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ABSTRACT
Occupancy detection, tracking, and estimation has a wide range of
applications including improving building energy efficiency, safety,
and security of the occupants. As depth sensors are getting cheaper,
they offer a viable solution to estimate occupancy accurately in
a non-privacy invasive manner. Even though there are publicly
available depth datasets, they do not consider placing the sensor in
the ceiling looking downwards to estimate occupancy. We deployed
four Kinect for XBOX One in four CMU classrooms and conference
rooms for a period of four weeks in 2017 and collected over 6 TB of
depth data. We annotate this huge dataset by labelling bounding
boxes around occupants and release the annotated dataset.
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1 INTRODUCTION
Occupancy detection, tracking, and estimation is primitive to pro-
vide efficient energy management of buildings as well as improving
∗Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DATA’19, November 10, 2019, New York, NY, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6993-0/19/11. . . $15.00
https://doi.org/10.1145/3359427.3361916

safety and security of the occupants. Various sensors have been
used for this purpose including PIR motion detectors, RGB cameras,
ultrasonic sensors [10], infrared array sensors [8], depth sensors [9],
millimeter wave radar [12], radio [3], and thermal images. While
each sensing solution has its strength and weakness, with the rapid
drop of price, depth sensors have the potential to provide very
accurate occupancy estimation in a non-privacy invasive way [9]
[7].

There has been several work to detect humans as well as their
gesture and pose using depth sensors [2] [11]. However, in most
of these works, the depth sensor is placed in front of individuals.
There has been very few attempts to collect depth data from a sen-
sor that is mounted in the ceiling looking downwards. To this end,
we deployed four Microsoft Kinect for Xbox One (Kinect Version
2.0) into four different classrooms and conference room entrances
at the main campus of Carnegie Mellon University (CMU) in 2017.
The deployment at each setting is shown in Figure 1. Rooms 1
and 2 correspond to classrooms, while Rooms 3 is a conference
room and Room 4 is a student lounge. The size of the doors in each
of these rooms varied from 3 feet to 6 feet and the sensors were
placed at heights between 9.43 feet to 9.48 feet. Each Kinect was
connected to an Intel Next Unit of Computing (NUC) for captur-
ing the depth images. We collected raw depth frames from each
door for a period of a work week resulting in over 6TB large scale
dataset of depth information. Our dataset captures various realistic
scenarios including door opening and closing, students coming
with backpacks, gym bags, papers, laptops, bike helmets hanging
around the shoulders, carrying jackets in hands, carrying paper
scrapbooks, wearing headphones over their heads, wearing sun-
glasses over their heads, wearing caps, and wearing hoodies. We
realize that such one week data collection per deployment does
not capture long term occupancy dynamics. However, our long
term occupancy data is available in [6], [4], [5]. Also, our dataset
does not annotate the objects that are being carried by humans. We
release another dataset [7], where various objects are annotated
in addition to humans including phone, umbrella, cup, box, gun,
laptop, and backpack. Table 1 shows the duration of data collection
from each room, the frame rate, an approximate number for the
collected frames, the size of the full raw dataset, an approximate
number of frames with humans and its respective size.
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(a) Room 1 (b) Room 2 (c) Room 3 (d) Room 4

Figure 1: Deployment of Kinects at the ceiling near doorways in four deployment settings

Start Date End Date Frames per Second Total Frames Total Size Selected Frames Selected Frames Size
Room 1 JUN-14-2017 JUL-20-2017 28.08 6.2M 1.78 TB 14,000 3.0 GB
Room 2 MAY-08-2017 MAY-15-2017 28.90 6.1M 1.1 TB 8,000 1.7 GB
Room 3 JUN-27-2017 JUL-03-2017 28.33 6.5M 1.7 TB 30,000 5.5 GB
Room 4 MAY-26-2017 MAY-31-2017 29.39 6.2M 1.55 TB 18,000 3.5 GB

Table 1: Description of the entire data collection.

(a) Room 1 (b) Room 2 (c) Room 3 (d) Room 4

Figure 2: Sample images of the annotated depth frames from each deployment setting.

2 DATA
Our dataset consists of around 70,000 depth images after discarding
the depth frames that do not contain any humans. Each depth image
has the resolution of 512 × 424 (single channel). Each pixel is a 16
bit unsigned integer that provides the distance from the sensor to
the nearest object in millimeters. We annotate each of these frames
by labelling bounding boxes around each person in the frame. An
example depth frame from each deployment setting with annotated
bounding box is shown in Figure 2. Note that the depth images have
been pre-processed for ease of visibility in Figure 2. We save the
annotations as XML files in PASCAL VOC format, which provide
the location of each person within an image and the corresponding
label. This is the first dataset that captures such diverse nature of
movement of people using vertically mounted depth sensors.

After the annotation, we divide the dataset into training, vali-
dation, and testing. The approximate number of depth images in
each partition is show in Table 2. Such a separation will help future
works to perform benchmarking comparison. When creating this
split, we maintain the temporal sequence of frames, i.e., the frames
with increasing file numbers are in chronological order instead of

randomly shuffled so that they can be used to track and estimate
occupancy. The dataset is available for download from here [1].

Training Validation Testing
Images 42,000 14,000 14,000

Table 2: Number of annotated depth images for training, val-
idation, and testing.
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