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1. Executive Summary
Emerging HPC systems are expected to be deployed with an unprecedented level of complexity, due to a 
deep system memory/storage hierarchy and heterogeneity of the storage hardware. This hierarchy is 
expected to range from CPU cache through several levels of volatile memory to nonvolatile memory, 
traditional hard disks, and tape. Simple and efficient methods of data management and movement through 
this hierarchy is critical for scientific applications using exascale systems. Existing storage system and I/O 
(SSIO) technologies face severe challenges in dealing with these requirements. POSIX and MPI I/O 
standards that are the basis for existing I/O libraries and parallel file systems present fundamental 
challenges in the areas of scalable metadata operations, semantics-based data movement performance 
tuning, asynchronous operation, and support for scalable consistency of distributed operations. 

Moving toward new paradigms for SSIO in the extreme-scale era, we have proposed to investigate novel 
object-based data abstractions and storage mechanisms that take advantage of the deep storage hierarchy 
and enable proactive automated performance tuning. In order to achieve these overarching goals, we 
initiated an effort to develop a fundamental new data abstraction, called Proactive Data Containers (PDC). 
A PDC is a container within a locus of storage (memory, NVRAM, disk, etc.) that stores science data in an 
object-centric manner. Managing data as objects enables powerful optimization opportunities for data 
movement and transformations. The R&D focus of this project are: 1) formulation of object-oriented PDCs 
and their mapping in different levels of the exascale storage hierarchy; 2) efficient strategies for moving 
data in deep storage hierarchies using PDCs; 3) techniques for transforming and reorganizing data based 
on application requirements; and 4) novel analysis paradigms for enabling data transformations and user-
defined analysis on data in PDCs.  

Toward achieving these overarching goals, we designed an object-centric application programing interface 
(API) for HPC, scalable metadata 
management for object-centric 
storage systems, and data movement 
optimizations such as Data Elevator 
for moving data between two levels of 
storage devices and TAPIOCA for 
efficient aggregation of data on 
compute nodes. We then 
implemented several components of 
the PDC system. They include 
metadata management, data 
placement services, remote 
procedure calls, data aggregation, 
etc. We have put them together into 



the overall PDC framework. In the past year, we have worked on optimizing the PDC framework, API, 
unifying multiple heterogeneous storage layers, caching and prefetching, and interfacing the HDF5 with 
PDC. The following is a list of brief descriptions of the components developed in the past year.  

1. Implemented an object-centric data management API for the PDC system that allows applications
to map and unmap memory data objects to storage data objects. When a memory object is
unmapped PDC asynchronously moves the data to and from the storage devices transparently and
achieves up to 65% performance improvement compared to HDF5. PDC approach can overlap the
I/O latency with computation cost between subsequent time steps.

2. In order to make the PDC object storage model available to a large number of applications without
requiring existing applications to change their I/O interface, we have developed a method for HDF5
applications. The HDF5 library provides the Virtual Object Layer (VOL) feature that allows a
connector to intercept the HDF5 API and redirect it to the PDC API. We have tested the PDC VOL
connector with a plasma physics application and a Big Data clustering application’s I/O, which
shows up to 4X performance improvement compared to a highly optimized HDF5 implementation.

3. In the presence of multi-layer and distributed storage devices, providing a unified view of storage
eases data placement and movement, which are currently performed manually by users. We
developed a strategy for providing a unified namespace, called UniviStor, that provides a unified
view of heterogeneous storage devices located on individual compute nodes, shared burst buffer,
and parallel file systems.

4. We developed a caching and prefetching strategy for array data that is stored in HDF5. The Array
Caching in storage Hierarchy (ARCHIE) observes the pattern of chunks of data being accessed
and prefetches them into hierarchical storage layers. We developed this technique as part of the
Data Elevator VOL connector that transparently intercepts HDF5 read calls and redirects to the
cached data chunks, achieving up to 6X performance advantage compared to an approach with no
caching. We will bring the prefetching strategy into the PDC framework in future.

5. HPC file systems have been moving towards relaxing POSIX constraints, using object-based
storage concepts. To understand the status of existing object-based storage systems, such as
Ceph RADOS, Intel DAOS, and OpenStack Swift, we have evaluated I/O performance using VPIC
(plasma physics) and BD-CATS (big data clustering) applications. Among all object stores we
evaluated, Intel DAOS has demonstrated outstanding performance by leveraging next generation
NVMe/SCM technologies

6. We have used the PDC API for reading and writing cosmology and plasma physics simulations
data, and for querying an astronomy observation datasets at a very large scale. In exercising the
PDC API in this process, we have implemented metadata and data caching optimizations, that
improved the PDC framework performance by multi-fold, depending on the available cache. We
will enhance this method further based on the prediction methods we developed in ARCHIE.

2. High-level Architecture of the PDC System
Current I/O standards, such as POSIX-IO and MPI-IO, present fundamental challenges in the areas of 
semantic-based data movement optimizations, asynchronous operations, scalable metadata operations, 
and scalable support for consistent distributed operations. Object-centric mechanisms have been proposed 
but the existing approaches have not yet been able to express data structures that can transcend through 
all the layers of the hierarchy. 



Figure 2. High-level architecture of the PDC system. Applications use the PDC API to create 
and manipulate (modify, move, access, delete) containers and objects. PDC servers 
manage metadata, move data container and objects, schedule analysis tasks, etc.  

We have designed Proactive Data Containers (PDCs) towards enabling efficient and scalable scientific data 
management for the upcoming exascale storage systems. PDC starts with moving away from the existing 
file-oriented approaches, and explores novel with object-centric data management approaches. A PDC is 
a container of objects, where the objects are managed by PDC services and are placed in any level of the 
storage hierarchy (i.e., NVRAM, disk, tape, etc.). We show that the containers consisting of scientific data 
in an object-centric manner in Figure 2, where each container is shown within a storage layer for simplicity. 
It provides efficient data movement operations in critical areas of the exascale data management software 
stack. Data transformations according to future use of the data and analysis may take place ‘pro-actively’ 
while the data is in the containers. In this paper, we focus mainly on the data I/O services, without the 
emphasis on proactive analysis.  

Our implementation of PDC adopts a client-server approach to monitor and manage I/O operations on 
objects. With this approach, PDC servers are able to asynchronously handle the I/O operations in the 
background, while the client application can proceed with their computation without waiting for I/O, 
exploiting compute and storage resource strengths of each location. Additionally, PDC allows applications 
to create containers and place objects at the various memory/storage locations along with defining the 
mappings and transformation. In the next sections, we will provide the details of PDC API (§ 3), HDF5 
interface to PDC (§ 4), Unified view of storage (§ 5), array caching using storage hierarchy (§ 6), an 
early evaluation of existing object-based storage technologies (§ 7), and evaluation of PDC at large-
scale (§ 8), and then discuss briefly the ongoing research activities (§ 9).  



3. Object-centric Data Management Interface

Motivation 
Scientific applications on upcoming HPC systems are facing challenges from three directions: extreme 
parallelism, a deepening heterogeneous memory hierarchy, and data that is massively increasing in 
volume and complexity. In particular, one of the challenges to address the diverse performance 
characteristics of deep memory hierarchies expected in exascale systems is the capability and efficiency 
of data movement across storage layers. Existing HPC data management and movement solutions, 
which were designed for simpler systems are no longer able to handle that level of complexity; similarly, 
scientific data models, which have been designed for 2-tiered storage hierarchies, need to be revised to 
embrace a more gradated storage hierarchy.   

Solution 
Moving toward an end-to-end, object-centric data abstraction and storage mechanism that takes 
advantage of deep storage hierarchies and enables proactive automated performance tuning, we have 
been investigating Proactive Data Containers (PDC) . A PDC is a container that may reside in a single 
storage location (i.e., memory, NVRAM, disk, etc.) or span across multiple levels, and stores data in an 
object-oriented manner. The PDC system provides an interface for creating, updating, retrieving, and 
deleting data objects and for managing metadata on those objects.  

The main abstractions of PDC are its data constructs and operations performed on the data constructs. 
As shown in Figure 3, the data constructs include Containers, Objects, and Regions, all of which can 
have different Properties. An Object is a generic term to describe byte streams in an abstract manner. 

Objects in PDC are globally visible, independently of their storage hierarchy. A Container is a 
collection of  Objects that share similar user defined attributes. PDC also uses the concept of Spatial 
Regions, which partition the problem domain into smaller sub-regions. Each region contains the actual 
data and associated metadata, and is the basic unit for data movement operation in PDC. All of this 
previously mentioned entities include properties, regarded as metadata.  

Figure 3. A mapping operation established between an 
application’s memory region and a PDC object region.  

Common I/O libraries have been providing so far explicit data movement operations through read and 
write functions. Here we introduce the concept of object mapping to make those calls implicit to the user 
by defining a map operation. Figure 4 shows four major steps to enable data movement by PDC without 
making any explicit data copy or transfer call. As the first step the client initiates a call to create an object 
by calling PDCobj_create(), the metadata server receives the RPC call and processes it. Then we 
introduce the important step (2) mapping mechanism and step (3) locking mechanism as following: 



Object Mapping Mechanism: As highlighted in Figure 3, the object mapping primitive allows a user to 
define a mapping between a region within an application’s memory and a region within a global PDC 
object. Mapping operations are defined on a per-region basis and can be thought of as a publish and 
subscribe mechanism, in the sense that once a mapping is established and a region is published, data 
movement can occur to keep updates globally visible. When defining a mapping, the application provides 
property information about the mapped region, which is essential for the PDC system to keep track of the 
mappings that are established and prevent potential overlaps. More complex mappings can be built upon 
this primitive such as object to object mapping, though we focus on the application memory to PDC object 
mapping exclusively.  

Consistency and Locking Mechanism: To keep data consistency between the application’s memory and 
the PDC object, we propose locking semantics for PDC objects (at the region granularity so that multiple 
regions of an object can be concurrently updated) and distinguish read locks from write locks. Assuming 
the mapping from memory to object has already been established, when a user has the intent to modify 

the application’s memory region, the object region write lock must be acquired before any 
memory write access can occur (or that access would be considered as undefined). After the write lock is 
acquired, further changes to the object data region is not allowed globally until the lock is released. Once 
the lock is released per user’s request, it effectively notifies the PDC system that it is now safe to move 
data between storage locations, and data movement will occur asynchronously if the memory region has 
been modified. Similarly in the case of read locks, the application expresses the intent of accessing the 
data and effectively prevents the PDC system from making any implicit update to the memory mapped 
buffers while they are being read.  

Figure 4. Four major steps to enable data movement by PDC 
without making any explicit data copy or transfer call.  

Results 
We use the Cori supercomputer at the National Energy Research Scientific Computing Center (NERSC), 
which is a Cray XC40 supercomputer with 1630 Intel Xeon Haswell nodes. Each node consists of 32 
cores and 128GB memory. The shared file system Lustre is HDD-based. There is also an SSD-based 
“Burst Buffer”, located between compute nodes and storage systems on Cori. 

With the shared mode, we have one PDC server on each node, which occupies one core leaving the 
remaining 31 cores for user application execution. In the dedicated mode, PDC servers and user’s 
application are on separate nodes. We configure Mercury with two communication protocols using the 
libfabric plugin over TCP and over Cray GNI. In the latter case, the PDC server was configured to use 
Cray DRC to allow the user’s application and PDC server to share credentials and communicate together. 



We used VPIC-IO to evaluate the PDC system’s performance, which is extracted from VPIC [34], a code 
developed for simulating several plasma physics phenomenon. In VPIC- IO, each MPI process writes a 
region of 8M (8 × 220 ) particles and each particle has 8 properties. Each reported time includes client and 
server communication time, data and metadata server communication time, metadata maintain time and 
data movement time, if any of these is involved. We only report the time by multithreading server 
execution.  

The overhead of PDCbuf_obj_map() and PDCreg_obtain_lock() are very low. Once a client initiates a 
lock release operation by calling PDCreg_release_lock(), the data server takes over the task and 
determines if data transfer is needed by going through the object region lock list. If so, the data server 
initiates a one-sided data transfer using remote memory access (RMA) by Mercury, which makes use of 
cross memory attach (CMA) for zero copy transfers when using shared-memory in shared mode, or 
makes use of native RDMA exposed by the system (e.g., uGNI over libfabric) in dedicated mode. The 
data server responds to the application lock request once it receives data from the client, and in the 
background asynchronously writes to lower storage tiers (i.e., burst buffer, file system). With two copies of 
results, data in data server is able to be quickly shared to other analysis or post processing tasks, such as 
in situ processing, while the copy in permanent storage allows the data to be recovered even if the 
application sees a fault for any reason. 

With the extra threads dealing with asynchronous transfer, lock release time is around 0.5s for the shared 

mode (Figures 5) and 0.6s for the dedicated mode (not presented) by hiding the actual data transfer time 

to lower storage, whereas the time is ≈2s to 2.5s without asynchronous I/O.  

            Figure 5. Time to release the lock for one object with share server. 

Object Lock Release with GNI: To enable faster communication and data transfer, we compare the lock 

release time using Cray GNI instead of TCP used in previous experiments, since libfabric with GNI is 

targeting multithreaded applications requiring concurrent access to Aries high speed network (Cori 

network), with minimal contention between threads. In Figure 6 we show that the performance of lock 

release for dedicated mode using GNI is ≈3s compared to 4.5s using TCP protocol to release all objects. 



Figure 6. Time to release the lock for all objects with dedicated server.

Figure 7. Time to move data from application memory 
to burst buffer by the user’s point of view.  

PDC Server Controlled Data Movement Performance Comparison: We compare the I/O performance of 
the new PDC mechanisms against HDF5 (with multiple optimizations [35]) for VPIC-IO and against our 
previous work of explicit I/O in PDC [1], by moving data from memory to a lower storage tier through 
Lustre (not presented) and burst buffer (Figure 7) from the view of application users. Each process writes 
256MB of data. We use PDC servers in shared mode since that was the configuration in our previous 
work. When using HDF5, data is written to the storage directly as a single file. From the users’ 
perspective, the performance of the new PDC server-managed method is improved by 65% and 49% on 
average compared to HDF5 writing directly to file system and burst buffer respectively, with asynchronous 
data movement. It also outperforms our previous client-explicit asynchronous I/O by 10% and 25% on 
average with respect to writing to file system and burst buffer.   

Next steps 
The next steps include enabling data transformation and analysis framework in PDC as well as making 
communication between servers topology aware.  

4. HDF5 interface for PDC

Motivation 
Object storage technologies that take advantage of multi-tier storage on HPC systems are emerging. 
However, to use these technologies, applications now have to be modified significantly from current I/O 
libraries. HDF5 has been widely used in the context of HPC and big data as an I/O middleware capable of 
supporting extreme scale and complex data structures. HDF5’s Virtual Object Layer (VOL) is a storage 
abstraction layer within the HDF5 library that is designed to target different storage mechanisms while 
preserving HDF5 objects metadata. The VOL design allows applications to connect to different storage 



mechanisms transparently without significant code modifications. By default, the HDF5 library uses its 
native file format when storing data and makes use of MPI-IO to perform parallel I/O, as shown in Figure 
8. While this has been a good choice for many years, it also carries on the burden of POSIX I/O
semantics and limits that are inherent to the existing native file format, which defines an HDF5 file as a 
file structure that is contiguously mapped to a file system. For instance, the native file format has a well- 
known limitation of requiring collective creation of new HDF5 objects, such that the file metadata is 
ensured to be coherent between processes.  

Solution
To provide that capability and give developers the ability to store the data in the form of their choice—
while preserving the metadata that is attached to the HDF5 objects—the HDF5 library defines a virtual 
object layer, which will be released in the upcoming 1.12 version of the library. The virtual object layer 
effectively allows developers to redefine the HDF5 I/O API calls (i.e., related to operations on files, 
groups, datasets, attributes, etc) by seamlessly re-routing them to the corresponding VOL connector 
backend, which can in turn translate these calls into the operations that it desires to perform.  

We recently designed the Proactive Data Containers object-centric storage system that provides the 
capabilities of transparent, asynchronous, and autonomous data movement taking advantage of multiple 
storage tiers—a decision that has so far been left upon the user on most current systems. To enable 
PDC’s features through HDF5 without modifying application codes, we have developed an HDF5 VOL 
connector that interfaces with PDC.  

Figure 8. PDC within Virtual Object Layer. All of the HDF5 I/O 
related calls are routed to the corresponding VOL connector. 

In the case of PDC and as shown in Figure 4, those operations translate into PDC calls, which in turn 
interact with the PDC runtime service and PDC storage backends. One of the main advantages of the 
PDC runtime is that it transparently and automatically provides new capabilities to HDF5 such as 
asynchronous I/O without requiring any major code change for the application user. One of the difficulties, 
however, is potentially for the VOL connector developer as the semantics that the underlying layer 
provides may not always be a direct match with the ones that the HDF5 virtual object layer requires.  

Our PDC VOL connector currently only implements a subset of the HDF5 API and in this paper we focus 
on file and dataset operations. HDF5 files can be easily mapped to PDC containers, while HDF5 datasets 
are naturally mapped to PDC objects and PDC regions are similar in essence to HDF5 selections.  



Dataset write and read operations, however, require some extra handling as PDC does not provide 
explicit read and write semantics. Therefore, in these connectors callbacks, PDCbuf_obj_map() is used to 
first map the region in memory to the PDC object. A pair of lock and unlock call are then also used, 
unlock triggering asynchronous data movement. Finally, the region is unmapped using the 
PDCbuf_obj_unmap() call. Once H5Dwrite() returns after the unlock call, the data region has been 
transferred from the application buffer to the PDC data server, and the second step of data movement to 
further storage level can be taken care of by PDC, allowing further computation to be overlapped. 

Write implementation is illustrated in the pseudo code 
below:     

Results 
We use the experimental setup as the previous setup. 
We compare the H5Dwrite() performance of VPIC-IO in 
Figure 9 using the following methodologies: HDF5 
collective I/O, HDF5 independent I/O, PDC VOL in 
shared server mode, PDC VOL in dedicated server 
mode using TCP protocol and PDC VOL in dedicated 
server mode using Cray GNI. The H5Dwrite() function 
using the PDC VOL connector involves the times to map 
the memory buffer to a remote object and to lock and 
then release the lock on an object without waiting for 
data to be flushed to disk, while the native H5Dwrite() 
function is issuing MPI I/O calls directly to the file system. For all the evaluations presented in this section, 
we run the experiments at least ten times and report best numbers. Since there are 8 properties in VPIC-
IO, the H5Dwrite() function is called 8 times. The time is measured by adding an MPI barrier before the 
first call and another after the last call to the H5Dwrite() function. The total write time for all the 8 
properties is collected and used for evaluation in this section. The x-axis shows the number of client 
processes with the number of PDC servers (in brackets, in these plots as well as in the remaining plots in 
this section, unless specified otherwise). The native HDF5 I/O performance (collective and independent) 
was observed on Cori at our time of experiment, which could vary depending on the system software 
stack installed and system load.  

Figure 9. H5Dwrite() performance using different methodologies for one time step. Total data size goes 
from 248GB for 992 processes to 3968 GB for 15872 processes. The number of PDC servers for each 
configuration is equal to the number of compute nodes, indicated in parenthesis.  

The performance of the PDC VOL connector in shared server mode is 1.7X to 4.9X faster compared to 
independent native HDF5 method, with an average of 3.3X, and is 2.9X to 4.2X faster compared to 
collective native HDF5 method, with an average of 3.5X. In dedicated server mode, with additional nodes 



utilized as servers, the PDC VOL connector achieves 3.1X to 6.7X faster performance compared to 
collective HDF5 I/O, with an average of 4.7X, and achieves 3.8X to 4.8X faster performance compared to 
independent native HDF5, with an average of 4.4X. To further improve the performance, we evaluate the 
performance with Cray GNI. It allows 4.6X to 15.6X speedup compared to collective native HDF5, with an 
average of 8.3X, and allows 6.1X to 7.6X speedup compared to independent native HDF5, with an 
average of 6.6X. With native HDF5, collective or independent, the data is written directly to the lustre file 
system. With all the other three PDC VOL asynchronous methods, the data is moved to PDC servers 
when H5Dwrite() returns, allowing for further data movement to the file system to be overlapped with 
following computation. Figure 9 shows the actual wait time in the H5Dwrite() call for the user, and not the 
total time for data movement down to the file system.  

              Figure 10.Total elapsed time for the execution of VPIC-IO if the user 
chooses not to wait for data to be flushed to disk.   

To reflect the total time consumed by the whole VPIC- IO application, we measured the time from the first 
HDF5 file create by H5Fcreate() until HDF5 file close function H5Fclose(). In this experiment we only 
covered one time step of H5Dwrite() for each property within VPIC-IO. The more time steps the 
application executes, the more performance benefits it gains by utilizing the PDC VOL connector. Figure 
10 shows the real total execution time of VPIC-IO covering just one time step of H5Dwrite(). If the user 
chooses not to wait for data and let PDC server to take care of it (noted as optimized in Figure 10), the 
performance when letting PDC taking care of the data achieves 2.1X to 3.8X and 1.8X to 3.2X faster 
performance compared to HDF5 collective and independent I/O methods, respectively.  

Figure 11.  H5Dread() performance using different methodologies for one timestep. Total data size goes 
from 248GB for 992 processes to 3968 GB for 15872 processes. The number of servers for each setup is 
the number in parenthesis.  

BD-CATS-IO is a read I/O kernel, which reads data produced by VPIC-IO in a load balanced way. In 
Figure 11, we show the performance of reading a single time step of data that was written in previous 
VPIC experiments, calling instead the H5Dread() function. The PDC VOL connector in shared server 
mode achieves 1.3X to 1.7X better performance compared to native HDF5 collective I/O and 1.4X to 2.8X 
better performance compared to native HDF5 independent I/O. The PDC VOL connector in dedicated 



server mode is 1.8X to 3.4X faster compared to native HDF5 collective I/O, and is 2.7X to 4.6X faster 
compared to native HDF5 independent I/O. 

Next steps 
When mapping HDF5 to PDC, one apparent limitation of HDF5 that transpired is its current inability to 
provide to the application a way of directly exposing the user’s memory, as PDC is able to do through 
map operations. We will in future work study how that type of semantic could be brought into HDF5, 
allowing users to establish a direct mapping of the application memory to the storage, which is similar to 
mmap operations that can allow more efficient transfers and paging to take place and be handled by the 
PDC system, rather than having users to explicitly direct of the amount data that needs to be written at a 
given time. This naturally requires applications to adapt their code in order to reflect this type of change, 
and would hence be more intrusive than the current solution presented.  

5. UniviStor

Motivation 
To improve the I/O performance on HPC systems that are traditionally limited by slow disk-based  devices, 
the storage subsystem is being expanded in both hierarchical and distributed manner. Hardware  such as 
NVRAM-based burst buffer is added on each compute node, or on I/O nodes accessible by all compute 
nodes, or on both. In addition, faster DRAM and Storage-Class Memory (SCM) are being added on compute 
nodes. Efficient use of the deep memory and storage hierarchy is a complex task for application developers 
and HPC system users without a unifying storage sub-system view. Existing storage management solutions 
are generally designed to manage one or a few layers, and require applications or users to explicitly move 
data across layers using each layer's individual solutions. 

Solution 
Providing a unified storage view integrating memory and storage layers is challenging. First, a unified 
address space is needed for data in all layers. Second, each layer has distinct performance characteristics, 
an integrated system has to be optimized for each layer. For instance, DRAM or SCM has high performance 
that is sensitive to context switches and task placement among cores. In contrast, shared storage layers, 
such as shared burst buffer and parallel file systems (PFS) are vulnerable to the I/O contention caused by 
multiple processes concurrently accessing the same file.  

To ease the burden of rewriting existing codes, an integrated storage solution should be compatible with 
standard parallel I/O libraries, such as MPI-IO, HDF5 and netCDF. While existing software generally 
supports standard I/O on the shared burst buffer, there is still a lack of counterpart support on the node-
local DRAM/burst buffers. Furthermore, a core benefit of the DRAM and burst buffer layer is the acceleration 
of scientific workflows with in-situ/in-transit analysis, where analysis programs can immediately read data 
that are close to computing nodes. However, the aforementioned parallel I/O libraries do not support this 
feature, forcing analysis programs to read only after a simulation completes or requiring an application-
specific workflow management implementation. Although ADIOS supports in-situ/in-transit analysis using 
DataSpaces/FlexPath, applications based on other I/O libraries have to be rewritten with ADIOS' I/O 
interface. 



Figure 12. High-level view of UniviStor’s storage hierarchy (left) and the distributed data placement, 
where UniviStor spills data to lower-level storage layers as the storage provided by the application using 
UniviStor fills up (right-side). In this figure, when the node-local storage is full, data is spilled to shared 

burst buffer and when that is also full data is spilled to parallel file system. 

Towards providing a unified view of various storage layers, we have designed and implemented UniviStor, 
a system that exposes the distributed and hierarchical storage spaces to applications as a single mount 
point. A high-level architecture of UniviStore with node-local storage, shared burst buffer, and a parallel file 
system is shown in Figure 12. UniviStor adopts the design philosophy of several state-of-the-art data 
service systems, such as Data Elevator and BurstFS that decouple address management from data 
management, and implement the address management as a distributed key-value service. More 
importantly, it extends this philosophy with a unified address management for different layers and location-
aware data service. Furthermore, we have developed an interference-aware resource scheduling 
procedure that accelerates writing and reading data using the DRAM/SSDs distributed on compute nodes. 
We have introduced adaptive data striping for load balanced data movement to the disk-based PFS. 
UniviStor provides this unified service via the MPI-IO interface, which is used by high-level I/O libraries such 
as HDF5. We have also added parallel I/O support for in-situ/in-transit analysis on DRAM/burst buffers with 
a lightweight workflow management.  

R&D of UniviStor has the following contributions: 
● Design and implementation of UniviStor to integrate node-local and shared storage devices into a

unified storage space using a distributed metadata service to manage the address space. UniviStor 
provides compatibility with existing I/O APIs and hides the complexity of managing different storage 
layers. 

● Performance optimization strategies to support distributed and hierarchical placement of data using
log-structured writes and interference-aware data movement scheduling for fast node-local 
caching. 

● An analytical performance model to guide adaptive data striping on a parallel file system.
● A lightweight mechanism to orchestrate applications with data access dependencies when data are

distributed across a multi-layer storage subsystem.

Results / Current Status 
We have evaluated UniviStor using both benchmarks and application I/O workloads, and 
compared our system with the state-of-the-art solutions, including Data Elevator and Lustre, on 



a production HPC system. Our experiments demonstrate that UniviStor integrates both node-
local and hierarchical storage layers efficiently. UniviStor outperforms Data Elevator and Lustre 
by up to ~17X and ~46X, respectively (shown in Figure 13). We have also evaluated the 
performance of UniviStor in using various combinations of storage hierarchy to support data 
generation and analysis workflow.  

Figure 13. Performance of UniviStor in writing data from a plasma physics simulation kernel 
(left) and in reading data by a big data clustering algorithm (right). Both these use cases use 
HDF5 as the I/O API. In the case of writes, UniviStor is 46X faster than Lustre and 17X faster 

than Data Elevator. 

Next Steps 
We are moving the technology and prototype achieved in this work into the PDC runtime system. Another 
avenue of continuation of this work is moving the integration into programming models, where memory 
address space and storage namespace are unified into a single continuum, where applications view all 
the objects as  

6. ARCHIE - Array caching

Motivation 
While recent advances in HPC storage systems are adding multiple levels of storage hierarchy, traditional 
file systems are not equipped with supporting hierarchy of storage layers. To handle the bursty nature of 
generating and writing data, exascale computing designs are including node-local, non-volatile storage, 
and shared burst buffers. These layers act as faster caching layers to store the data temporarily. However, 
traditional file systems are designed for managing a single layer of storage devices, such as arrays of disks 
or solid-state drives (SSD). While there are solutions for moving the data between fast non-volatile storage 
and slow disk-based storage, solutions to accelerate reading data by prefetching into the intermediate 
storage layers are still required. While a few systems support prefetching the entire files, they often require 
user involvement. For example, Cray DataWarp provides tools for users to manually or programatically 
move data to a faster shared burst buffer. Similarly, software such as DDN IME and DAOS also need 
storage infrastructure changes or user involvement in data movement.  

Moreover, solutions using array semantics and prefetching data at smaller granularity than the entire file 
are unavailable. Scientific data analysis frameworks such as TensorFlow and ArrayUDF work on large 
multi-dimensional arrays, e.g., 2D images. Incorporating array semantics into hierarchical storage 



optimizations can help to further reduce data reading cost in data analysis tasks. Meanwhile, these data 
analysis frameworks are mostly designed to operate on a single storage layer. Providing a transparent way 
to use hierarchical storage for these systems is a critical task. 

Solution 
With the goal of providing a transparent and efficient data prefetching solution using array semantics in a 
hierarchical storage subsystem, we propose an ARray Caching in HIErarchical storage system (ARCHIE). 
This system is parallel by design and runs concurrently with data analysis applications to prefetch array 
data sets. ARCHIE provides an “array semantics”-aware prefetching function to move array data from slow 
storage devices into faster ones that are closer to analysis applications before the application issues the 
data read calls. This prefetching system reduces I/O overhead in most array-based data analysis 
applications.  

Figure 14. An overview of ARCHIE in caching data in a hierarchical storage system (left) Three base 
cases of querying cached array chunks in ARCHIE (right). ARCHIE supports caching and prefetching: a) 

The read region matches the boundary of a cached chunk. b) The read region is a portion of a single 
cached chunk. c) The read region is formed by multiple cached chunks. Other cases can be a 

combination of these base cases in querying cached chunks in ARCHIE. 

The technical contributions of this effort are: 
● Development of a new array cache management system for hierarchical storage to move large

array data efficiently across heterogeneous devices. 
● Design of a parallel prefetching method for large arrays to improve data read performance in

analysis tasks. Our method also augments prefetched data with ghost zones, a typical requirement 
in array-based data analysis. 

● Development of a fault-tolerance mechanism for the caching system to recover from errors
automatically that may crash an application or the ARCHIE service. 

● Implementation of ARCHIE using the HDF5 Virtual Object Layer (VOL) to provide caching and
prefetching capabilities without requiring source code modifications. 

Results / Current Status 
We demonstrated the effectiveness of ARCHIE with three scientific data analysis codes, including 
convolutional neural network (Figure 15), gradient computing (Figure 16), and vorticity analysis (Figure 
17).  We ran our experiments on the Cori HPC system at NERSC that is equipped with a hierarchical 
storage system and thousands of computing nodes. The results show that ARCHIE is up to 6X faster than 
DataWarp, state-of-the-art storage system for managing burst buffers. 



Figure 15. Evaluation of applying convolutional neural network (CNN) on CAM5 climate dataset 

Figure 16. Evaluation of gradient calculation of a plasma physics dataset 

Figure 17. Evaluation of vorticity computation for a combustion (S3D) dataset 

Next Steps 
Using the prediction of future accesses and the optimization techniques developed in ARCHIE, we will 
design a data access pattern analysis and prediction service in the PDC runtime system.  



7. Object-store evaluation

Motivation 
POSIX-based parallel file systems provide strong consistency semantics, which many modern HPC 
applications do not need and do not want. Object store technologies avoid POSIX consistency and are 
designed to be extremely scalable, for use in cloud computing and similar commercial environments. 

Solution 

We evaluated three object store systems: Intel DAOS (in development), Ceph RADOS (jewel version), 
and Openstack Swift. For our experiments, we used the HDF5 library with the HDF5 Virtual Object Layer 
(VOL) feature. The VOL feature allows to redirect the applications’ HDF5 calls to the underlying object 
storage systems’ APIs with minimum application code change. It will be released by The HDF Group in 
the upcoming HDF5 1.12.0 release in Summer 2019. To enable applications to use above object stores, 
we developed an HDF5 VOL connector for Openstack swift, and we re-used the existing HDF5 VOL 
connector for Intel DAOS (developed by The HDF Group under the Fast-Forward project), and an early 
prototype of RADOS VOL (currently being developed by The HDF Group under the Mochi project). We 
compared these object stores using the aforementioned HDF5 VOL connectors with three HPC 
applications: VPIC, H5Boss, and BDCATS. 

Results / Current Status 
Through the evaluation, we demonstrated that object stores have better scalability than POSIX file 
systems like Lustre, in both large contiguous write and random small write. We observed important API 
differences between RADOS and Swift, e.g., RADOS has better support for partial read/write, which 
enables us to implement a better parallel I/O solution. Among all object stores we evaluated, Intel DAOS 
has demonstrated outstanding performance by leveraging next generation NVMe/SCM technologies, 
although our results should be followed up when the tmpfs-emulated SCM can be replaced with actual 
SCM. In Figure 18, we show an initial comparison of DAOS and Lustre, in writing 1K and 10K HDF5 
datasets to the respective storage systems.  

Figure 18. H5Boss Single Node Strong Scaling 

Next Steps 
We will expand our evaluation to larger scales and to other object storage solutions. 



8. PDC Science Drivers

Motivation 

Efficient management of scientific data on high-performance computing (HPC) systems has been a 
challenge as it often requires knowledge of various hardware and software components of the systems as 
well as tedious manual effort in optimizing parallel I/O for each application. This situation is exacerbated 
by the fact that storage systems on upcoming exascale supercomputers are equipped with an 
unprecedented level of complexity due to a deep system memory and storage hierarchy. Simple and 
effective data management methods are critical for numerous scientific applications that are storing and 
analyzing massive amounts of data on HPC systems. Object-centric data management systems (ODMS) 
are gaining popularity on HPC systems because of their relaxation of POSIX-IO semantics and 
management of objects using a flat namespace. However, tuning an ODMS to achieve its full potential 
still remains a challenge. 

Solution 
We designed and developed (1) a data aggregationmethod that makes runtime decisions on scheduling 
I/O requests, (2) a prefetching and caching strategy that takes advantage of the knowledge of an ODMS 
and usesmulti-level storage hierarchy efficiently, and (3) an efficient metadata aggregation and 
asynchronous updating approach to achieve high performance with a relaxed data consistency 
requirement. We have implemented these new techniques in the Proactive Data Containers (PDC) 
system. 

Results / Current Status 
We have evaluated our optimization strategies first using a set of benchmarks and then applying them to 
a dark energy simulation, a space geometry survey, and a large-scale cosmology simulation. These 
evaluations are performed on a Cray XC40 system located at NERSC. We show that using our proposed 
techniques, an object-centric storage system achieves a multi-fold speedup compared to the existing 
parallel file system using POSIX-IO-based I/O libraries. 

Read time for BD-CATS-IO with different configurations and number of processes. 



9. Ongoing Research Activity and Next Steps

9.1. In data path analysis 

While in-locus analysis in PDC, i.e., analyzing data while data objects are being moved between different 
storage loci, remains a work in progress, much of the infrastructure to enable data transforms and user 
defined analysis on PDC objects has been completed in this reporting period. This work differs from other 
approaches, such as SENSEI, in that PDC analysis is tied to data movement and/or data updates on PDC 
objects as opposed to providing APIs between applications such as visualization and performance 
monitoring. Our work leverages some of the ideas of ArrayUDF (https://bitbucket.org/arrayudf) in that PDC 
analysis is focused on providing an API that allows user defined operations to be run as data becomes 
available or when data objects are modified (e.g., after write locked objects become unlocked). Additionally, 
there are internal hooks to potentially invoke user defined functions written in FORTRAN, python, or Julia. 
Because PDC objects record the native data storage order (ROW major or COLUMN major) of each object, 
data movement can thus invoke data transformations automatically if necessary. Similarly, because PDC 
records the datatype associated with an object, transport between objects of different type signatures can 
be optimized, e.g. doubles can be moved as floats when the target does require the double precision.  This 
functionality can be enabled by defining PDC properties on objects which are captured and then utilized by 
the PDC runtime as part of the analysis registration or data movement APIs.  

In Figure 18 below, we show an example of a stencil application which mirrors those described in the 
ArrayUDF project.   While PDC is obviously somewhat more complex at this initial stage of development to 
write than the C++ stencil approach, the PDC data iterator should be more cache friendly and thus have 
better overall performance. One obvious difference in this example is that PDC approach requires the calls 
back into the PDC library to access the data of interest. On the one hand, data iterators may complicate 
writing our analysis functions. On the positive side, the approach should minimize data copying and also 
provide a reasonable compromise for generating high performance algorithms such as we show below. 
/* ArrayUDF neon/CoRTAD (Coral Reef Temperature Anomaly Database) 
* Running average in which the output point is averaged against the 3 previous points,

 * e.g. c(0,0,0)+c(-1,0,0)+c(-2,0,0)+c(-3,0,9) */ 
size_t cortad_avg_func(float *stencil[4], float *out, size_t elements) 
{  size_t k; 
   for(k=0; k < elements; k++) 

out[k] = (stencil[0][k] + stencil[1][k] + stencil[2][k] + stencil[3][k]) / 4.0; 
   return 0; 
} 

size_t neon_stencil( pdcid_t iterIn, pdcid_t iterOut) 
{ 
   … 
    number_of_slices = PDCobj_data_getSliceCount(iterOut); 
    if ((blockLengthIn = PDCobj_data_getNextBlock(iterIn, (void **)&dataIn, dimsIn)) == 0) 

printf("neon_stencil: Empty Input!\n"); 
    else { 

stencil[0] = stencil[1] = stencil[2] = stencil[3] = dataIn; 
for (k=0; k< number_of_slices; k++) { 

if ((blockLengthOut = PDCobj_data_getNextBlock(iterOut, (void **)&dataOut, dimsOut)) > 0) { 
if (cortad_avg_func(stencil,dataOut,blockLengthIn) == 0) { 

stencil[0] = stencil[1]; 
stencil[1] = stencil[2]; 
stencil[2] = stencil[3]; 

} 
blockLengthIn = PDCobj_data_getNextBlock(iterIn, (void **)&dataIn, NULL); 
stencil[3] = dataIn; 

} 
} 

    } 
   return result; 



} 

main() 
{ 
   … 
   // create regions 
    r3 = PDCregion_create(3, offsets3d, my3D_dims); 
    r4 = PDCregion_create(3, offsets3d, my3D_dims); 
    input3d_iter = PDCobj_data_iter_create(obj3, r3); 
    output3d_iter = PDCobj_data_iter_create(obj4, r4); 

    PDCobj_analysis_register("neon_stencil:arrayudf_example", input3d_iter, output3d_iter); 
    ret = PDCbuf_obj_map(my3DTestArray, PDC_FLOAT, r3, obj3, r4); 
    ret = PDCreg_obtain_lock(obj3, r3, WRITE, NOBLOCK); 
    ret = PDCreg_release_lock(obj3, r3, WRITE); 
   … 
} 

Figure 18.  The PDC version of the CoRTAD analysis application 

PDC transforms follow a similar approach to the analysis function registration.  By default, the PDC runtime 
will look for a specified transform in a predefined shared library (in this case: libpdctransforms.so), though 
as we’ve seen with the analysis registration function, the transform registration may specify an alternate 
source for function resolution, e.g.  
PDCbuf_map_transform_register("pdc_transform_compress", &x[0], reg_x, obj_xx, reg_xx, 0, INCR_STATE, 
DATA_OUT);

In this example, the transform specification may include a “:[shared-library|executable]” as in the previous 
CoRTAD analysis example.   The general form of the transform registration is to: 

● Identify the function entrypoint and an optional shared object file which contains the entrypoint.
● With the PDCbuf_map version, we provide a pointer to the actual source for the transform data

&x[0] above;
● The input region.  Which provides the shape and datatype information of the input data array.
● The mapped target object (obj_xx)
● The target region.  Which provides the shape and datatype information of the target data array.
● A “state” identifier.  Unmodified == 0
● A state modifier, i.e. the action to take upon completion of the transform;
● A Data specification, e.g. DATA_OUT == the source of a mapping operation.   If Data is currently

on the client and the target is the SERVER, then the specified transform occurs on the CLIENT.
DATA_IN, is the converse, i.e. given the same starting conditions, the DATA_IN operation will occur
on the SERVER.

 Lastly, we note that user defined functions in PDC are invoked via the dynamic shared object library APIs 
(dlopen and dlsym are used to resolve function pointers) which allow the loading and running of functions 
defined in shared libraries and/or user executables. This mechanism also enables the export of user defined 
functions from the client executable to the PDC servers and thus enables execution of client code directly 
on the PDC data servers. 

9.2. Parallel querying on PDC 
The process of scientific discovery involves extracting useful information from a potentially large 
amount of data through a series of queries, for example, physicists often need to locate and 
visualize a relatively small amount of high energy particles, and a query such as ``$Energy > 



2.0$" would come up naturally. To answer such a query, a large amount of efforts have been 
put in by researchers. Traditional database management systems (DBMS) such as Berkeley 
DB, PostgreSQL,  manage the user's data as well as additional semantic information, and allow 
users to obtain query results with an SQL interface. In scientific database community, SciDB is 
proposed to store and query array-structured data. 

However, these database systems require converting data to their format, and the import 
process is often time-consuming and requires extensive user involvement. Additionally, the 
results produced by these systems are often text-based and needs to be converted to another 
format for further analysis and/or visualization. With the increasing complexity of the data 
analysis pipeline, introducing such a system to a scientific workflow would lead to a significant 
amount of effort on maintaining the database and sharing the data to other components of the 
workflow. 

The PDC framework offers data stored as objects along with a significant metadata that can be 
used for tagging data. We are developing a querying mechanism on the PDC metadata and 
data objects. We will test this with various scientific benchmarks and compare performance with 
traditional approach of sifting through the entire data manually, with science-oriented databases 
such as SciDB, and any existing parallel data search methods on scientific data formats directly. 

10. Publications using the PDC project funding
10.1. 2018 - 2019 

1. Richard Warren, Jerome Soumagne, Houjun Tang, Suren Byna, Quincey Koziol, and Jingqing Mu,
“Analysis in the Data Path of an Object-centric Data Management System”, in preparation 

2. Houjun Tang, Suren Byna, Bin Dong, and Quincey Koziol, “Parallel Query Evaluation for Object-
centric Data Management Systems”, in preparation 

3. Houjun Tang, Suren Byna, Jialin Liu, Quincey Koziol, Bin Dong, and Teng Wang, “Tuning Object-
centric Data Management Systems for Large Scale Scientific Applications”, in submission 

4. Jingqing Mu, Jerome Soumagne, Suren Byna, Quincey Koziol, Houjun Tang, and Richard Warren,
"Interfacing HDF5 with A Scalable Object-centric Storage System on Hierarchical Storage", 
Accepted for publication - Cray User Group (CUG) 2019 

5. Babak Behzad, Suren Byna, Prabhat, and Marc Snir, "Optimizing I/O Performance of HPC
Applications with Autotuning", ACM Transactions on Parallel Computing (TOPC), Volume 5 Issue 
4, March 2019, Article No. 15, doi: 10.1145/3309205 

6. Haoyuan Xing, Sofoklis Floratos, Spyros Blanas, Suren Byna, Prabhat, Kesheng Wu, Paul Brown,
"ArrayBridge: Interweaving declarative array processing in SciDB with imperative HDF5-based 
programs", 34th IEEE International Conference on Data Engineering (ICDE) 2018 

7. Bin Dong, Teng Wang, Houjun Tang, Quincey Koziol, Kesheng Wu, and Suren Byna "ARCHIE:
Data Analysis Acceleration with Array Caching in Hierarchical Storage", IEEE International 
Conference on Big Data (IEEE BigData) 2018  

8. Suren Byna, Quincey Koziol, Venkatram Vishwanath, Jerome Soumagne, Houjun Tang, Kimmy
Mu, Richard Warren, François Tessier, Bin Dong, Teng Wang, and Jialin Liu, "Proactive Data 
Containers (PDC): An object-centric data store for large-scale computing systems", AGU Fall 
Meeting 2018  

9. Jialin Liu, Quincey Koziol, Gregory Butler, Neil Fortner, Mohamad Chaarawi, Houjun Tang, Suren
Byna, Glenn Lockwood, Ravi Cheema, Kristy Kallback-Rose, Damian Hazen, and Prabhat, 



"Evaluation of HPC Application I/O on Object Storage Systems", 3rd Joint International Workshop 
on Parallel Data Storage and Data Intensive Scalable Computing Systems (PDSW-DISCS), 2018 
(Held in conjunction with SC18) 

10. François Tessier, Paul Gressier, Venkatram Vishwanath, “Optimizing Data Aggregation by
Leveraging the Deep Memory Hierarchy on Large-Scale Systems”, ICS 2018: The 32nd ACM
International Conference on Supercomputing

11. Fahim Chowdhury, Jialin Liu, Quincey Koziol, Thorsten Kurth, Steven Farrell, Suren Byna, Prabhat,
Weikuan Yu, "Initial Characterization of I/O in Large-Scale Deep Learning Applications", Work in
Progress paper, 3rd Joint International Workshop on Parallel Data Storage and Data Intensive
Scalable Computing Systems (PDSW-DISCS), 2018 (Held in conjunction with SC18)

12. Teng Wang, Suren Byna, Bin Dong, and Houjun Tang, "UniviStor: Integrated Hierarchical and
Distributed Storage for HPC", IEEE Cluster 2018.

13. Kimmy Mu, Jerome Soumagne, Houjun Tang, Suren Byna, Quincey Koziol, and Richard Warren,
“A Server-managed Transparent Object Storage Abstraction for HPC”, IEEE Cluster 2018.

10.2. PDC Publications reported in previous reports 
14. Houjun Tang, Suren Byna, Francois Tessier, Teng Wang, Bin Dong, Jingqing Mu, Quincey Koziol,

Jerome Soumagne, Venkatram Vishwanath, Jialin Liu, and Richard Warren, “Toward Scalable and
Asynchronous Object-centric Data Management for HPC”, 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid) 2018

15. Bharti Wadhwa, Suren Byna, and Ali R. Butt, “Toward Transparent Data Management in Multi-layer
Storage Hierarchy for HPC Systems”, IEEE International Conference on Cloud Engineering 2018
(IC2E 2018)

16. Houjun Tang, Suren Byna, Bin Dong, Jialin Liu, and Quincey Koziol, “SoMeta: Scalable Object-
centric Metadata Management for High Performance Computing”, The IEEE Cluster Conference
2017 

17. François Tessier, Venkat Vishwanath, and Emmanuel Jeannot, “TAPIOCA: An I/O library for
optimized topology-aware data aggregation on large-scale supercomputers”, The IEEE Cluster
Conference 2017

18. Jialin Liu, Quincey Koziol, Houjun Tang, François Tessier, Wahid Bhimji, Brandon Cook, Brian
Austin, Suren Byna, Bhupender Thakur, Glenn Lockwood, Jack Deslippe, Prabhat, “Understanding
the I/O Performance Gap Between Cori KNL and Haswell”, Cray User Group Conference 2017
(CUG 2017)

19. Bin Dong, Suren Byna, Kesheng Wu, Prabhat, Hans Johansen, Jeffrey N. Johnson, and Noel Keen,
“Data Elevator: Low-contention Data Movement in Hierarchical Storage System”, The 23rd annual
IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC), 2016.

20. Francois Tessier, Preeti Malakar, Venkatram Vishwanath, Emmanuel Jeannot and Florin Isaila,
“Topology-Aware Data Aggregation for Intensive I/O on Large-Scale Supercomputers”, 1st
Workshop on Optimization of Communication in HPC runtime systems (IEEE COM-HPC16), Held
in conjunction with ACM/IEEE SuperComputing'16 Conference, 2016.

11. Presentations and Outreach
● Suren Byna, “Efficient Scientific Data Management on Supercomputers - HDF5 and Proactive Data

Containers”, Invited talk at the University of Western Florida, Apr 2019
● Suren Byna, "Proactive Data Containers (PDC): An object-centric data store for large-scale

computing systems", AGU Fall Meeting 2018, Dec 2018



● Bin Dong, "ARCHIE: Data Analysis Acceleration with Array Caching in Hierarchical Storage", IEEE
BigData 2018, Dec 2018

● Jialin Liu, "Evaluation of HPC Application I/O on Object Storage Systems", PDSW 2018, Nov 2018
● François Tessier, “Optimizing Data Aggregation by Leveraging the Deep Memory Hierarchy on

Large-Scale Systems”, ICS 2018, July 2018
● Kimmy Mu, "UniviStor: Integrated Hierarchical and Distributed Storage for HPC", IEEE Cluster

2018, Sep 2018
● Kimmy Mu, “A Server-managed Transparent Object Storage Abstraction for HPC”, IEEE Cluster

2018, Sep 2018
● Suren Byna, “Efficient Scientific Data Management on Supercomputers”, Summer intern seminar

at LBNL, July 2018

12. Professional Service
● Bin     Dong,  Program Committee member, HPCC 2019
● Bin     Dong,  Program Committee member,  INFOCOM 2019
● Bin     Dong,  Program Committee member,  HPCCI 2019
● Bin     Dong,  Program Committee member,  CIT 2018
● Bin     Dong,  Program Committee member, HPCC 2018
● Bin     Dong,  Publications chair of SSDBM 2017
● Quincey Koziol, Program Committee member, SC Asia 2019
● Houjun Tang, Program Committee member, ICIIT 2018
● Houjun Tang, Reviewer, IEEE Cluster 2018
● Houjun Tang, Reviewer, Big Data 2018
● Houjun Tang, Reviewer, Distributed and Parallel Databases Journal
● Houjun Tang, Reviewer, Journal of Parallel and Distributed Computing
● Houjun Tang, Reviewer, International Journal of Grid and High Performance Computing
● Suren Byna, Technical Paper Program Committee, SC18
● Suren Byna, Reviewer, DOE SBIR program
● Suren Byna, Program Committee member, IPDPS 2019
● Suren Byna, Program Committee member, CCGrid 2019
● Suren Byna, Reviewer, Journal of Future Generation Computer Systems
● Suren Byna, Program Committee member, NAS 2018
● Suren Byna, Track Chair - Data Management and Processing Techniques, ICIIT 2018
● Suren Byna, Program Committee member, IEEE Cluster 2018


	Cover Page_Final Technical Report.pdf
	410 E. University Ave., Ste. 200
	410 E. University Ave., Ste. 200




