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Optimization
Problems




.| Types of Binary
Optimization Problems

Unconstrained Optimization
MaxCut

MaxE3]IN2

Constrained Optimization
MINVERTEXCOVER



1 MaxCut -

Given a graph G = (V, E), we want to
partition the vertices into two sets V'€V and

V/V', s.t. the number of edges, {u, v} € E,
that have u € V' and v € V/V' is maximized.

Example: MAXCUT =?
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1 MaxCut -

Given a graph G = (V, E), we want to
partition the vertices into two sets V'€V and

V/V', s.t. the number of edges, {u, v} € E,
that have u € V' and v € V/V' is maximized.

Example: MAXCUT = 4
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'MAXE3LIN2 n

Given a system of linear equations
E E,, ..., E,, over Z, where each linear

equation, E;, has exactly three variables,

(xj, X, X;) € {0,1}. We want to find variables,
X1, -y X, S.t. the maximum number of
equations are satistied.



.| MAXE3LIN2

Example: MAXE3LIN2 =7

Eiixy+x, +x3 =1
Es: xi +x3+x5 =0
Ex: X5 + x4 +x5 =1
Epi x4 +xc+x5 =1




.| MAXE3LIN2

Example: MAXE3LIN2 =7

Eiixy+x, +x3 =1
Es: xi +x3+x5 =0
Ez: xo + x4 +x5 =1
Epi x4 + x5 +x5 =1

If weletx; = x, = x3 = x5 = 1 and

X4, = Xg = 0 then Ey, E5, and E, are satisfied,
but not Ez.



.| MAXE3LIN2

Example: MAXE3LIN2 = ?

El: X1 T X9 T X3 = 1
Es: xi +x3+x5 =0
E3: Xo T Xgqg T Xg = 1
Ey: x4+ x5 +x6 =1

Note that the LHS adds up to 0 while the RHS
adds up to 1. Thus we cannot satisty all four
clauses simultaneously.



.| MAXE3LIN2

Example: MAXE3LIN2 = 3

Eiixy+x, +x3 =1
Es: xi +x3+x5 =0
Ex: X5 + x4 +x5 =1
Epi x4 +xc+x5 =1




| VERTEXCOVER

Given a graph G = (V, E), we want to find a
subset of vertices V' €V, s.t. V edges
{fu,v}e E,ueV orveV.
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| VERTEXCOVER

Given a graph G = (V, E), we want to find a
subset of vertices V' €V, s.t. V edges
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I MINVERTEXCOVER
Given a graph G = (V, E), we want to find

the minimum subset of vertices V' €V s.t.
for all edges {u, v} EE,u €V orv €V’

Example: MINVERTEXCOVER = ?
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I MINVERTEXCOVER
Given a graph G = (V, E), we want to find

the minimum subset of vertices V' €V s.t.
for all edges {u, v} EE,u €V orv €V’

Example: MINVERTEXCOVER = 2
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Quantum Approximate
Optimization Algorithm
(QAOA)H

[1] Farhi and Goldstone (2014)



.| What is QAOA! L

The goal of QAOA is to approximate hard

optimization problems on a quantum computer.

Given f:{0,1}" - R find x € {0,1}" s.t.

f(x) is 2 minimum (maximum).

We can represent f(x) as a problem
Hamiltonian,

Hplx) = f(x)]x).



.| Inspiration

QAOA was inspired by Trotterization of
Adiabatic Quantum Computing (AQC)



TAQC n

In AQC we start in a ground state of a driver
Hamiltonian that 1s easy to prepare i.e.

NE \+)®n the ground state of Hp = EX-

J=
We then evolve under the Hamiltonian,

H(t) = s(t)Hp + (1 — s(t))Hp

where § = s(t) is a smooth function of t,

s(t=0)=0,ands(t=T) = 1.



| Trotterization L

U(T,0) =
U(T,T = AU (T = At, T = 2AT) ... U(At, 0) =

1_[ U(kAt, (k — 1)At)
k=1

where At = T/ and,

: " :
U(t,, t1) = Texp —if H(t)dt]|.
] t ]




| Trotterization

For At K T, H(t) is approximately constant
over the time interval At.

N

U(T, O) -~ 1_[ e—iAtH(kAt)

k=1



| Lie-Trotter-Suzuki -
We now use the Lie-Trotter-Suzuki decomposition,
6(A+B) ~ eSA OB 1 0(52 )

with the assumption that At < T to make the

approximation
I\

U(T,0) ~ 1_[ o —iAt[s(kAt) Hp+(1-s(KAL))Hp]
. k=0

~ | | e—iAt(l—S(kAt))HD o —iAts(kA)Hp

k=0



L QAOA

Now for QAOA we let N become p where p K N.

We then define B = B165 ... Bp and ¥ = y1¥5 ... ¥p as free

parameter S.

We let At(l — S(kAt)) g0 to By and Ats(kAt) go to yy.

Now we define the QAOA,, operator

p

Qp(ﬁ;)/) — 1_[ e_i'BkHDe_iYka .

k=0



1 Goal

We want to find optimal times f§ and ¥ for
some number of iterations p K ©0 such

that the expectation value of the problem
Hamiltonian 1s minimized.

minﬁ,y (BI ) 4 ‘HP ‘ﬁ)y )



Does it work?

From Trotterization, it follows that we
obtain the optimal solution when p — oo.
Due to the curse of dimensionality, it is
difficult to analyze p > 1.

For Max]

H31N2, Farhi and Goldstone

showed QAOA; made a better approximation
than the best known classical algorithm only

to inspire

a better classical algorithm. !

[1] Farhi and Goldstone (2014)



Approximating Constrained
Optimization Problems



: QAOA++I1112]

Problem Hamiltonian:
2N _1

Hp = ) f@)lx)xl
x=0
Driving Hamiltonian:

Hplx) = zcj|xj) V |[x) e F

J
where {|x])} is the basis for F, and F is the space of

feasible solutions.

Initial state: |S) € F

[1] Hadfield et. al. (2017) [2] Marsh and Wang (2018)



| Constrained Quantum n
Annealingl!! (CQA)

Problem Hamiltonian:
211

He = ) folxn
x=0

Driving Hamiltonian: Choose Hp s.t. [Hp, HF] = 0
where for the computational basis {lx])},

Hg|x;) = .
1) Ajlx;) st A > 0if |x;) & F

Initial state: |s) € F
[1] Hen and Spedaliert (20106)




1 QAOA with Penalties

Problem Hamiltonian:
21n—1

Hp= ) fCOlxNx| + ak
x=0

Driving Hamiltonian:

Zn
J=0

Initial state: |s) = |+)9O™



. QAOA++ & CQA

(=)
Suppose V |f) € F,

HD f>:2Cj f})

J

Define
DU

Hp = Z Clx)(x| where ¢, = {(i if [x) €F

o.W.
X=0



1 QAOA++ & CQA [

(=)
It (.X‘HDHF‘y) <X‘HFHD‘3’> V basis vectors
\x) and |y) of the full space then [Hp, Hr] = 0.

There are three cases:
x)EFand |y) EF

Either |x) or |y) € F, but not both.
x) & F and |y) & F.




| QAOA++ & CQA

(=)
Case 1: |x) € Fand |y) € F.
Hp|x) = Hg|y) =0
= (x|HpHg|y) = (x|HgHply) = 0.




| QAOA++ © CQA .

(=)
Case 2: Either |x) or |y) € F, but not both.
WLOG let |x) € F.
Then Hp|x) € F.
= Hp|x) = Hp(Hp|x)) = 0.
Thus (x|HpHg|y) = {(x|HpHp|y) = 0.



| QAOA++ © CQA .

(=)
Case 3: |x) € F and |y) & F.
Hg|x) = |x) and Hg|y) = |y).
= (x|HpHgp|y) = (x|Hply) = (x|HrHp|y).



| QAOCA++ & CQA

S
Suppose |Hp, Hr] = 0, and let the feasible

subspace be the ground state of the feasible
Hamiltonian

Hy|x) = 0 iff |[x) € F.

Let [x) € F. Then
Hr(Hp|x)) = HpHg|x) = 0.

Thus Hp|x) EF V |x) € F.




| QAOA++ ©CQA

Therefore if you have a driving Hamiltonian

for QAOA++ you can use it for CQA and if

you have a driving Hamiltonian for CQA you
can use it for QAOA++.







. How does QAOA with
penalties compare!

l.ook at MINVERTEXCOVER.

Then look at the general case.



|MINVERTEXCOVER Mappingl!l g

Given a graph, G = (V, E), assign each qubit
to a vertex U € V.

If a qubit is in the —1 eigenstate of Z, |1),
the vertex represented by that qubit is in the
vertex cover. If a qubit 1s in the +1 eigenstate
of Z,|0), the vertex represented by that qubit
1s not 1n the vertex cover.

[1] Hadfield et. al. (2017)



T QAOA++ 1]

Problem Hamiltonian:

HP=ZWu

uev

where W, = |1){(1],,

Driving Hamiltonian:

HD:Z Xy Z W,

UEV VEV
s.t.{u,v}€E
Initial state:
5) = [

[1] Hadfield et. al. (2017)



| QAOA with penalties

Problem Hamiltonian:

Ho= ) Wyt ) (1= Wy = Wy + Wy W})

UEV {u,v}ekE
Driving Hamiltonian:

HD=_ZXu

uev
Initial state:

sy = |+)@V



1 Goal |

Compare how these two techniques perform on
MmnVEerTEXCOVER using numerical approaches.

Try to gain intuition to show connection
analytically for MinVerTEXCOVER, and in general.

Finding a connection between QAOA++ and
QAOA with penalties could allow us to show that
if good values of B and ¥y can be found for one of
these techniques, they can also be found for the
other one.






