means from a variety of sensors and often are correlated in
space and time, reflecting the underlying structures and processes being examined. The data
usually are high-dimensional as well because of the large number of parameters needed to
specify the experimental conditions and system state. Once synthesized into physical events or
traces, data can be sparse with respect to learning task categories. Another layer of
multimodality can result when data from multiple experiments or simulations are combined in a
single Al application.

Error, uncertainty, and resolution add complexity to multimodal science data. Heterogeneous
data sources have variable error sources, uncertainty levels, and resolution. For instance,
consider the seemingly straightforward task of combining simulation and experimental data,
which have different types and sources of uncertainty and error. At a minimum, confidence
levels and error sources need to be captured explicitly as parameters or contained in metadata.

Science applications of Al can have different goals than traditional Al tasks and may pursue
different data management challenges. Current Al capabilities that appear to dramatically
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outperform human intelligence include recognizing recurring patterns in images, sounds, natural
language, and game-like environments. Scientists, however, are interested in tasks not
necessarily modeled on human intelligence such as identifying atypical and anomalous cases—
often under extreme computational environments of large, complex data; extreme data rates;
and low latency tolerances. There are significant associated challenges in data management,
data movement, and data preparation.

The single-facility, multimodal experiments previously described exemplify the data
management challenges associated with science applications of Al. Rapid alignment and
preparation of multimodal, high-dimensional science data for Al remain an important challenge.
In addition, experimental facilities, such as the Large Hadron Collider (LHC) and Relativistic
Heavy lon Collider (RHIC), are generating data at rates in the TB/s range for raw data with data
volumes quickly approaching the exabyte scale’. Experiments using the High-Luminosity
upgrade to the LHC will archive exabyte-scale datasets every year. DOE Leadership Computing
facilities also run some of the largest-scale simulations for applications such as lattice quantum
chromodynamics (LQCD), fusion energy, molecular dynamics (MD) of computational chemistry
and biology, and direct numerical simulation (DNS) of computational fluid dynamics on
combustion and climate. The volume of these simulations can be petabytes even without
exascale supercomputers. The LHC experiments that discovered the Higgs boson in 2017
archived 200 PBs, which is equivalent to 3,000 years of ultra-high-definition video streaming.
Deploying Al in these circumstances with extreme data volumes and rates poses challenges in
establishing 1/0 data streams, staging and tiering storage, offering sustained computational
performance, and providing accurate supporting metadata.

Controlling either extreme-scale simulation or experimental facilities with Al requires low-latency
analysis and inference. Currently, most analyses of experimental and simulation data are done
post hoc, after the experiment or simulation has run. To enable Al-driven automated control for
faster scientific discovery, these high-volume, high-velocity data need to be analyzed in real
time.

Al can aid science by generating hypotheses for questions such as: what kinds of experiments
need to be done, or what kinds of questions need to be asked? Many science questions require
a combinatorial approach, for example, to select and combine different raw materials to design
a new functional material that has attractive properties or to identify biological conditions and
genes to engineer and yield the best biofuel. The number of permutations to consider is well
beyond what would be possible for humans or naive automation to explore.

The opportunity to “influence the development of Al tools by democratizing access to
benchmark science data” (described in the next section) directly addresses these challenges.

10 Albrecht, Johannes, et al. “A Roadmap for HEP Software and Computing R&D for the 2020s.”
Computing and Software for Big Science 3.1 (2019): 7.
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2.1.2 Science workflows with Al need human oversight

Roundtable participants described many inhibitors to efficient use of Al technologies in science
applications, ranging from I/O capabilities for HPC systems to insufficient storage and access to
data to the siloed software stacks for HPC, big data, and Al. Often, these challenges are
overcome in ad hoc ways with bespoke solutions, requiring human oversight.

Science data are generated across a diverse set of facilities, instruments, and sensors that span
a range of complexity and scales. In some cases, the data are too large to be stored and must
be processed at the detector or streamed directly into a supercomputer for analysis in real time.
In other cases, data generated at different facilities need to be integrated, which requires
collocation of the datasets in common storage and computing resources.

The software used to process and wrangle data, build and deploy Al applications, and analyze
results often are developed by distinct communities with little attention to facilitating combined
workflows. Bridging these software silos is a major challenge.

The computation for a given research effort may take place on a variety of platforms, distributed
geographically and with very different computing capacities (e.g., edge to HPC). There is a need
for ensuring Al applications can be deployed seamlessly across platforms and on new and
emerging architectures.

Per the roundtable participants, there is an opportunity to “make Al operational in science with
composable services for simulation, data analysis, and Al at all scales.”

2.1.3 There is no theory encompassing data, Al models, and tasks

Educated trial and error continues to guide advances in science applications of Al. Currently,
there is no holistic theoretical approach unifying data, Al models, and the tasks performed by
models that would help answer critical, foundational questions, such as: what information about
a dataset can be deduced from a model trained on the data? Do models inherit the access
limitations or classifications of the training data? For a given dataset and task, what are the best
model, hyperparameters, and training method? When are more data needed, and how much
incremental information will they have? Which data would make the biggest improvement? In
what circumstances can a model be transferred to new data?

Presently, many science applications of Al begin with the desire to perform a particular task on
a given dataset or data stream. Training data are chosen and prepared. Then, a model is
identified and trained. The choice of model often involves some educated guess work.
Furthermore, to improve the model’s accuracy, it is not clear if more training data, a different
model or hyperparameters, or the addition of domain knowledge would be beneficial. Currently,
it is not possible to relate the models to previously collected data or determine what other tasks
are relevant. The missing theoretical framework for data, Al models, and tasks has important
implications for performance and optimization of Al in science, as well as overall productivity of
Al applications and the reusability of models.
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The lack of a unifying theory also influences decisions regarding the sharing of Al models and
techniques. Because it is not known what attributes of a dataset can be derived from a model
trained on that data, Al models trained on restricted data are not shared more broadly than the
data themselves. Having a better understanding of the relationships between data and models
would have an enormous impact in connecting research on restricted data with advances in
open science.

The Workshop Report on Basic Research Needs for Scientific Machine Learning identified
foundational PRDs in domain-aware, interpretable, and robust ML. These PRDs call for
mathematical approaches for developing a foundational understanding of Al/ML, the lack of
which is described here. In the next section, the opportunity to “address open questions in Al
with frameworks for relating data, models, and tasks” describes a computational and data-driven
approach for identifying key features of such a theory.

2.1.4 Applying FAIR principles to science data is challenging

Al research may have substantially different requirements for reusing data than other more
domain-specific reuse cases. Roundtable participants showed unanimous support for FAIR
principles but noted there are unique challenges in making science data FAIR for Al.
Furthermore, there currently is much less attention on how to make Al models FAIR.

Scientific workflows can now involve several Al steps across different stages of the data life
cycle, from data generation (from experiments or simulations) to data reduction (filtering,
transformation, compression, etc.) to drawing conclusions from the data. Historically, when all
the involved data could be tabulated on paper, scientific results were disseminated in written
format. For example, a manuscript usually included details of the performed experiment, data
acquired, and contributions based on the data, meaning that all of the required information,
steps, and data to validate and replicate the experiment results would be found in the published
paper. Now, data and models live outside the manuscript, and reproducibility of the results is
contingent on the data and models being FAIR.

There are specific challenges associated with each of the FAIR principles when considering
science data for Al:

Findability: How will the Al community search or browse for data? What attributes are
important to include in the metadata that will further enable search and queries by Al
researchers? The advancement of Al depends on large, well-characterized training datasets.
Enabling researchers to find data requires an understanding of the relevant metadata that will
be used for a search—either by a human or machine. We speculate that properties such as the
structure, dimensionality, sparseness, and multimodality of the data, as well as information
about the types of models trained on the data, will be, at least, as relevant as attributes such as
discipline domain, source, author, and other information found in current metadata standards.

Some attributes relevant to search are contained within the data, and scalable queries across
these resources require precomputing values across large amounts of raw or processed data.
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These data need to flow between repositories to enable computations across the whole corpus
of available data. Furthermore, the metadata standards and models have been established
across a number of fields, but the application and enforcement of these standards are
challenging, manual, and offer few incentives to curate metadata.

Accessibility: Al applications in science present new data access patterns, for example,
training over federated data or distributed training and inference. Al applications also introduce
different and unpredictable 1/O patterns. In some cases, Al algorithms must be trained over
geographically dispersed data repositories. This presents unique challenges when attempting to
scale up access as certain Al algorithms require the storage system to read and reread entire
datasets. This means that when a scientist wants to train a method on a large amount of data
that may be stored in a High Performance Storage System (HPSS), these data must be
restored to a file system or other storage that enables rapid and/or random access.

Interoperability: For data to be interoperable in the sense intended by the FAIR principles, a
machine needs to be able to ingest and interpret data from different repositories. This implies
that the data and metadata are described by vocabularies that follow FAIR principles. For
instance, the metadata are linked to established ontologies to enable systematic linking
between the datasets. Although there are many efforts underway to standardize metadata and
create semantic links between datasets, this remains a difficult problem.

Beyond these challenges, there are fundamental open questions about how to use data from
different sources in Al applications. Even sources producing the same type of data can
introduce hidden biases and behave differently when presented to the same model. Some
applications call for different types of data to be integrated, such as experimental and simulation
data, and there is no principled way to do this currently.

Reusability: Machine readability of metadata, provenance, and annotations are essential for Al.
Yet, the metadata needed for a given Al application can be difficult or impossible to know in
advance. Metadata are critical for understanding biases in data and for interpreting results from
Al applications. Like other types of data analysis, Al applications require detailed metadata,
provenance, and annotation for interpretable, reliable, and transparent results.

Beyond FAIR data, there is value in extending the FAIR principles to Al models. However, there
are even more challenges in making Al models FAIR. As for data, the challenges around
findability of models are further complicated by insufficient study into how the Al R&D
community searches and uses models. However, challenges involving accessibility,
interoperability, and reusability reflect inherent open research questions about, for example,
what can be inferred from a model about the underlying dataset, or if the model should inherit
access limitations of the training set; transfer learning; explainability; the scarcity of standard
structures and schemas for Al models; and the lack of a unifying framework for data, models,
and tasks.
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Currently, there are several different types of formats for storing models, and there are
compatibility issues that arise among them. In the case of traditional ML, model storage may be
interpreted as the storage of the source algorithm and required input parameters. For DL,
storage will require storing parameters (e.g., weights), network architecture, and dynamic
execution graphs. The weights are driven by the training data, and there is a question of how
much training data need to be stored with the model for validation and reproducibility. There
have been efforts to standardize DL model formats. Two of the most promising model exchange
formats are NNEF (Neural Network Exchange Format) and ONNX (Open Neural Network
eXchange), which is supported by major DL frameworks, such as PyTorch, CNTK, MXNet, and
TensorFlow. The current model exchange format is not, however, linked back to the data used
in training.

Addressing this challenge will require collaborations between domain scientists, Al experts, and
data management experts to better understand the needs of the Al community, as well as to
refine what is needed to reuse science data as data for Al. Such collaborations could form
around, for example, science benchmark data or the creation of frameworks for data and Al
models (detailed in the next section).

2.2 Opportunities

This section describes opportunities for the DOE SC to advance Al R&D and improve the
impact of Al tools for the SC mission. Each opportunity addresses one or more of the
aforementioned research challenges.

2.2.1 Influence the development of Al tools by democratizing access to benchmark science data

Making science data available to Al researchers and developers will improve the utility and
performance of Al tools for science. Benchmark datasets are used to compare analysis, Al, or
other computational methods. It has been argued that the ImageNet!! competition and
benchmark dataset sparked the DL revolution, specifically by demonstrating the capabilities of
convolutional neural networks in object recognition tasks in natural images. Similarly, the
advancement of Al research for DOE SC applications starts with facilitating access to science
data. This opportunity directly addresses the challenges outlined in Section 2.1.1 and 2.1.4.

Envisioned here are published benchmark datasets that exemplify the distinguishing attributes
of science data (Section 2.1.1) with appropriate storage, access rights, and integration with
computational capabilities and analysis tools to focus the development of Al tools and
techniques on science needs. Benchmark datasets will have greater impact if domain experts
help define the data and metadata and provide explanations about what phenomena they
describe and the nature of tasks that can be performed on them. Challenges, citizen science
competitions, and partnerships can provide a formal context and focus for developing the
necessary metadata and documentation and also attract new talent to the SC mission.

11 www.image-net.org
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Metadata, provenance, and annotations are key components for making data FAIR for Al.
These can be improved for a benchmark dataset through coordination and feedback from the Al
community. A feedback loop of discoveries, annotation, and updates to metadata should make it
possible to associate learned information with benchmark datasets. One way to facilitate this
feedback loop is to ensure that systems provide full visibility into the workflow and data
provenance characteristics of the datasets.

2.2.2 Make Al operational in science with composable services for simulation, data analysis,
and Al at all scales

Composable services can enable the efficient execution of scientific workflows of simulation,
data analysis, and Al across the computing continuum, from edge to HPC. The vision is for
combined infrastructure and software capabilities that reduce data movement and analysis at all
scales; federate data and computing resources for seamless Al workflows, incorporating data
collection, edge computing, and Al; optimize data placement and organization in storage and
memory hierarchies to reduce data movement and associated processing latencies; and
integrate heterogeneous computing architectures and new hardware.

To support the data flow from geographically dispersed sources, the networking and software
infrastructure must, in some cases, perform computations where the data are stored, and, in
others, move the data to where the computations can be performed. This may require federated
access to resources at different facilities so that, for example, analyses and data transfers
between facilities can be initiated programmatically without human intervention. Intelligent
infrastructure design is needed to ensure that the data movement (communication) is minimized
to avoid bottlenecks. Data movement services that span facilities, supercomputer memory
hierarchies, file systems, and tape archives will enable scientists to focus their efforts on the
analysis as opposed to data management. In certain Al algorithms, data are read and reread
many times to train models. Therefore, reducing latencies in data access can diminish the
training time for ML techniques dramatically.

To meet increased demands for computing, hardware accelerators are needed to reduce the
overall power footprint. Scientists need access to new hardware tailored for different Al
applications as it becomes available in order to adapt or develop algorithms optimized for the
new architectures. Access to cutting-edge testbeds in the DOE ecosystems can be enabled
through a common application program interface (API) and federated identity management
across the DOE SC.

There is an opportunity to advance Al research with appropriate computing resources to run and
cross validate models on different datasets without having to worry about dependencies or
specific hardware architecture tuning. Container!? technology is helpful in this regard, but it is
not readily usable by non-experts because the technology itself continues to evolve. HPC
facilities could maintain sets of optimized containers for the various architectures they support.

12 A container is a way to encapsulate software and library dependencies into a single package that can
run on a variety of systems, requiring relatively minimal underlying system configurations.

11



Data and Models: A Framework for Advancing Al in Science

Research is needed to make containers easier to build and port across cloud and HPC
resources. In addition, published datasets and models need to be easily accessible through
extensions to the data science software stack in the same way image recognition benchmark
datasets can be directly imported into a DL workflow.

2.2.3 Address open questions in Al with frameworks for relating data, models, and tasks

Frameworks for tracking relationships among data, models, and tasks can address strategically
important open questions in Al research, such as those highlighted in Section 2.1.3 and the
challenge of making data findable for the Al R&D community. Envisioned here is a framework
that would link all salient aspects of an Al workflow, including the data, Al model, task, training
methodology, and accuracy metrics and measures. An important feature of this framework is the
holistic view of this workflow.

With the accumulation of many such workflows in the framework, researchers will be able to
discover higher-level patterns among the workflows that reveal a deeper understanding of the
relationships between data, models, and tasks. Some of these higher-level patterns are already
known. For example, in the context of DL, it is known that convolutional neural networks
currently work best as a model for image-based tasks (image recognition, segmentation,
deblurring). Finding similar connections between other science-relevant data modalities and
abstract models is an open research question. There also are examples where transfer learning
(where a model trained for a specific task or dataset is used for a different task with minimal to
no modifications) works well, and examples where it has failed. The framework envisioned here
could help identify reasons for these successes and failures. The framework would inform
investigation on topics, such as active learning, AutoML, and transfer and lifelong learning.

Some current large-scale services enabling the findability and accessibility of data and models
include OSTI's DatalD Service®®, DLHub*, OpenML*, and Zenodo*®. Unique and persistent
identifiers, such as digital object identifiers (DOIs), are central to these efforts.

Relationships among data, models, and tasks could be efficiently captured at the point of
publication by including these elements as part of the scholarly record. Almost all data science
development platforms and languages now offer “notebooks,” an interactive interface to
interleave analysis code with formatted text, figures, and equations. Jupyter notebooks are
arguably the most popular medium for Al practitioners to develop and share Al models and the
models’ provenance, including various forms of different model cross-validation techniques and
hyperparameter tuning recipes (automatic or manual). MATLAB and R also offer similar features

13 https://www.osti.gov/data-services

14 Chard, Ryan, et al. “DLHub: Model and Data Serving for Science.” arXiv preprint arXiv:1811.11213
(2018).

15 Vanschoren, Joaquin, et al. “OpenML: networked science in machine learning.” ACM SIGKDD
Explorations Newsletter 15.2 (2014): 49-60.

16 https://zenodo.org/record/2541184#.XSOLvOhKju0
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through MATLAB live editor!’” and R Notebooks?®, respectively. There also is support for running
these notebooks on various Leadership Computing Facility resources (JupyterHub) and cloud
computing services (Google Colab). Publishing a scientific manuscript with its accompanying
dataset and the analysis notebook that includes all the data transformations and visualizations
could help to capture the relationships among data, models, and tasks.

2.3 Enabling Capabilities

This section presents a number of prerequisite, enabling capabilities for addressing the
aforementioned opportunities, as well as a broad range of data science and data management
options. Like the opportunities, these enabling capabilities identify areas where additional DOE
SC investments would be impactful. However, the opportunities described in Section 2.2 directly
address the challenges identified in Section 2.1. By contrast, these enabling capabilities are
more foundational and would impact data science more broadly than the Al-focused
opportunities.

2.3.1 Data management support and incentives for teams generating data

There is a need to support domain science teams in the production of FAIR data by linking them
with data science and data management experts and providing incentives for data
management. Improving access to expertise in data science and data management, Al best
practices, metadata standards and ontologies, and data sharing and retention opportunities can
help research teams make their data FAIR and ready for Al. Researcher engagement with Al
experts, research libraries, archives, and community organizations, such as the Research Data
Alliance,*® can increase capabilities and ensure alignment between best methods, community
standards, and DOE research needs. The engagements and application of the FAIR principles
should run from experimental design through to final data publication.

17 https://www.mathworks.com/products/matlab/live-editor.html
18 https://bookdown.org/yihui/rmarkdown/notebook.html
19 https://www.rd-alliance.org/
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Figure 3: Diagram showing the: “FAIR-ification of Data” (https://www.go-fair.org/fair-
principles/fairification-process/).

Figure 3 shows a generic pipeline for making data FAIR with the possibility of linking FAIR
datasets from different sources (yellow boxes). For SC-relevant applications, Step 3 is
particularly challenging and requires both deep domain knowledge of the data and expertise in
best practices for metadata and ontologies. In some cases, ontologies already exist and can be
adopted. However, in many DOE scientific domains, such ontologies need to be defined and
built from the ground up. Replacing semantic models with domain-specific forward models is an
alternative approach. For instance, in X-ray diffraction imaging experiments, the underlying
physics forward model of how a diffraction pattern image from a sample is measured on a
pixelated detector is known to experimentalists in this field. Therefore, the semantic model
parameters of a diffraction dataset are defined as the forward model constants that led to the
data generation process. In this specific case, they can include parameters like X-ray beam
energy used, scanning parameters, optics and beamline configurations, detector and sample
properties, and/or noise models due to various sources of error. These parameters aid in
defining the dataset metadata (Step 6), which, in turn, enable combining and linking FAIR
datasets together.

Roundtable participants envisioned data scientists and data management experts to be
embedded within domain teams. Embedding should begin as early in the process as possible,
from experimental design through the final analysis. Domain experts bring years of experience
and understanding of data, metadata, and provenance. On the other hand, domain scientists
may find it challenging to adopt the mindset of non-specialists or fail to document deeply
embedded assumptions about the data. A close collaboration between domain and data experts
can capture the best of both worlds: domain expertise and robust, scalable pipelines to produce
high-value FAIR data.
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Such relationships also will play a role in educating domain scientists about Al and data
management. As the power of Al techniques progresses, domain scientists in the DOE must
become data and Al conversant. Processes and incentives to build a data-savvy workforce are
important pieces in the overall puzzle. Given the challenge of hiring and retaining data
scientists, modernizing the skill sets of on-staff domain scientists across SC is critical, including
retraining programs.

Roundtable participants recognized challenges in attracting and retaining data science and data
management expertise into partnerships with science domains. For example, publication cycles
in some domain science fields are much longer than in data science and data management. It is
important to support mechanisms that allow for collaborations between domain scientists and
data scientists to publish on the timescale that is natural for each of their fields. Offering
authorship to data scientists on domain science papers is helpful but not enough to drive
recognition. New career paths or re-imaginings of existing paths (e.g., data librarians, data
curators, etc.) may also help. These roles increase capacity for important expertise that may not
fit in the current scheme for career advancement. Finally, hiring and retention are complex
problems, especially given salaries for equivalent work are higher in industry. It is important to
emphasize the SC mission, impact, and freedom of inquiry to attract a capable workforce. DOE
SC also may choose to embrace its role as an early-stage developer of data science and data
management talent for industry.

One opportunity in this space is finding a way to recognize members of the scientific community
for contributions to a repository (either through curation or data contributions), perhaps with
some formal incorporation into their impact score. The recognition could include indicators for
guality and FAIR-ness. Such recognition could be used by funding agencies as part of funding
decisions or by research institutions as part of promotion decisions. Data repositories could help
report and share information about contributions made to the repository. This could be
supported further through measures of the number of downloads or uses of the data with
attribution awarded to the data contributor. Other incentives can be provided in the form of
additional storage space or bandwidth to the system to facilitate access.

Community data repositories play a strategic role as keepers of domain-specific ontologies and
standards and can provide incentives for data submitters to adhere to quality standards. Clearer
and more detailed expectations from funding agencies and journals with respect to data
management also can help incentivize best practices and maintain alignment with researcher
career goals.

2.3.2 Automated collection of metadata, provenance, and annotations at scale

There is a need to reduce researcher burden and improve the quality of data with the automated
collection of metadata, provenance, and annotations at scale. Machine-readable metadata,
provenance, and annotations with standards would dramatically increase the FAIR-ness of data
for Al and other analyses. The ability to automatically collect this information at scale so that
data and metadata are “born digital” (rather than imported from paper copies) can reduce the
burden on researchers and improve the quality of this information. Automated collection of
metadata, provenance, and annotations are needed because the scale (volume and velocity) of
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data often outstretch human capabilities and Al, in turn, is introducing autonomous decisions
and transformations into science workflows.

Acquisition, curation, and storage of data frequently are the dominant bottlenecks for reusing
science data for Al. Data producers encounter an array of challenges, including decisions
regarding which data to acquire, which data to save, how to record metadata, and how to
preserve provenance of the data pipeline. These are particularly challenging problem areas
because science datasets tend to be very large (and so require specialized acquisition, storage,
and access technologies), complex (and may not fit in many popular tabular formats), and highly
distributed (many different labs and principal investigators [PIs] may contribute data relevant to
any given scientific question). Data management is further complicated by the need for
appropriate long-term retention policies (i.e., some datasets may be truly irreplaceable but
expensive to store in full) and for access policies that can support a wide variety of users with
the appropriate level of security for the storage facility. With an end goal of creating FAIR data
at scale, there is a need for “smart” data collection and processing infrastructure that can
automate the entire data pipeline with on-the-fly compression, cleaning, alignment, and
annotation.

The need for automated data pipelines starts during acquisition itself. High-fidelity simulations
and high-velocity experiments produce extreme quantities of data, straining retention policies
and requiring in situ data analysis with irreversible compression or rejection. For the most
extreme cases, ML algorithms are needed at the edge, i.e., at the sensor or simulation node
itself. In situ analysis also can guide science “in the loop,” adapting experiments to measure the
highest value parameters or choosing (and even recommending) to run the most critical
simulations. Finally, data acquisition should be designed with ML applications in mind. For
instance, multimodal measurements should be captured at the detector and labeled with time
stamps to permit correlation analyses. As data rates grow, automation-for-Al and Al-driven
automation will become intrinsic to the data collection process.

To preserve the dataset’s value after acquisition, producers should record detailed metadata of
methods, conditions, and manipulations. Complete metadata enables analysis by subsequent
data consumers who did not participate in the acquisition. Metadata should capture details of
compression or rejection during acquisition (which might bias data), data processing
(backgrounds, noise, systematics), and experimental or computational parameters. Where ML
models are used in the data pipeline (e.g., denoising), the models themselves should be
captured as metadata. A detailed history of sample preparation empowers data reuse and
enables applications in Al algorithm development.

Even after a dataset is recorded or published, user interaction has value to downstream data
consumers. At present, no framework is widely accepted for capturing usage as metadata.
Opportunities here include recording annotations of the data acquisition (e.g., logbooks), data
“likes” from previous analysis (i.e., popularity of subsets of the data in prior analysis), statistics
of data interactions, and archiving of ML models used throughout the analysis. Today, human-
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data interface typically is one way, displaying data for the user. An opportunity exists in the
other direction by capturing the users’ interactions in the dataset.

Part of the challenge for data provenance is cultural with a need to incentivize data producers to
maintain value for unrelated data consumers (e.g., through data citations). Automation also can
play a role in promoting FAIR data by lowering barriers to capturing provenance, metadata, and
annotations.

SC-supported research communities are producing science data at ever-increasing rates.
Information, data, and metadata that are born digital can help minimize human effort needed to
make data FAIR. For instance, each photo taken with an iPhone has certain associated
metadata: GPS, time of day, phone model, user account, resolution—more than 460 tags.
These tags make it possible to determine whether or not an image has been altered (reusable),
if the format is compatible with other devices (interoperable), and also power many of the image
recognition algorithms. This is all made possible because individuals do not need to enter these
tags manually: they are automatically captured by the device. The roundtable participants
envisioned something analogous for science sample collection that captures GPS, date/time, PI,
and other data that could be automatically assigned when the samples are logged. Today,
automatic tagging with a desired level of flexibility for Al is unavailable in a large class of
machines. While large detector complexes (such as in high energy physics and nuclear physics)
collect elaborate metadata, directing this toward Al purposes is a required capability. Data
scientists and domain scientists can and will re-annotate and re-tag data with new information to
improve their discovery pipelines, but the initial context provided by data that are born digital
accelerates this process. The provenance and lineage of the data also become a part of the
additional information associated with the metadata for a dataset, facilitating reusability,
verification and validation, and trust.

2.3.3 Scalable human interfaces for data

Researchers need enhanced capabilities for extracting information from data through scalable
human interfaces for data. Tools and frameworks are needed to help data users find,
understand, and reuse data. There is an opportunity to go beyond keyword searches and hit
lists to visual interfaces for data and their relationships so that missing information or
corroborations among research findings can be easily identified. This interface should consider
other research products, including models, code, and publications. There is an opportunity to
search and discover data based on new attributes important to Al research, which may not be
captured by current metadata standards that address discipline domain, source, author, etc., or
for the interface to suggest new directions of inquiry or new datasets to explore.

Data standards are critical to enabling interoperability among data and to facilitate the interface
envisioned here. Standards, however, must be designed carefully to avoid inhibiting systems by

narrowly building to a limited set of syntax (formats) or semantics.

As the amount of available data continues to grow, scalable technologies to find and retrieve
datasets will revolutionize Al and allow scientists to harness the Al innovations to apply to the
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datasets in their field. Exposing preexisting datasets into this interface will require revisiting,
scanning, and re-annotating data, especially those datasets not born digital. Formatting and
structuring such datasets in an automatic manner, albeit with human oversight, remain a
continuing challenge.

Once relationships among datasets are established, there is an additional challenge in creating
useful human interfaces and recommender systems. Such developments would benefit from a
deeper understanding of how research communities interact with data and reason about the
information they contain.

2.3.4 Strategic approaches to managing data management costs and resources

As data volumes increase, strategic approaches to managing cost and resources with respect to
storage, data preparation, and curation are needed. These will depend on evaluating potential
impact from data as a way to guide investments and support for curation and preservation, as
well as exploiting new technologies and economies of scale, particularly with respect to storage.
Although the cost of data storage has decreased rapidly over the past two decades, it has been
outpaced by the demand for storage due to the growth of science data. This will force the
science community to come up with judicious cost models and approaches to provide scalable
storage and associated data handling capabilities for data for Al.

An important driver of investments will be the evaluation of the utility of the datasets. Valuable
datasets, such as those collected from non-replicable experiments (e.g., observational
astronomy), will need to be stored in as pristine a manner as possible. On the other hand,
simulation-generated datasets may not be preserved if the cost of rerunning the simulation is
less than the cost of storing the dataset for the long term. These decisions and trade-offs will
need to span the data life cycle.

Quantifying the value of a dataset is an open research question. A sound methodology for
defining dataset quality is in its early stages and, ideally, requires an information-theoretic
understanding of how the collected data impacts Al model selection. Data value should include
principled ways of understanding what data are collected, what is worth retaining, and when it
can be reproduced or regenerated. The value may vary according to the domain use and the
particular models and tasks that employ the data. There are many potentially conflicting metrics
for value, including the potential cost to reproduce the data and frequency of use. Certain
datasets can appear poor in quality in isolation but prove invaluable when combined with other
datasets. The value of a dataset also may grow in the future as new analysis methods or related
datasets emerge.

Assessing the value of datasets will necessarily foster questions of ownership and
responsibility. There is an opportunity for the DOE SC to engage scientific communities in
discussions concerning these issues. Guidance from SC, informed by these discussions, would
help to reduce ambiguities around roles and responsibilities for data retention and curation.
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3. About the Roundtable

This one-day roundtable included 35 experts from 12 DOE national labs, NIH, and NSF.
Participants had wide-ranging expertise in areas such as Al/ML, data management, data
curation, metadata, library sciences, storage systems and 1/O, open data, big data, and edge
computing. These experts represented mission drivers across the six DOE SC programs and
OSTI with ties to Office of Science-supported research activities, science user facilities, and
community data repositories.

The discussions proceeded in four phases, indicated in the agenda (Figure 4). During the first
part of the morning, participants presented lightning talks on using research data for Al/ML in
science. Presenters were encouraged to share “success stories,” as well as “frustration stories.”
Before and after lunch, there were parallel breakout sessions. The sessions before lunch had
predetermined themes around the idea of making data FAIR (Findable, Accessible,
Interoperable, Reusable)? for Al. The afternoon breakouts focused on topics that emerged from
the morning sessions: Storage and Data Placement at all Scales, the Role of the Data Scientist,
Metadata, and Making Data and Models FAIR Together. Finally, the day concluded with plenary
readouts from the breakout sessions and a discussion about what was learned, potential
synergies among the ideas presented, and potential gaps. Common cross-cutting themes that
emerged included: Interoperability of Data from Different Facilities/Data Sources, the Need to
Better Understand the Data Landscape, and the Need to Understand and Assess the Value of
Data.

Discussions in the breakouts and final plenary session were highly interactive. Participants were
encouraged to form small groups for brainstorming and exploring ideas in depth. The breakouts
had facilitators who set expectations, guided conversations, and kept the participants on
schedule. The discussions were mediated with the help of sticky notes, white boards, flip charts,
and digital media. Organizers and scribes took care to record all of the conversation artifacts.

After the roundtable, a writing team of six experts from across the DOE SC labs synthesized the
materials collected through the day into the findings and framework presented in this report. A
summary of these findings was first presented at a meeting of the Advanced Scientific
Computing Advisory Committee on September 23, 2019.%*

20 Wilkinson MD et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci
Data. 2016;3:160018 DOI: 10.1038/sdata.2016.18

21 Presentation slides from the September, 2019 ASCAC meeting can be found here:
https://science.osti.gov/ascr/ascac/Meetings/201909
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08:30 AM DOE Introduction/Welcome

08:45 AM Lightening Talks:
Examples where Al and DOE research data have impact.
Examples where data challenges inhibit progress in Al

10:00 AM Break. Refreshments will be provided.

10:30 AM Plenary: Background and Expectations

11:00 AM Breakout Discussions (2 groups) Topics A, B
Topic A: Findability and Accessibility (Potomac Room)
Topic B: Interoperability and Reusability (Frederick Room)

12:30 PM Working Lunch. Lunch will be provided.

1:30 PM Breakout Discussions (2 groups) Topics C, D
Topic C: to be determined by participants during lunch (Potomac
Room)
Topic D: to be determined by participants during lunch (Frederick
Room)

3:00 PM Break. Refreshments will be provided.

3:30 PM Plenary: Breakout Discussion read-outs

4:15 PM Wrap-up: Identification of key thernes from the day

05:00 PM Adjourn

[ Topic A: Findable & Accessible data for Al ]

[ Topic B: Interoperable & Reusable data for Al ]

Topic C1: Storage and Data Placement at all
scales

Topic C2: Data Scientists

Topic D1: Metadata

Topic D2: Data and Models: FAIR together

Xcutl: Interoperability of data from different
facilities / data sources

Xcut2: Better understanding of the data
landscape

Xcut3: Value of Data

Figure 4:

4. Conclusions

Office of Science Roundtable on Data for Al Agenda

The fundamental finding of this roundtable is that there are opportunities to advance Al R&D
and increase the benefit of Al to science by improving the reusability of science data and Al
models and through the development of methodologies and services to integrate Al seamlessly
and routinely into science workflows. The roundtable participants identified three priority

opportunities for data to advance Al in science:

1) Influence the development of Al tools by democratizing access to benchmark science

data

2) Make Al operational in science with composable services for simulation, data analysis,

and Al at all scales

3) Address open questions in Al with frameworks for relating data, models, and tasks.

These opportunities are presented in a broader context of open research challenges in Al and
prerequisite, enabling capabilities in data science and data management.
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5. Appendix A: Glossary

Al

Al model

Al task

Al tools

Active learning

AutoML

Composable

Data for Al

DL
Lifelong learning

ML
Ontology

Transfer learning

Artificial Intelligence. In this report, we consider Al to be inclusive of
machine learning (ML), deep learning (DL), neural networks (NN),
computer vision, and natural language processing (NLP).

An Al model is an inference method that can be used to perform a “task,”
such as prediction, diagnosis, classification, etc. The model is developed
using training data or other knowledge.

The inference activity performed by an artificially intelligent system.

Al tools, such as PyTorch and TensorFlow, used to build and deploy Al
applications.

A research field focused on data-efficient machine learning algorithms
that are able to query the dataset or data source for new training
samples.

Stands for automated machine learning, not to be confused with a Google
toolkit with the same name. It also is the process of automatically finding
the model and model hyperparameters that best describe a particular
training dataset.

Composable services are created from interoperable modular
components that can be assembled flexibly into multiple well-defined
functional and usable tools or capabilities.

The digital artifacts used to generate Al models and/or used in
combination with Al models during inference.

Deep Learning

Also continuous learning. A strategy for dealing with a well-known
shortcoming of artificial neural network approaches, namely catastrophic
forgetting, where the model’'s performance degrades on previously
learned tasks as new tasks are introduced.

Machine Learning

The models of knowledge and associated definitions and relationships
among terms or categories that are essential for interoperability among
datasets.

The act of using pre-trained models for tasks/data other than what the
models were originally designed for.
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