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Modern Approaches in the Material
Point Method

Christopher Long, LANL T-3
Georgios Moutsanidis, Brown University
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* PART I -

— Introduction to the fundamentals of MPM

— Brief history of how it has historically been used, and the primary
complications that it presents

— Brief discussion of DDMP/GIMP/CPDI
e PART II

— An Intro to Isogeometric Analysis

- The usage of IGA and MPM together to solve the crossing noise problem

— The usage of a single velocity field to model fracture and multi-body
interactions



Part |
A brief MPM overview



 The Material Point Method is a hybrid Lagrangian/Eulerian
scheme

- Advantages are that it can model extreme deformations without
remeshing or entanglement

- Disadvantages are that accuracy is hard to guarantee, and there are a
few pathological issues

* The MPM is an advanced type of Particle in Cell (PIC) method,
the essentials of which were first proposed by Frank Harlow in
1955

- Harlow, F. H. (1955). “A Machine Calculation Method for Hydrodynamic
Problems,” Los Alamos Scientific Laboratory, LAMS-1956, 94p, New
Mexico.



* Particle in Cell methods have a Lagrangian particle and an
Eulerian grid

* Particle data and grid data are exchanged by interpolatory
schemes and the physics are solved on the Eulerian grid.
The particles are used to model convection.

* The particle does not hold any material state data, as all
parameters are overwritten at each time step with values

from the grid



* The Fluid Implicit Particle Method (FLIP) was introduced in
1986 by Jerry Brackbill as a means to reduce the overly
diffusive solutions inherent to PIC methods.

- Brackbill, J.U. and Ruppel, H.M., 1986. FLIP: A method for

adaptively zoned, particle-in-cell calculations of fluid flows in two
dimensions. Journal of Computational physics, 65(2), pp.314-343.

* Introduces the concept of state variables residing primarily
on the particles rather than the grid.

e Particle receives updates on velocity from the grid, but no
data is overwritten.



* Sulsky, et al, developed the classic formulation of the
Material Point Method in 1994

* Sulsky, D.; Chen, Z.; Schreyer, H. L. (1994). "A particle method for
history-dependent materials”. Computer Methods in Applied
Mechanics and Engineering. 118 (1): 179-196.

* The key innovation is the introduction of finite element
shape function on the grid to perform data interpolation
and integration to and from the grid/particle.

- Previous methods had used cloud in cell or other earest grid
point type schemes



* Popular in computer animation and video game graphics
- Fast and can perform large deformations

Gaume, J., Gast, T., Teran, J., van Herwijnen, A. and Jiang, C., 2018. Dynamic anticrack
propagation in snow. Nature communications, 9(1), p.3047.
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S.G. Bardenhagen, E.M. Kober, The generalized interpolation material point method, Comput. Model.
Eng. Sci. 5 (6) (2004) 477-495.
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Generalized interpolation material point (GIMP) method

(S.G. Bardenhagen, E.M. Kober, 2004, Comput. Model. Eng. Sci. 5 (6), 477-495.) &
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Dual domain material point (DDMP) method

(Zhang et al., 2011, JCP, 230, 6379-6398.) A
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Sadeghirad, A., Brannon, RM and Burghardt, J., 2011. A convected particle domain
interpolation technique to extend applicability of the material point method for problems
involving massive deformations. [IUINME 86(12), pp.1435-1456.



CartaBlanca MPM code used for modeling

Capable of running in thread-parallel and
distributed-parallel modes

Uses Material Point Method (MPM), an advanced
Particle-in-Cell Method

Multiphase Flow Framework

Capable of strongly coupled Fluid-Structure
Interaction simulations

Well-suited for fracture problems and large
material deformations

 Based off a Particle-in-Cell method

« Stationary grid is seeded with Lagrangian ‘particles’
which can move freely in and out of cells

* Grid quantities are advected, and particles move during
F.H. Harlow, Methods Comput. time step (flow between cells)

Phys. 3 (1964) 319. - Grid ‘snaps’ back to original configuration during
update




Part |l
Isogeometric Analysis, MPM, and the multi-body
problem



What Is IGA, and why do we care?

* |It's easler to understand than most people think

* Analysis fundamentally follows a finite element framework

- Traditional FEA can be thought of as a special case of first-order
IGA

* |GA has many advantages (and a few disadvantages) over
FEA

- C2 continuity of shape functions gives very smooth solution space

- Complex geometry can be represented exactly (machine error
only)



|GA concepts

* The mesh is constructed secondarily from the shape
functions we create specifically to create it. |.E., we define
the shape functions first, and the mesh and analysis
capabillities both follow

* We define the number of shape functions and their
behavior from a few “control points” and a recursion
formula



Control Points and “knot” vectors

We define a “knot vector” which includes the locations of the
“knots”, which can be thought of as mesh boundaries.

= :-{613 52: R éﬂ%—ﬁ—l—l}

* ‘n’is the number of basis functions used to define the geometry,
and ‘p’ is the desired polynomial order

* The vector must be non-decreasing, but can use repeated
Indices and may be non-uniform.

* The values correspond to the location of eventual element
boundaries in 1-D



Control Points and “knot” vectors

* |n 2 or more dimensions, we require ‘d’ knot vectors in an
orthonormal framework.
e We use the Cox-de-Boor recursion formula to then define
the shape functions as follows:
1 lf éigé‘:‘:éiﬁ—h

N; — .
o(¢) {0 otherwise.

Nip(8) = =S Nip 1(&) 4+ =22 S N ()

— |
éi+p — gi ii+p+l — éi+l



1-D example

* This formula guarantees a partition of unity everywhere in
the domain.

==1{0,0,0,1,2,3,4,4,5,5,5}

Ig N. N N,




Transformations to represent
conical geometries in multi-D

* If no other adjustments are made, we may think of the
‘mesh’ generated by the previous constructions in multi-d
as a rectilinear grid, with each ‘knot’ representing a
point/line/plane for 1/2/3-D, respectively. Intersections are
referred to as “knots”, and the “control points” may be
considered as nodal points in traditional FEA.

e But this does not have to be the case....




Transformations to represent

conical geometries

* We can transform our mesh using a series of weights on
each shape function as follows to define a shape:

Ni 1
R =gt

W(&) = ) Nip(&w,

(o)=Y R (B,



Multi-D transformations

* Due to the nature of their construction, we can extend to
multi dimensional analogs straightforwardly, and define
new shape functions for surfaces and volumes:

Nip(S)M;q(m)wij

R?,'q éﬁ — n m 9
! (&) Zi’:lZj:lNi,p(@Mj,q(’?)Wi’j

r Ni M; Lcr Wik
RPAT(E,1,0) = p ()M q(1) L (O)Wi)

> i j‘n; Z;’&:1N%,p(f)Mj,q(W)Ll},r(z:)wi’j,l%



A 1-D example

* Notice that control point 2 does not lie B,
on our arc

* The location of a control point and the
location of the constructed mesh
where analysis takes place are not
generally the same, unless all
weights are equal

e Control points can often be outside of
the resulting “element”

W1=W3=1

w, = c0s(0/2)




3-D Example

* The control mesh is analogous
to the mesh used for FEA. We
can see on the left that the
control mesh and the modeled
object are radically different.

* Different sections of the resulting
object are created uniquely and
glued together in a process
called ‘patching’




|GA- some practical issues

* Creating a complex mesh is hard to do by hand. However,
CAD software generally uses NURBS or T-Splines to
render, and so suitable domains for analysis may be
created graphically.

* Meshing an area based on a rendered CAD volume has
been a standard practice for years, however, the meshing
step can be difficult, time consuming, and complex. IGA
negates the necessity to mesh entirely, as the same
functions used by CAD software to render the object can
simultaneously be used for analysis!




IGA used In Lagrangian Hydro

* “Coggeshall” problem
(1 9/4
p (lgzt) 5 = (1- bR
e:(g(l_t))  z=(1-d1/42
N _—(A=H)RrR - o R L
TRy Taowy o o
—(1-nrz —(-nrz 2
v 4 TG T R,
P p Uy Vs
3GP, At  7.205E-004 8.801E-005 1.676E-006 6.187E-005

4GP, At/2 8.630E-007 2.697E-007 3.616E-009 5.003E-008
5GP, At/4 5.447E-008 3.520E-008 9.118E-010 3.548E-010

(c)



Sedov Blast
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Noh on a TERRIBLE mesh
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Noh, cont’d

Symmetric Error vs. Time (R=0)

* Poor gauss
Integration is the ;
sole source of
numerical error!

i i i i i
0 0.1 0.2 03 0.4 05 0.6
Time(sec)



Discussion on MPM and IGA

* We theorize that Gauss integration is not necessary for
traditional IGA, and that 2nd order accuracy can be attained
using far fewer integration points than Gl requires.

* The derivatives of the shape functions are continuous, and

thus the “crossing” instability is eliminated at a fundamental
level

* For cylindrical problems, this has the potential to reduce mesh
Imprinting on the solution due to the fact that the shape
functions respect the radial nature of the problem

« Stencil is still compact!



MPM and IGA

 Carta Blanca has been modified to use NURBS functions
as basis functions

* For arectilinear grid with no transformations, this is simply
a matter of replacing the shape functions used and grid
structure.

* For more complex geometries where the control mesh and
‘physical’ mesh are different, we will be required to
transform the particles as well.
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* Because particle information is integrated to the Eulerian
grid, damage from a crack has to be at least one grid cell
thick to naturally partition (2 grid cells in the case of
DDMP)

* Two bodies sharing a velocity field will artificially "weld’
upon contact
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* This effect is due to the fact that the particles in a single
sphere are all initialized as the same material, and are
Integrated as a unified field of velocity, stress, etc.

* Solution Is to create an algorithmic “crack/surface finder®,
which will both identify subgridscale cracks based on the
damage field, and determine their orientation

- Michael Homel at LLNL recently published an algorithm to do
this within an MPM framework utilizing multiple velocity fields

- We believe we can do this within a single velocity field.



* We assign each particle its own shape functions, using
SPH or RKPM

- We currently use SPH, as it gives more consistent normals near
object boundaries

— For brittle problems, neighbors don‘t change very frequently

- The general MPM or DDMP algorithm is unaltered, the specialty
shape functions are solely used to integrate the damage field,

as well as the gradient of the damage field.
e o L L L




* Use both traditional Damage field as well as a new field
called interface’. Interface particles are normal particles,
but are on the surface of an object. This parameter gets
used for determining crack position, but not in determining
strength of a material.




> —€mresn = particle p and node g are on the same side of [

W(Kp) : W(y‘g)

< —€mresn = particle p and node g are on opposite sides of [

/ [1, particle p is located on the boundary of the solid
p =

0, particle p is located in the interior of the solid

_ __ > —€nesh = particle p and node g are located in the same body
VIx,)-Vily)s ™

< —€mresy = particle p and node g are located in different bodies

D, = max(d,, ,)



* Determine if particle is on or near a crack. If not, use traditional MPM/DDMP
— Check for both magnitude of particle damage and magnitude of damage gradient field

_ _ > —€mresn = particle p and node g are on the same side of 'y
Vd(x,) - Vd(y,) | o
< —€presn = particle p and node g are on opposite sides of I',0

* If node and particle are on opposite sides of a crack, we alter the shape functions
accordingly.

NjX,%X’@iZ_ res
N (x) = (%) (%) (¥i) = —€mnresh

0, otherwise

N () < |V (VD) VDD 2 ~ess ¥ 01(X) < 0
| 0, otherwise



* We rescale the modified shape functions to retain a
partition of unity:

Nix) = <
L Mnode *
> N(x)
* Shape function gradients can then be computed as
follows: o (%, N%) VN; = N; (2, VNY)
Ni — 5
(2,M)

Z(Vﬁf):v[Zﬁi] =V1=0
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This works well for pre-prescribed cracks and appears to
work for multiple bodies interacting

We are currently working on our ability to dynamically grow a
crack in a material using this method

This feature is currently only available for an MPM approach,
and we are working on the DDMP extension

Has advantage of being able to simulate the intersection of
several cracks without having to use mutliple velocly fields.



