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ABSTRACT
We present a framework for simulating relaxation dynamics through a conical intersection of an open quantum system that combines meth-
ods to approximate the motion of degrees of freedom with disparate time and energy scales. In the vicinity of a conical intersection, a few
degrees of freedom render the nuclear dynamics nonadiabatic with respect to the electronic degrees of freedom. We treat these strongly
coupled modes by evolving their wavepacket dynamics in the absence of additional coupling exactly. The remaining weakly coupled nuclear
degrees of freedom are partitioned into modes that are fast relative to the nonadiabatic coupling and those that are slow. The fast degrees of
freedom can be traced out and treated with second-order perturbation theory in the form of the time-convolutionless master equation. The
slow degrees of freedom are assumed to be frozen over the ultrafast relaxation and treated as sources of static disorder. In this way, we adopt
the recently developed frozen-mode extension to second-order quantum master equations. We benchmark this approach to numerically exact
results in models of pyrazine internal conversion and rhodopsin photoisomerization. We use this framework to study the dependence of the
quantum yield on the reorganization energy and the characteristic time scale of the bath in a two-mode model of photoisomerization. We find
that the yield is monotonically increasing with reorganization energy for a Markovian bath but monotonically decreasing with reorganization
energy for a non-Markovian bath. This reflects the subtle interplay between dissipation and decoherence in conical intersection dynamics in
the condensed phase.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5106379., s

I. INTRODUCTION

The ultrafast excited-state relaxation dynamics of polyatomic
systems are nearly universally mediated by motion through coni-
cal intersections.1,2 Advanced time-dependent spectroscopies have
made the identification of such molecular motions possible in prin-
ciple,3–7 elucidating their role in many photochemical reactions.8–10

Theory and simulation are useful tools to interpret and eluci-
date the microscopic motions associated with the degrees of free-
dom probable with experiment. However, the ability to accurately
and efficiently simulate such nonadiabatic dynamics in the con-
densed phase is challenging.11–13 Nonadiabatic systems by definition

contain many strongly coupled nuclear and electronic degrees of
freedom, blurring the separation of time scales between their motion
and demanding a quantum description of both. In the condensed
phase, the ability to correctly describe dissipation requires that a bath
is represented either implicitly or explicitly, complicating approx-
imations that make such calculations tractable in the gas phase.
Here, we describe a framework to leverage a separation of energy
and time scales to arrive at a hybrid method to study the dynamics
of molecules through conical intersections. The method we employ
treats the most strongly coupled modes explicitly and develops a
hybrid reduced description for the remaining modes by identify-
ing some as slow and others as fast relative to the nonadiabatic
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dynamics. This methodology enables us to study photochemical
quantum yields in widely different environments.

Existing approaches to study motion through conical intersec-
tions in condensed phases fall into two broad categories. One way
is to represent all of the interacting degrees of freedom and com-
pute the dynamics of a closed system, albeit one with a large enough
number of states to approximate the environment. These sorts of
approaches can range from numerically exact methodologies such
as the Multiconfigurational Time-Dependent Hartree (MCTDH)
method,14,15 the quasiadiabatic path integral method,16,17 and mul-
tiple spawning techniques18,19 to more approximate methods such as
mixed-quantum classical theories like Ehrenfest20 and surface hop-
ping21–23 and semiclassical theories as obtained from the mapping
approaches.24–26 Exactly representing the degrees of freedom has the
advantage that arbitrary degrees of freedom can be represented, pro-
vided a large enough basis. While these tools have shown promise in
a variety of systems, they still can be limited by severe exponential
scaling in numerically exact approaches or by invoking uncontrolled
approximations that can break fundamental symmetries like detailed
balance, complicating the description of a thermalizing bath.

An alternate approach to simulating the dynamics through a
conical intersection relies on the master equation approach of open
quantum systems,27–29 in which the dynamics of only a few relevant
degrees of freedom are represented explicitly in a reduced density
matrix that is coupled implicitly a set of environmental degrees of
freedom. Often the environment is taken as an infinite bath of har-
monic degrees of freedom, though this is not required. When a har-
monic bath is used, these methods assume that a linear response
relationship between the system and the bath holds and thus the
bath represents a set of degrees of freedom that obey gaussian statis-
tics. When this approximation is valid, these methods also have a
range of accuracy from the numerically exact Hierarchical Equa-
tion of Motion (HEOM)30 to perturbative treatments such as Red-
field theory.31 By construction, most of these approaches accurately
describe dissipation to the environment. However, they suffer from
pitfalls in computational complexity, as HEOM scales roughly fac-
torially in the system-bath coupling strength, or accuracy, as many
perturbative theories have known issues with preserving the trace
and positivity of the reduced density matrix.

In this paper, we propose the use of a hybrid methodology,
in the spirit of previous work,32–34 in which both approaches are
utilized in regimes where they are valid. The most strongly cou-
pled, anharmonic degrees of freedom are evolved directly, and the
remaining degrees of freedom are treated with different approxi-
mate theories, whose applicability rests in identifying relevant sep-
arations of time and energy scales. This approach has the advantage
of a reduced computational cost compared to the most demand-
ing numerically exact methods while retaining both flexibility and
accuracy and relies heavily on recent work in applying the so-called
frozen mode approximation to quantum master equations.35 The
present paper is organized in four remaining sections. In Sec. II, the
general framework for developing a hybrid method in the context of
conical intersection models is outlined. In Sec. III, this methodology
is benchmarked in models of internal conversion of pyrazine and
photoisomerization of rhodopsin by comparing to existing numer-
ically exact results. In Sec. IV, we apply the framework to address
the dependence of the quantum yield on the environment. Some
concluding remarks are given in Sec. V.

II. THEORY
In this section, we describe the framework on which a hybrid

methodology can be built. This framework can begin from an
ab initio molecular Hamiltonian, provided a diabatic basis can be
constructed that minimizes the nonadiabatic coupling from the
kinetic energy derivatives.36,37 In the diabatic basis, we can write the
Hamiltonian as

H = ∑
i,j
∣i⟩[T(Q)δij + Vij(Q)]⟨j∣, (1)

where T(Q) is the kinetic energy operator, which is diagonal, V ii(Q)
is the potential energy surface of the ith diabatic electronic state, and
V i≠j(Q) is the diabatic coupling between states i and j with Q = {Q1,
Q2, . . ., QN} being the vector of displacements of each N nuclear
degree of freedom from a reference geometry, Q0, or generalized
modes. In principle, the full system can be completely described at
all times by its density matrix, ρ(t), whose time evolution is given by
the Liouville-von Neumann equation

∂tρ(t) = −i[H, ρ(t)], (2)

where [⋅, ⋅] is the commutator. Due to exponential scaling of stan-
dard basis set treatments, this description becomes intractable for
systems beyond only a few degrees of freedom, and in the condensed
phase, reduced descriptions are required. Throughout, we will set
̵h = 1 and use mass weighted coordinates unless otherwise explicitly
stated.

A. Mode expansion
To build a reduced description of the dynamics, we first impose

some structure on the many body potential V ij(Q) appropriate for a
molecule in a surrounding environment with a conical intersection.
Within a general mode expansion,36 V ij(Q) can be approximated
as

Vij(Q) = V(0)ij +∑
k
V(1)ij (Qk) +∑

k<l
V(2)ij (Qk,Ql) + . . . , (3)

where V(n)ij is a potential function that couples n modes of the sys-
tem, truncated here to second order. Generally, each order potential
could be a distinct function of its arguments, whose repeated indices
we suppress for clarity.

As we are interested in motion in the vicinity of a conical inter-
section, we will isolate two orthogonal coordinates, the tuning mode,
qt , and a coupling mode, qc, which define a surface of points where
the two potential energy surfaces i and j intersect, giving rise to
large nonadiabatic coupling. In the following, these are the modes we
will consider strongly coupled. In principle, additional modes with
large coupling constants relative to the bare electronic energy gap
or modes with large amplitude motion should be included in this
description. For the models we study, only these two coordinates are
included.

We will assume that only the tuning mode undergoes large
amplitude motion away from the reference geometry. Under such
assumption, which could be relaxed, we have a potential for the
tuning mode of the form

V(1)ij (qt) = δij(vi(qt) + κ(i)t qt), (4)
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where vi(qt) is in general anharmonic. We assume that the coupling
mode is harmonic,

V(1)ij (qc) = δij(
1
2
Ωcq2

c + κ(i)c qc) + (1 − δij)λ(ij)qc, (5)

with frequency, Ωc, given by

Ωc = (
∂2Vii

∂q2
c
)

Q0

, (6)

where the constants V(0)ij are defined by the reference geometry Q0.
We pull out the linear portions of the potentials, parameterized by
κ(i)k , for clarity, which are Holstein-like coupling coefficients given
by

κ(i)k = (
∂Vii(Q)
∂qk

)

Q0

, (7)

and λ(ij) is a Peierls-like coupling coefficient, given by

λ(ij) = (
∂Vij

∂qc
)

Q0

, (8)

which is the only off diagonal term in the diabatic state basis we con-
sider and due to hermiticity, λ(ij) = λ(ji). The existence of both λ(ij)

and κ(i)k ’s reflects that at a conical intersection, both the electronic
gap and the electronic coupling are modulated by nuclear degrees of
freedom. The remaining modes are assumed to be harmonic,

V(1)ij (Qk) =
1
2
ωkQ

2
k + c(i)k Qk, (9)

with frequencies,

ωk = (
∂2Vii

∂Q2
k
)

Q0

, (10)

and additional Holstein couplings,

c(i)0,k = (
∂Vii(Q)
∂Qk

)

Q0

, (11)

for each ith electronic state.
Provided the linear response form for all of the modes not

including qt , the highest-order mode coupling potential we con-
sider that is consistent with this choice is bilinear in the modes.
Specifically, we take

V(2)ij (Qk,Ql) = c
(i)
k,l QkQlδij(1 − δlk), (12)

where c(i)k,l is the coupling coefficient that transfers vibrational energy
between the kth and lth modes,

c(i)k,l = (
∂2Vii

∂Qk∂Ql
)

Q0

, (13)

which we take as diagonal in the diabatic states. By construction,
this is zero between the tuning and coupling modes, as these are
chosen to be orthogonal. With the exception of the tuning mode,
the remaining coordinates are all harmonic, so we can in principle
orthogonalize the remaining N − 2 subspace defined outside of qt

and qc. This enables us to set c(i)k,l to zero for all l and k that do not
include qc or qt .

The resultant potential has a simple approximate form. The
diabatic coupling is given by

Vi≠j(Q) = λ(ij)qc (14)

containing only the coupling mode with the Peierls constant, where
here, we have taken V(0)i≠j = 0. The diabatic potentials are given by

Vii(Q) = V(0)ii + vi(qt) + κ(i)t qt +
1
2
Ωcq2

c + κ(i)c qc + qt∑
k
c(i)t,k Qk

+ qc∑
k
c(i)c,k Qk +∑

k
c(i)0,kQk +∑

k

1
2
ωkQ

2
k, (15)

where the tuning and coupling coordinates can exchange energy
with the remaining N − 2 modes in such a way as to renormalize the
effective Holstein and Peierls couplings. This potential is envisioned
as including only the minimal ingredients required to describe a
conical intersection with a surrounding environment, as additional
complexity could be added if any of the approximations above were
found invalid.36

B. System bath partitioning
For an isolated system, the N mode diabatic potential described

above can be simulated directly using compact basis set techniques
such as MCTDH and multiple spawning.14,15,18,19 However, in a con-
densed phase, in order to correctly describe dissipation and relax-
ation, we require that the number of modes goes to infinity such
that ωk’s will form a continuous band of frequencies. While basis
set techniques can approximate this continuous band, doing so typ-
ically results in algorithms that scale exponentially in time.38 As the
remaining environment modes are expected to be less strongly cou-
pled to the electronic degrees of freedom, we can consider ways to
integrate them out and arrive at a reduced description of the dynam-
ics of the system. In this way, we will define the total Hamiltonian,
H = HS + HSB + HB, as a partitioning between a system, a bath, and
coupling terms. To determine an effective partitioning, we can lever-
age the identification of the relevant coupling constants and their
expected scales.

Since we expect the coupling and tuning modes to be strongly
coupled to the electronic states, we will treat their dynamics in the
absence of additional coupling exactly. Restricting ourselves to two
diabatic states, we refer to them, along with the electronic states, as
the system Hamiltonian, HS,

HS = ∑
i,j=1,2
∣i⟩hiδij + λqc(1 − δij)⟨j∣,

(16)
hi = T + V(0)ii + vi(qt) + κ(i)t qt +

1
2
Ωcq2

c + κ(i)c qc,

where T is the kinetic energy of the tuning and coupling modes and
we have removed the electronic state dependence from λ. In the
case that both coordinates are harmonic, this Hamiltonian reduces
to the so-called linear vibronic model.36 The remaining degrees of
freedom, Qk’s, will make up a bath portion of the Hamiltonian. The
coupling between the bath degrees of freedom and the system will be
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denoted by the system-bath coupling Hamiltonian, HSB. This term
can be written in the direct product form

HSB = ∑
n=0,c,t

sn∑
k
cin,kQk,

s(c,t) = ∑
i
∣i⟩q(c,t)⟨i∣, s0 = ∑

i
∣i⟩⟨i∣,

(17)

where sn in general includes both direct coupling to the electronic
system and vibrational relaxation through coupling to the tuning or
coupling modes. To describe the system-bath coupling strengths, it
is useful to define the spectral densities, Jn(ω), for each system bath
operator,

Jn(ω) =
π
2 ∑k

c2
n,k

ωk
δ(ω − ωk), (18)

which are parameterized by a reorganization energy, Er ,n,

Er,n =
1
π ∫

∞

0
dω

Jn(ω)
ω

, (19)

and a characteristic frequency, ωc ,n. The reorganization energy
reflects the overall strength of the coupling of the system to the bath,
and the characteristic frequency determines the decay of the spectral
density at infinite frequency. In order to treat the bath perturbatively,
the dimensionless coupling parameter, η, given by

η = max
n
[

2
π2ωc,n

∫

∞

0
dω

Jn(ω)
ω
] (20)

must be small on an absolute scale, η ≪ 1. This parameter reflects
the competing effects of the reorganization energy and character-
istic frequency on the decay of higher-order correlation functions
used in a perturbative expansion and can be derived explicitly for
simple models.35,39 For fixed Er ,n, η increases as ωc ,n gets smaller,
generally violating the criteria for perturbation theory. This scal-
ing of η with ωc ,n makes it difficult to use standard quantum
master equation approaches for studying motion through conical
intersections, as the relevant scale of the system dynamics is ultra-
fast, rendering typical bath relaxation times comparatively long.40,41

To remedy this requires confronting non-Markovian effects
directly.

The remaining terms in the Hamiltonian are labeled as the bath,
HB, and are given by a set of noninteracting harmonic oscillators,

HB =
1
2 ∑k∈slow

ωk(−
∂2

∂Q2
k

+ Q2
k) +

1
2 ∑k∈fast

ωk(−
∂2

∂Q2
k

+ Q2
k), (21)

which we partition into a group labeled fast and a group labeled slow,
depending on the oscillator’s frequency, ωk, relative to a parameter
ω∗. Here, ω∗ is a frequency that delineates between the fast and slow
modes of the bath relative to a characteristic time scale of the system.
As motion through a conical intersection is mediated by the nonadi-
abatic coupling, we assume the characteristic time scale of the system
to be given by the Peierls coupling, λ, and consider slow modes to be
those with ωk < λ.

C. Hybrid dynamical approach
Given the system-bath partitioning proposed above, we can

develop an approximate way to evolve a reduced system dynamics

that is capable of correctly describing dissipation even when some of
the bath degrees of freedom are non-Markovian owing to the large
separation of time scales between nonadiabatic system dynamics and
slow environmental motions. To this aim, we follow the procedure
outlined in Ref. 35. Specifically, we consider the time dependent
reduced density matrix, σ(t), as

σ(t) = TrB{ρ(t)}, (22)

where the trace is taken over all Q defined in the bath part of the
Hamiltonian. In order to obtain a closed evolution equation for σ(t),
we leverage the expected separation of time scales between evolution
in the fast part of the bath and those in the slow part of the bath.

Following the partitioning in HB, we can similarly partition a
given spectral density into the slow and fast portions,33–35

Jn(ω) = Jn,slow(ω) + Jn,fast(ω), (23)

where

Jn,slow(ω) = S(ω)Jn(ω) (24)

delineates the slow portion and

Jn,fast(ω) = [1 − S(ω)]Jn(ω) (25)

the fast portion, where

S(ω) =
⎧
⎪⎪
⎨
⎪⎪
⎩

(1 − (ω/ω∗)2
)

2, ω < ω∗

0, ω ≥ ω∗
(26)

is a splitting function, parameterized by ω∗. In the limit that
ω∗ ≪ λ, we can consider the slow modes as static over the course
of system dynamics. In such a limit, the total time-dependent den-
sity matrix factorizes into an initial piece from the slow modes and a
time dependent remainder in which the fast modes of the bath and
the system degrees of freedom evolve, ρ(t) ≈ ρQ∈slow(0)ρQ∈fast,S(t).
In such a case, the slow modes contribute only as a source of
quenched disorder to the system Hamiltonian and induce an inho-
mogeneous broadening due to different realizations of initial condi-
tions. We include this part of the system-bath coupling directly into
the Hamiltonian as

H̃S = HS +∑
n
sn ∑

k∈slow
cn,kQ̃k, (27)

where Q̃k is a classical variable, not an operator. Since these
modes are incorporated into the system Hamiltonian, provided the
assumed separation of time scales holds, they are treated to all orders
in their coupling strength.

The reduced density matrix is obtained by averaging over
different realizations initial conditions of the slow, classical bath
degrees of freedom,

σ(t) = ∫ dQ̃ p(Q̃)σ̃(t), (28)

where

σ̃(t) = TrQ∈fast{ρ(t)} (29)
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is the reduced density matrix computed by tracing over only the
fast degrees of freedom, which depends parametrically on the
slow bath degrees of freedom. The initial conditions of the slow
modes are drawn from the distribution p(Q̃). Depending on the
temperature relative to the characteristic frequency of the slow
bath modes, p(Q̃) may be a Wigner distribution or a Boltzmann
distribution.

With this partitioning, the remaining modes in the bath now
have a smaller over-all reorganization energy. Since by construc-
tion these modes relax on a time scale faster than the system, they
induce Markovian or nearly Markovian dissipation and decoher-
ence. For this reason, we can treat these degrees of freedom with
time-dependent Redfield theory, also known as the 2nd-order Time
Convolutionless master equation42,43 (TCL2). In the TCL2 formal-
ism, the dynamics of each realization of the reduced density matrix
are given by44

∂tσ̃(t) = −i[H̃S, σ̃(t)] +∑
n
[Θn(t)σ̃(t), sn] + [sn, σ̃(t)Θ†

n(t)], (30)

where Θn(t) is the system operator dressed by the time-dependent
rates given by the bath correlation function. In the eigenstate basis
of H̃S, each element is given by

(Θn)ij(t) = (sn)ij ∫
t

0
dτe−iωijτCn(τ), (31)

where ωij = (𝜖i − 𝜖j) are the dimensionless frequencies of the system
given by scaled differences in the eigenvalues, 𝜖i, of H̃S. The bath
correlation function, Cn(t), is given by

Cn(t) =
1
π ∫

∞

0
dω Jn,fast(ω)[coth(βω/2) cos(ωt)− i sin(ωt)],

(32)

where β is inverse temperature times Boltzmann’s constant. Since
TCL2 stems from second-order perturbation theory, we expect it
to be accurate when η ≪ 1, where the dimensionless coupling is
computed over only the fast modes, Jn ,fast, with a characteristic fre-
quency given by ω∗. Together, this hybrid formulation, denoted
TCL2-FM, due to Montoya-Castillo, Berkelbach, and Reichman,35

offers a potentially computationally efficient and accurate45,46 way
to study motion through conical intersections under our physically
motivated assumptions of scale separation.

III. COMPARISON WITH EXACT RESULTS
A. Non-Markovian bath limit

To understand the effectiveness of this approach, we first con-
sider the case where the characteristic electronic time scale, λ, is well
separated the characteristic bath frequency, ωc, such that ωc/λ≪ 1.
This is expected to hold when the remaining bath degrees of freedom
are described by long wavelength solvent modes, either from slow
dipolar or density fluctuations.47,48 We explore this regime in the
relaxation of the S2(ππ∗) − S1(nπ∗) conical intersection of pyrazine,
following a model developed by Kühl and Domcke.49,50 The Hamil-
tonian has the form of a linear vibronic model with an addi-
tional ground electronic state. In dimensionless harmonic-oscillator
coordinates, it is given by

HS = ∣0⟩h0⟨0∣ + ∑
i,j=1,2
∣i⟩hiδij + λqc(1 − δij)⟨j∣,

hi = hg + V(0)i + κ(i)t qt ,

h0 = ∑
n=c,t

Ωk

2
(−

∂2

∂q2
k

+ q2
k),

(33)

where Ωt (c) is the frequency of the tuning (coupling) mode, κ(i)t
denotes the Holstein-like coupling of the tuning mode to each elec-
tronic state i, h0 denotes the Hamiltonian of the ground electronic
state, and the vertical energy shifts from the ground state are V(0)i ’s.
There are no other Holstein-like couplings, so the system-bath
coupling is given by

HSB = (∣1⟩⟨1∣ + ∣2⟩⟨2∣) ∑
n=c,t

qn∑
k
cn,kQn,k (34)

with spectral densities of the Debye form

Jn(ω) = 2Er,nωc,n
ω

ω2 + ω2
c,n

, n = c, t, (35)

which results from an exponentially decaying bath correlation func-
tion. The form of system bath coupling induces vibrational relax-
ation in each of the electronic states. The specific parameters for the
system are Ωc = 0.118, Ωt = 0.074, κ(1)t = −0.105, κ(2)t = 0.149,
λ = 0.262, V(0)1 = 3.94, and V(0)2 = 4.84, all in eV, while the tem-
perature of the bath was taken to be 300 K. The initial condition is
generated by vertical excitation from the ground electronic state |0⟩
into the diabatic electronic state |2⟩ by

σ(0) = ∣2⟩∣χ02⟩⟨χ02∣⟨2∣, (36)

where |χ02⟩ denotes the vibrationally coherent wavepacket obtained
from Franck-Condon overlaps between ground electronic state |0⟩
and electronic state |2⟩. The system was expanded in a direct product
basis of 20 harmonic oscillator eigenstates for each mode, making
the system size 800 total states. The dynamics were propagated in
a truncated basis, which with this initial condition is converged by
considering only the lowest 500 energy eigenstates. A sketch of the
system is shown in Fig. 1(a).

We compare the validity of the dynamics obtained from
TCL2 and the hybrid TCL2-FM to the dynamics obtained from
the numerically exact HEOM method by Chen et al.51 These
calculations were converged using the same basis with a hierarchy
depth of 12. Since the system was at high temperature, no Matsubara
terms were included. We first compute the time-dependent diabatic
population in electronic state |2⟩,

P2(t) = Tr{∣2⟩⟨2∣σ(t)}, (37)

from a trace over all vibronic states. Two different characteristic fre-
quencies of the bath are compared, a fast bath in which both the
tuning and coupling modes are ωc ,(c ,t ) = 0.0132 eV and a slower
bath in which ωc ,(c ,t ) = 0.003 97 eV. Thus, in both cases, the bath
relaxes on a time scale of at least an order of magnitude slower com-
pared to the Peierls coupling, ω/λ ≪ 1, and we can choose a large
value of ω∗ to treat the slow degrees of freedom. Details on the sen-
sitivity of the results to the specific choice of ω∗ are reported in
the Appendix, but over the range from ω∗ = [0.0165, 0.0329], we
obtain nearly indistinguishable population dynamics. For both baths
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FIG. 1. Diabatic populations given by Eq. (37) for a bath with ωc = 0.0132 eV with
values of the reorganization energy Er = 0.006 571 eV (a) and Er = 0.013 14 eV (b).
Shown in the inset of (a) are the potential energies for each electronic state along
the coordinate qt . In the inset of (b), shown are the results for secular Redfield
theory with frozen modes. HEOM data were taken from Ref. 51.

studied, we choose ω∗ = 0.0219 eV. Only 50 initial conditions are
needed to obtain well-converged populations, which are drawn from
a Boltzmann distribution with 1000 modes for each bath using the
discretization procedure outlined in Ref. 35.

The populations obtained in the case of the faster bath are
compared in Fig. 1. Ultrafast relaxation from state |2⟩ into state
|1⟩ occurs within 50 fs, as the initial wavepacket proceeds through
the conical intersection. This is followed by a prolonged period
of coherent wavepacket motion that persists up to 0.5 ps before
decohering. At weaker system-bath couplings than the ones pre-
sented here, TCL2 exhibits quantitative accuracy compared to
HEOM. At larger system bath coupling strengths, Er = 0.006 571
and 0.013 14 eV, TCL2 exhibits positivity violations of the den-
sity matrix, which for fixed time step leads to instabilities in the
dynamics. This failure is due to the breakdown of perturbation
theory and requires contributions from higher-order correlation
functions, as multiphonon processes become important. This is
evident by noting that the dimensionless couplings are η = 0.317
and 0.634, which are not much less 1 as required by perturbation
theory.

The hybrid approach, TCL2-FM, removes all positivity viola-
tions from TCL2 and achieves quantitative accuracy at all values of
the reorganization energy studied, as compared to HEOM. The sta-
bility of the dynamics is a consequence of the frozen modes reducing
the dimensionless couplings by nearly an order of magnitude, to
η = 0.055 and 0.086, returning the treatment of the bath into the per-
turbative regime. The accuracy is a consequence of the small effect
of the slow modes on the dynamics, acting only to further deco-
here vibrational oscillations but not significantly dissipate energy,
due to the large separation of time scales between system and bath
relaxation.

By invoking both the Markovian approximation, which takes
the time integral in Eq. (31) to infinity, and the secular approxima-
tion, which decouples the dynamics of the populations from coher-
ences in the energy eigenbasis,29 we get an equation of motion that

is guaranteed to preserve positivity of the density matrix.52,53 These
approximations fail to exhibit the extended vibrational coherence
and overestimate the rate of relaxation. Neither effect is improved
by the addition of frozen modes. The lack of vibrational dephasing
is due to the neglect of coherence-coherence couplings in the relax-
ation tensor within the secular approximation,50 and the overesti-
mation of the rate is due to the Markovian approximation. As shown
in the inset of Fig. 1(b), they do, however, obtain the correct long-
time of the populations as thermalization with the environment is
accurately modeled.

Shown in Fig. 2 are the populations for the case of the
slower bath, where non-Markovian effects are more pronounced. As
expected, TCL2 fails at an even smaller reorganization energy than in
the fast bath regime due to the violation of the 2nd-order cumulant
approximation. TCL2-FM remedies this failing and recovers quanti-
tative accuracy for all reorganization energies studied. Again, the sta-
bility is a consequence of reducing the dimensionless coupling by an
order of magnitude. In this case, the original couplings are η = 0.210,
1.05, and 2.10 and are reduced to η = 0.021, 0.106, and 0.213, respec-
tively, by freezing the slow modes. As has been noted previously,35

the inclusion of the slow modes as static disorder effectively incor-
porates all-order effects from those bath modes, albeit only their
influence on the altered eigenstructure of the Hamiltonian. When
the time scales of system and bath relaxation are well separated, as
is expected to hold generally in systems with conical intersections
where electronic relaxation is ultrafast, this frozen mode approxi-
mation allows for an accurate low order quantum master equation
description of the dynamics.

FIG. 2. Diabatic populations for a bath with ωc = 0.003 97 eV with values of
the reorganization energy Er = 0.001 314 eV (a), Er = 0.006 571 eV (b), and
Er = 0.013 14 eV (c). HEOM data were taken from Ref. 51.
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A rigorous test of the accuracy of frozen modes can be obtained
by comparing the projection of the wavepackets in the adiabatic
basis obtained from

Pad
j (qt , t) = ∫ dqc⟨qc∣⟨qt ∣⟨̃ej∣σ(t)∣ẽj⟩∣qt⟩∣qc⟩, (38)

Pad
j (qc, t) = ∫ dqt⟨qc∣⟨qt ∣⟨̃ej∣σ(t)∣ẽj⟩∣qt⟩∣qc⟩, (39)

where |ẽj=1,2⟩ are the adiabatic electronic wavefunctions given by the
diabatic-to-adiabatic transformation54

∣ẽj⟩ = ∑
j′
S(qc, qt)∣j′⟩, (40)

where S(qc, qt) is the rotation matrix given by

S(qc, qt) =
⎛

⎝

cosα(qc, qt) − sinα(qc, qt)

sinα(qc, qt) cosα(qc, qt)

⎞

⎠

, (41)

where α(qc, qt) is the diabatic-to-adiabatic mixing angle. These pro-
jections record information about the entire density matrix since
it requires unitary transformations acting on both populations and
coherences. Figure 3(a) shows the projection of the wavepacket
along the tuning mode obtained from TCL2-FM compared to those
obtained from HEOM. The results from the TCL2-FM approach
are virtually indistinguishable from the HEOM results at all times.
This implies that the full density matrix is accurately computed
with TCL2-FM. Projections along the coupling mode are shown in
Fig. 3(b). Again, TCL2-FM exhibits quantitative accuracy. That the
full density matrix is accurately obtained also implies that arbitrary
observables, including spectroscopic signals,45 might be reliably
computed.

B. Markovian bath limit
To understand the limits of this approach, we next consider the

case where the characteristic electronic time scale, λ, is not sepa-
rated by the characteristic bath frequency, ωc, such that ωc/λ ∼ 1.
This limit is expected when the remaining bath degrees of freedom
couple directly to the electronic states through optical solvent modes
or to high frequency vibrations. We study this case in a model for
the photoisomerization dynamics of retinal rhodopsin, shown in the
inset of Fig. 4(a). This model has been studied by Thoss and Wang
using the numerically exact multilayer formulation of MCTDH,
ML-MCTDH.55 The model describes the dynamics along a peri-
odic isomerization coordinate, 𝜙, which plays the role of the tuning
mode, and a harmonic coupling coordinate, qc.

The system Hamiltonian has the following form:

HS = ∑
i,j=0,1
∣i⟩(T + Vi)δij + λqc(1 − δij)⟨j∣, (42)

where T is the total kinetic energy operator,

T = −
1
2I

∂2

∂φ2 −
Ωc

2
∂2

∂q2
c

, (43)

where I is the moment of inertia for the tuning mode. The potential
energies for each electronic state, V i, are

Vi = V(0)i + (−1)i
1
2
Wi(1 − cosφ) +

Ωc

2
q2
c + δ1iκcqc, (44)

where Wn are the energy amplitudes of the isomerization poten-
tial and V(0)i are the energy shifts of each diabatic state relative to
the energy in the cis state. The coupling mode is described by the
frequency Ωc and Holstein coupling κc. The specific parameters for
this model are I−1 = 1.43 × 10−3, V(0)0 = 0.0, V(0)1 = 2.0, W0 = 2.3,
W1 = 1.5, Ωc = 0.19, λ = 0.19, and κc = 0.095, all in eV. The system
was expanded in a basis of plane waves for the isomerization mode

FIG. 3. Projections onto the adiabatic ground (left column)- and excited-state (right column) surfaces for the dimensionless coordinate qt (a) and for qc (b) for the pyrazine
system with ωc = 0.0132 eV and Er = 0.006 571. The top row shows results from TCL2-FM, while the bottom row shows results from HEOM from Ref. 51.
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FIG. 4. Shown are the results for the population in the trans state at different reor-
ganization energies: Er = 0.0159 eV (a), Er = 0.159 eV (b), and Er = 0.318 eV
(c). Numerically exact ML-MCTDH results from Ref. 55 are shown in solid black
lines, Redfield theory in green dotted lines, TCL2 in blue dotted-dashed lines, and
TCL2-FM in dashed red lines. The inset of (a) shows a figure of the periodic sys-
tem along the 𝜙 coordinate. In (c), we also show the results when the entire bath
is discretized and frozen (solid purple line) giving rise to a purely unitary dynamics
for each realization of bath modes. The unitary-FM dynamics were obtained by
sampling over 100 trajectories.

and harmonic oscillator eigenstates for the coupling mode with a
basis set size of 301 and 24, respectively. This choice gave a Hilbert
space size of 14 448 states, but the dynamics were converged using
only the lowest 1000 energy eigenstates.

The form of the system-bath coupling is given by

HSB = ∣1⟩⟨1∣∑
k
ckQk, (45)

which describes the response of a polar solvent to an instanta-
neous change in the charge distribution of the molecule. The spectral
density used is Ohmic with an exponential cutoff

J(ω) =
πEr
ωc

ωe−ω/ωc , (46)

and the value of this cutoff frequency used was ωc = 0.2 eV. The
temperature was taken to be 0 K. The initial condition was a vertical
excitation of the ground vibrational state of electronic state |0⟩ into
electronic state |1⟩, given by

σ(0) = ∣1⟩∣χ01⟩⟨χ01∣⟨1∣, (47)

where again |χ01⟩ denotes the vibrationally coherent wavepacket
obtained from Franck-Condon overlaps between the two electronic
states.

To test the validity of the TCL2 with the frozen mode approach,
we simulated the dynamics up to 2 ps and compared to the exact

result obtained from ML-MCTDH for a range of reorganization
energies, which represented the system degrees of freedom and a
discretized bath of ∼40 modes explicitly. We specifically compute
the time-dependent population of the trans state,

Ptrans(t) = Tr{θ(∣φ∣ − π/2)}, (48)

where θ(x) is the Heaviside step function and the trace implies inte-
gration over the 𝜙 and qc coordinates, following initial excitation.
For this model, the electronic time scale inferred from the Peierls
coupling, λ, is nearly the same as the characteristic frequency of the
bath, ωc, or ωc/λ ∼ 1. Since the electronic and bath time scales are
not well separated, we expect that while choosing to freeze some
modes of the bath will reduce the system-bath coupling and sta-
bilize the perturbation theory description of the fast bath modes;
this will come at a cost of incorrectly describing the time-dependent
dissipation as modes that are being held frozen should contribute.
We first consider the consequences of choosing ω∗ = ωc, which
will reduce the strength of coupling from modes that have frequen-
cies smaller than the position of the peak in the spectral density,
while treating the peak and modes with higher frequency with per-
turbation theory. We discretized the bath using 1000 modes and
sampled over the Wigner transform of the Boltzmann distribu-
tion. Only five trajectories were averaged over due to the negli-
gible effect of the frozen modes to TCL2 dynamics as discussed
below.

Figure 4 shows the time dependent population in the trans
state. At the smallest value of the reorganization energy used,
Er = 0.0159 eV, shown in Fig. 4(a), the dynamics are characterized by
relaxation of the population after 0.1 ps and highly damped decay of
vibrational coherences on a similar time scale. For this case, Marko-
vian Redfield theory and TCL2 are nearly indistinguishable. This is
a consequence of being well within the weak coupling limit, with
η = 0.050. The dynamics are in quantitative agreement with available
numerically exact ML-MCTDH results.56 Adding frozen modes has
no real effect on the dynamics, which might be expected at a small
value of system-bath coupling.

At a reorganization energy that is a factor of ten larger,
Er = 0.159 eV, Redfield theory exhibits positivity violations that ren-
der the dynamics unstable after 1.5 ps. These results are shown in
Fig. 4(b). These violations are corrected by TCL2 over short times,
but at longer times, TCL2 also becomes unstable. Using frozen
modes stabilizes the dynamics at longer times but has no effect
at intermediate times. In all three descriptions, the early qualita-
tive features are correct, but the population in the trans state is
too large for TCL2 and TCL2-FM at 2 ps and it does not decrease
at long times as the exact ML-MCTDH results do. Under these
conditions, the coupling to the bath is reduced from η = 0.495 to
η = 0.177 using frozen modes, but is still larger than be
expected to yield accurate results. Thus, there are expected mul-
tiphonon processes that are missed by the perturbative treatment
in TCL2.

At even larger reorganization energies, both TCL2 and TCL2-
FM show positivity violations and result in unstable dynamics past
1 ps. These results are shown in Fig. 4(c). At this value of the reor-
ganization energy, the couplings to the bath both without and with
frozen modes are η = 1.01 and η = 0.372, respectively, which are
too large to self-consistently truncate the cumulant expansion at sec-
ond order. By taking ω∗ to be larger, we can sufficiently reduce the
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coupling to the remaining bath degrees of freedom that the dynam-
ics are stable but still dissipative within a TCL2 description. How-
ever, the dynamics deviate from the numerically exact result, as the
approximation that degrees of freedom with ω < ω∗ are static is not
valid as λ < ω∗, leading to a description of the dynamics that is not
consistent. While in the pyrazine model, the large separation of time
scales allowed a large range of ω∗ to be selected without disrupting
the subsequent relaxation dynamics, this separation is not present
for the rhodopsin model studied.

To formulate a correct description of the system dynamics in
the limit of strong system-bath coupling when motion in the sys-
tem and bath are on similar time scales requires that the reorga-
nization energy be reduced without freezing fast bath modes. This
could be done by adding an additional effective bath mode into
the description of the system, whose dynamics would be treated
exactly. While including additional modes into the system Hamil-
tonian dramatically increases the Hilbert space, using unraveling
techniques that reduce the scaling of master equation propaga-
tion,57,58 adding a few additional modes is possible. This is an
active area of research though beyond the scope of the present
study.

IV. APPLICATION TO PHOTOISOMERIZATION
QUANTUM YIELDS

With the limitations of our approach mapped out, we now
study the dependence of the photoisomerization quantum yield on
the bath. We consider the nonadiabatic relaxation through a conical
intersection of a linear vibronic model constructed to have features
similar to those in molecular photoisomerization processes.59,60

Specifically, we construct a model where a conical intersection lies
above two adjacent basins, one metastable with respect to the other.
Our approach enables us to study a wide range of system-bath cou-
pling strengths in the Markovian and non-Markovian regimes and
understand the impact of the yield on these parameters. Describ-
ing the dynamical features arising in such complex environments is
paramount to describe the yields as they are completely determined
by relaxation rates rather than being constrained by thermodynamic
considerations.61

The Hamiltonian we consider has the form

HS = ∑
i,j=0,1
∣i⟩hiδij + λqc(1 − δij)⟨j∣,

(49)

hi = ∑
k=c,t

Ωk

2
(−

∂2

∂q2
k

+ q2
k) + κ(i)t qt + V(0)i ,

with a system-bath coupling,

HSB = (∣0⟩⟨0∣ + ∣1⟩⟨1∣) ∑
n=c,t

qn∑
k
ck,nQk, (50)

meant to model vibrational relaxation and an Ohmic spectral density
with exponential cutoff

Jn(ω) =
πEr,n
ωc,n

ωe−ω/ωc,n , n = c, t, (51)

for both the coupling and tuning modes. The model described here,
shown in Fig. 5(a), is similar to a model studied by Thorwart and
co-workers.62,63 We set the parameters to be Ωc = 0.112, Ωt = 0.0620,
κ(0)t = −0.186, κ(1)t = 0.186, λ = 0.0248, V(0)1 = −0.031, and
V(0)2 = 0.031 in eV, while the temperature of the bath is taken to
be 300 K. The Hamiltonian was expanded in a basis of harmonic
oscillator eigenstates with 75 states used for the tuning mode and 5
states for the coupling mode. The dynamics were propagated in the
energy eigenbasis with a truncated basis of 400 states, which shows
convergence to the full Hilbert space.

We have tuned the system Hamiltonian parameters to include
a metastable well in the higher-energy electronic state. The bar-
rier to transferring population along the ground adiabatic state is
∼0.129 eV, so there will be a separation of time scales between initial
relaxation into the minima of the two diabatic states and subsequent
barrier crossings. We consider the dynamics following a vertical
excitation into state |1⟩ from the ground vibrational state of |0⟩,

σ(0) = ∣1⟩∣χ01⟩⟨χ01∣⟨1∣, (52)

and are interested in the quantum yield into state |1⟩ following sub-
sequent relaxation over times long relative to vibrational relaxation
but short relative to relaxation into a thermal state.

We have studied the dynamics of this model with two differ-
ent environments, one in the Markovian regime where ωc ∼ λ and

FIG. 5. Shown in (a) is the harmonic
oscillator model with the initial condi-
tion. The spectral densities used are
shown in (b) with ωc = Ωt in blue and
ωc = Ωt /10 in red. Projections onto the
diabatic electronic surfaces in the dimen-
sionless coordinate qt are shown in (c)
for Er , t = 0.2 with ωc = Ωt (top) and
ωc = Ωt /10 (bottom).
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one in the non-Markovian regime where ωc≪ λ. These two regimes
are illustrated by their spectral densities in Fig. 5(b). For both baths,
we have studied the dynamics over a range of reorganization ener-
gies. The fast bath we study has a cutoff frequency of ωc ,t = 0.062 eV
for the tuning mode and ωc ,c = 0.112 eV for the coupling mode.
Since the bath is moderately fast relative to the time scale induced
by the electronic coupling and the reorganization energies used are
small, the largest has a coupling constant of η < 0.1; these popula-
tions are accurately obtained from TCL2 without the use of frozen
modes. The slow bath we study has cutoff frequencies for the tun-
ing mode ωc ,t = 0.0062 eV with the coupling mode held fixed. Since
this system is in a more non-Markovian regime, the dynamics using
TCL2 alone exhibit positivity violations at significantly smaller val-
ues of the reorganization energy relative to the fast bath, and we thus
use the frozen mode approach. However, we found it necessary to
only freeze modes in the bath associated with the tuning mode. For
each value of the reorganization energy, we used ω∗ = 0.008 68 eV,
decreasing the largest value of the coupling to η = 0.05. We find
that choosing ω∗ between 0.008 eV and 0.014 eV results in quan-
titatively similar population dynamics for all system bath coupling
strengths considered. We simulated the dynamics with 50 trajecto-
ries, by discretizing the slow bath into 1000 modes for the tuning
mode.

Shown in Fig. 5(c) are the projections of the wavepacket onto
the position basis of the tuning mode for each diabatic state, given
by

Pj(qt , t) = ∫ dqc⟨qc∣⟨qt ∣⟨j∣σ(t)∣j⟩∣qt⟩∣qc⟩, (53)

for both baths. In the fast bath case, the wavepacket starts in elec-
tronic state |1⟩ and coherently oscillates with enough energy to put
it back in the Franck-Condon region at short times. The bath dis-
sipates energy from this wavepacket, which reduces the vibrational
coherence until the wavepacket can no longer reach the Franck-
Condon region. In the slow bath case, the wavepacket dynamics are
markedly different, showing an extended lifetime in higher-energy
vibrational states. The rate of decoherence appears to be much
faster as the oscillations of the wavepacket are damped out almost
instantly, which is a reflection of the role of slow bath being a source
of inhomogeneous broadening.

These different relaxation mechanisms result in different quan-
tum yields and strikingly different dependence on the bath reor-
ganization energy. We define the quantum yield as the diabatic
population in state |1⟩ in the quasi-steady-state limit,

P1(tss) = Tr{∣1⟩⟨1∣σ(tss)}, (54)

where tss is the time taken for the diabatic populations to be nearly
time invariant, which for the parameters studied is around 4 ps. In
the case of the fast bath, we find that the yield increases monotoni-
cally with the reorganization energy. This is shown in Fig. 6, where
η is proportional to the reorganization energy with ωc fixed, and
we take η and Er from the total spectral density, not the reduced
values from just the fast modes. The increase in the yield with
reorganization energy in the fast bath is attributable to the fact
that with increasing Er , the wavepacket spends less time in the
Franck-Condon region where population can transfer between the
two diabatic states through electronic coupling. As is evident from
the wavepacket dynamics, increasing the reorganization energy will

FIG. 6. Yields of P1(t) taken in the quasi-steady-state limit for ωc , t = Ωc /10 (blue
squares) and ωc , t = Ωt (red circles), as a function of the coupling strength, η,
computed from the total spectral density.

increase the rate of vibrational dissipation and hence the localiza-
tion of the wavepacket into the minima of the diabatic states. In
the case of the slow bath, we find the opposite trend. Increasing the
reorganization energy results in decreasing the quantum yield. This
decrease is attributable to the increased rate of decoherence and the
slower rate of dissipation due to the lag in the bath’s ability to remove
energy from the system.

These results are in contrast to some other observations on
related linear vibronic models. Previously, Thorwart and co-workers
have found that the lifetime of vibrational coherence could be
tuned by the reorganization energy or characteristic frequency of
the bath and the persistence of this coherence had large impact
on the photoisomerization yield.62–64 While we note that the for-
mer of these claims is verified by our simulations, we note that
the diabatic potentials they studied do not have metastability as
the zero point energy in the higher-energy electronic state is on
the order of the barrier height for population transfer along the
ground adiabatic state. Having a well-defined quantum yield, in
which there is a long-lived metastable state, requires a separation
of time scales between the initial relaxation and the eventual ther-
malization. If the barrier height is not sufficiently large, as in their
previous work,62–64 then there will not be a separation of time scales,
and thus, there will not be a uniquely defined quantum yield. Never-
theless, the complex dependence of the quantum yield on the param-
eters of the bath that we have found illustrates the rich chemical
dynamics of conical intersection models that can be interrogated
efficiently.

V. CONCLUSION
In this paper, we have developed a strategy for simulating

nonadiabatic relaxation through conical intersections in the con-
densed phase. The framework leverages the separation of time scales
between the ultrafast dynamics of a few strongly coupled nuclear
degrees of freedom and the remaining weakly coupled degrees of
freedom. In cases where the characteristic time scales of these two
motions are well separated, when the nonadiabatic coupling is much
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larger than the characteristic frequency of the bath, we can con-
sider the slowest of those modes frozen and treat the remaining
with perturbation theory. Freezing the slowest modes produces a
source of static disorder and acts to decohere the resultant dynamics.
Weak coupling perturbation theory, in the form of TCL2, correctly
describes the time dependent dissipation to the environment, and
when low frequency modes are included as static disorder, it has a
large domain of applicability. This is consistent with what has been
previously observed in the context of the spin boson model.35

When applicable, the strategy we have presented represents
a computationally efficient framework for simulating dynamics in
condensed phase environments. This efficiency is due to the optimal
representation of subsets of degrees of freedom. The hybrid method
used in this paper formally scales as O(tNtrajNbathN3

), where Ntraj
is the number of trajectories used that can be trivially parallelized,
Nbath is the number of baths, and N is the number of states in the
system, and is linear in time t.44 Wavefunction based methods like
ML-MCTDH suffer from an exponential scaling in the size of the
system that must be represented, albeit with a reduced scaling than
naive direct product wavefunctions. This scaling arises in condensed
phase models through the representation of explicit bath degrees of
freedom, which causes superlinear scaling in the number of baths
and causes exponential scaling in time due to the difficulty in avoid-
ing Poincare recurrences. While exact quantum master equations,
like HEOM, do not suffer from exponential scaling in time, they
offer little benefit to the overall scaling as they scale factorially in
the number of auxiliary degrees of freedom that must be repre-
sented. This scaling causes significant memory requirements and
also has superlinear scaling in the number of baths. This makes
low temperature and non-Markovian systems particularly difficult
to study. As this approach extends the limitations of weak-coupling
theories, it can be combined with importance sampling tools devel-
oped at weak-coupling to study reaction mechanisms.65 In molec-
ular systems, when the number of degrees of freedom as well as
anharmonicities in the system increases, we thus expect the hybrid
approach of this paper to be useful in providing numerically accurate
results.
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APPENDIX: CHOOSING ω∗

Here, we consider the choice of the parameter ω∗ in the
TCL2-FM method for conical intersection models. We note that for
site-exciton models, an efficient choice has been found that parti-
tions the bath based on the comparison of the Rabi frequencies and
the characteristic frequency of the bath.35 Our discussion on this

choice for conical intersection models will be ad hoc, in that there
will be no rigorously derived equation, but will provide a physically
motivated procedure using the pyrazine model as an example.

Figure 7(a) shows the dynamics of the pyrazine model with-
out the presence of a bath. Within the first 30 fs, there is significant
population transfer from electronic state |2⟩ to state |1⟩ followed by
electronic beating that is modulated by the vibrational levels. These
observations match with those of Krčmár et al., who compute two-
dimensional electronic spectra in the two-mode pyrazine model with
phenomenological dephasing.66 The spectra showed rapid popula-
tion transfer between the two electronic states within 50 fs in addi-
tion to a complicated vibronic structure. The complex structure of
this beating makes us choose a characteristic time scale of the sys-
tem that can delineate between the slow and fast portions of the bath
difficult. Despite this complexity, we infer that this first population
transfer determines the splitting frequency for the bath.

This hypothesis can be numerically tested by varying ω∗ to treat
less and less of the bath with TCL2 and incorporate more of the
bath into the frozen mode description. Example diabatic popula-
tions are shown in Fig. 7(b) for a range of values of ω∗ compared
to the HEOM result and the TCL2-FM result from Fig. 2(b). For
very small values of ω∗, positivity violations are observed. As ω∗ is
increased, these positivity violations become delayed until eventually
they are washed out entirely. At values of ω∗ corresponding to the
range [0.0165, 0.0329] eV, the numerically exact result is essentially
reproduced; however, as ω∗ is increased to infinity so that the entire
bath is treated as static, the results exhibit deviations due to the lack
of dissipation in the completely static bath limit.

FIG. 7. Shown are the population dynamics for the pyrazine model without the
presence of a bath (a). TCL2-FM with different values of ω∗ corresponding to a
time scale given in the colorbar are shown in (b). Also shown in (b) are exact HEOM
(solid black lines) and TCL2-FM (dashed red line) results with ω∗ = 0.0219 eV
from the main text. The bath parameters used were ωc = 0.003 97 eV and
Er = 0.006 571 eV.
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