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Outline

● PART I - 
– Introduction to the fundamentals of MPM
– Brief history of how it has historically been used, and the primary 

complications that it presents
– Brief discussion of DDMP/GIMP/CPDI

● PART II
– An Intro to Isogeometric Analysis
– The usage of IGA and MPM together to solve the crossing noise problem
– The usage of a single velocity field to model fracture and multi-body 

interactions



  

Part I
A brief MPM overview



  

What is MPM?

● The Material Point Method is a hybrid Lagrangian/Eulerian 
scheme
– Advantages are that it can model extreme deformations without 

remeshing or entanglement
– Disadvantages are that accuracy is hard to guarantee, and there are a 

few pathological issues
● The MPM is an advanced type of Particle in Cell (PIC) method, 

the essentials of which were first proposed by Frank Harlow in 
1955 
– Harlow, F. H. (1955). “A Machine Calculation Method for Hydrodynamic 

Problems,” Los Alamos Scientific Laboratory, LAMS-1956, 94p, New 
Mexico.  



  

PIC

● Particle in Cell methods have a Lagrangian particle and an 
Eulerian grid

● Particle data and grid data are exchanged by interpolatory 
schemes and the physics are solved on the Eulerian grid.  
The particles are used to model convection.

● The particle does not hold any material state data, as all 
parameters are overwritten at each time step with values 
from the grid



  

FLIP

● The Fluid Implicit Particle Method (FLIP) was introduced in 
1986 by Jerry Brackbill as a means to reduce the overly 
diffusive solutions inherent to PIC methods.
– Brackbill, J.U. and Ruppel, H.M., 1986. FLIP: A method for 

adaptively zoned, particle-in-cell calculations of fluid flows in two 
dimensions. Journal of Computational physics, 65(2), pp.314-343.

● Introduces the concept of state variables residing primarily 
on the particles rather than the grid.

● Particle receives updates on velocity from the grid, but no 
data is overwritten.



  

MPM

● Sulsky, et al, developed the classic formulation of the 
Material Point Method in 1994 

● Sulsky, D.; Chen, Z.; Schreyer, H. L. (1994). "A particle method for 
history-dependent materials". Computer Methods in Applied 
Mechanics and Engineering. 118 (1): 179–196.

● The key innovation is the introduction of finite element 
shape function on the grid to perform data interpolation 
and integration to and from the grid/particle.
– Previous methods had used cloud in cell or other earest grid 

point type schemes



  

Uses of MPM

● Popular in computer animation and video game graphics
– Fast and can perform large deformations

Gaume, J., Gast, T., Teran, J., van Herwijnen, A. and Jiang, C., 2018. Dynamic anticrack 
propagation in snow. Nature communications, 9(1), p.3047.



  

Large Deformations



  

Pulverizations



  

Crossing Noise Problem



  

GIMP, DDMP



  

CPDI

● Also 
modifies the 
underlying 
basis 
functions

● Retains 
linear  
completene
ss

Sadeghirad, A., Brannon, R.M. and Burghardt, J., 2011. A convected particle domain 
interpolation technique to extend applicability of the material point method for problems 

involving massive deformations. IJNME 86(12), pp.1435-1456.
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Capable of running in thread-parallel and 
distributed-parallel modes
Uses Material Point Method (MPM), an advanced 
Particle-in-Cell Method

Multiphase Flow Framework

Capable of strongly coupled Fluid-Structure 
Interaction simulations

Well-suited for fracture problems and large 
material deformations

CartaBlanca MPM code used for modeling

F.H. Harlow, Methods Comput. 
Phys. 3 (1964) 319.

• Based off a Particle-in-Cell method
• Stationary grid is seeded with Lagrangian ‘particles’ 

which can move freely in and out of cells
• Grid quantities are advected, and particles move during 

time step (flow between cells)
• Grid ‘snaps’ back to original configuration during 

update



  

Part II
Isogeometric Analysis, MPM, and the multi-body 

problem



  

What is IGA, and why do we care?

● It’s easier to understand than most people think
● Analysis fundamentally follows a finite element framework

– Traditional FEA can be thought of as a special case of first-order 
IGA

● IGA has many advantages (and a few disadvantages) over 
FEA
– C2 continuity of shape functions gives very smooth solution space
– Complex geometry can be represented exactly (machine error 

only)



  

IGA concepts

● The mesh is constructed secondarily from the shape 
functions we create specifically to create it.  I.E., we define 
the shape functions first, and the mesh and analysis 
capabilities both follow

● We define the number of shape functions and their 
behavior from a few “control points” and a recursion 
formula



  

Control Points and “knot” vectors

● We define a “knot vector” which includes the locations of the 
“knots”, which can be thought of as mesh boundaries.

● ‘n’ is the number of basis functions used to define the geometry, 
and ‘p’ is the desired polynomial order

● The vector must be non-decreasing, but can use repeated 
indices and may be non-uniform.

● The values correspond to the location of eventual element 
boundaries in 1-D



  

Control Points and “knot” vectors

● In 2 or more dimensions, we require ‘d’ knot vectors in an 
orthonormal framework.

● We use the Cox-de-Boor recursion formula to then define 
the shape functions as follows:



  

1-D example

● This formula guarantees a partition of unity everywhere in 
the domain.  



  

Transformations to represent 
conical geometries in multi-D
● If no other adjustments are made, we may think of the 

‘mesh’ generated by the previous constructions in multi-d 
as a rectilinear grid, with each ‘knot’ representing a 
point/line/plane for 1/2/3-D, respectively.  Intersections are 
referred to as “knots”, and the “control points” may be 
considered as nodal points in traditional FEA.  

● But this does not have to be the case….



  

Transformations to represent 
conical geometries
● We can transform our mesh using a series of weights on 

each shape function as follows to define a shape:



  

Multi-D transformations

● Due to the nature of their construction, we can extend to 
multi dimensional analogs straightforwardly, and define 
new shape functions for surfaces and volumes:



  

A 1-D example

● Notice that control point 2 does not lie 
on our arc

● The location of a control point and the 
location of the constructed mesh 
where analysis takes place are not 
generally the same, unless all 
weights are equal

● Control points can often be outside of 
the resulting “element”



  

3-D Example

● The control mesh is analogous 
to the mesh used for FEA.  We 
can see on the left that the 
control mesh and the modeled 
object are radically different.

● Different sections of the resulting 
object are created uniquely and 
glued together in a process 
called ‘patching’



  

IGA- some practical issues

● Creating a complex mesh is hard to do by hand.  However, 
CAD software generally uses NURBS or T-Splines to 
render, and so suitable domains for analysis may be 
created graphically.

● Meshing an area based on a rendered CAD volume has 
been a standard practice for years, however, the meshing 
step can be difficult, time consuming, and complex.  IGA 
negates the necessity to mesh entirely, as the same 
functions used by CAD software to render the object can 
simultaneously be used for analysis!



  

IGA used in Lagrangian Hydro

● “Coggeshall” problem

r = (1 − t)R,
z = (1 − t)1/4 Z,



  

Sedov Blast



  

Noh on a TERRIBLE mesh



  

Noh, cont’d

● Poor gauss 
integration is the 
sole source of 
numerical error!



  

Discussion on MPM and IGA

● We theorize that Gauss integration is not necessary for 
traditional IGA, and that 2nd order accuracy can be attained 
using far fewer integration points than GI requires.

● The derivatives of the shape functions are continuous, and 
thus the “crossing” instability is eliminated at a fundamental 
level

● For cylindrical problems, this has the potential to reduce mesh 
imprinting on the solution due to the fact that the shape 
functions respect the radial nature of the problem

● Stencil is still compact! 



  

MPM and IGA

● Carta Blanca has been modified to use NURBS functions 
as basis functions

● For a rectilinear grid with no transformations, this is simply 
a matter of replacing the shape functions used and grid 
structure.

● For more complex geometries where the control mesh and 
‘physical’ mesh are different, we will be required to 
transform the particles as well. 



  



  

MPM crack and multi-body 
problem
● Because particle information is integrated to the Eulerian 

grid, damage from a crack has to be at least one grid cell 
thick to naturally partition (2 grid cells in the case of 
DDMP)

● Two bodies sharing a velocity field will artificially `weld‘ 
upon contact



  

MPM Crack Thickness



  

Load to Failure



  

MPM crack problem

● This effect is due to the fact that the particles in a single 
sphere are all initialized as the same material, and are 
integrated as a unified field of velocity, stress, etc.

● Solution is to create an algorithmic “crack/surface finder“, 
which will both identify subgridscale cracks based on the 
damage field, and determine their orientation
– Michael Homel at LLNL recently published an algorithm to do 

this within an MPM framework utilizing multiple velocity fields
– We believe we can do this within a single velocity field.



  

Crack finder

● We assign each particle its own shape functions, using 
SPH or RKPM
– We currently use SPH, as it gives more consistent normals near 

object boundaries
– For brittle problems, neighbors don‘t change very frequently
– The general MPM or DDMP algorithm is unaltered, the specialty 

shape functions are solely used to integrate the damage field, 
as well as the gradient of the damage field.



  

Multi-Body Interactions

● Use both traditional Damage field as well as a new field 
called `interface‘.  Interface particles are normal particles, 
but are on the surface of an object.  This parameter gets 
used for determining crack position, but not in determining 
strength of a material.



  

Interface Particles



  

General Approach

● Determine if particle is on or near a crack.  If not, use traditional MPM/DDMP
– Check for both magnitude of particle damage and magnitude of damage gradient field

● If node and particle are on opposite sides of a crack, we alter the shape functions 
accordingly.



  

Approach, cont‘d

● We rescale the modified shape functions to retain a 
partition of unity:

● Shape function gradients can then be computed as 
follows:



  

Shape functions



  

Shape functions



  

Examples



  



  

Rotating example



  

3D example



  

Conclusions/Ongoing work

● This works well for pre-prescribed cracks and appears to 
work for multiple bodies interacting

● We are currently working on our ability to dynamically grow a 
crack in a material using this method

● This feature is currently only available for an MPM approach, 
and we are working on the DDMP extension

● Has advantage of being able to simulate the intersection of 
several cracks without having to use mutliple velociy fields.


