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Optimization
Problems



30 Types of Binary
Optimization Problems

Unconstrained Optimization

MAXCUT

MAxE3LIN2

Constrained Optimization

MIN VERT   FAC OVER

•
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MAXCUT .

•Given a graph G (V , E), we want to
partition the vertices into two sets V' g V and
I 7 117' , s.t. the number of edges, tu, vl E E,
that have u E V' and v E I 7 Iv' is maximized.

Example: MAXCUT = ?
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MAXCUT .

•Given a graph G (V , E), we want to
partition the vertices into two sets V' g V and
I 7 117' , s.t. the number of edges, tu, vl E E,
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28 MAXERI N2 •

Given a system of linear equations
E1, E2, ... , En, over 7L2 where each linear
equation, Ei, has exactly three variables,
(xi, xk, x1) E OM. We want to find variables,
xl, ... , xm, s.t. the maximum number of
equations are satisfied.



27 MAXE3 LI N2 .

Example: MAXE3LIN 2 ?

E1: .X1 + .X2 + X3

E2 : x1 + x3 + x5

E3 : x2 + x4 + x6

E4: X4 + X5 + X6

1
0
1
1



27 MAXERI N2 .

Example: MAXE3LIN2 ?

E1: x1 + x2 + x3 = 1

E2: x1 + x3 + x5 = 0

E3 : x2 + x4 + x6 = 1.

E4: .X4 + X's + .X6 = 1

If we let x1 = x2 = x3 = x5 = 1 and

x4 X6 = O then E1, E3, and E4 are satisfied,
but not E2.



27 MAXE3 LI N2 .

Example: MAXE3LIN2 ?

E1: .X1 + .X2 + .X3 = 1

E2 : x1 + x3 + x5 = 0

E3 : x2 + x4 + x6 = 1

E4: .X4 + X's + .X6 = 1

_Note that the LHS adds up to 0 while the RHS
adds up to 1. Thus we cannot satisfy all four
clauses simultaneously.



27 MAXE3 LI N2 .

Example: MAXE3LIN 2 = 3

E1: .X1 + .X2 + .X3 = 1

E2 : x1 + x3 + x5 = 0

E3 : x2 + x4 + x6 = 1

E4: .X4 + .X5 + X6 = 1



„ VERTEXCOVER •

Given a graph G (V,E), we want to find a
subset of vertices V' g V, s.t. V edges
tu, vl E E,u E V' or v E V'.
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„ VERTEXCOVER •

Given a graph G (V,E), we want to find a
subset of vertices V' g V, s.t. V edges
tu, vl E E,u E V' or v E V'.



, MINVERTEXCOVER •

°Given a graph G = (V , E), we want to find
the minimum subset of vertices V' g V , s.t.
for all edges {u, v} E E, u E V' or v E V..

Example: MINVERTEXCOVER = ?



25. MINVERTEXCOVER •

°Given a graph G = (V , E), we want to find
the minimum subset of vertices V' g V , s.t.
for all edges {u, v} E E, u E V' or v E V..

Example: MINVERTEXCOVER = 2
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Quantum Approximate
Optimization Algorithm
(QAOA) [11

[1] Farhi and Goldstone (2014)
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What is QAOA? ■

The goal of QAOA is to approximate hard
optimization problems on a quantum computer.

Given f : 0, 1111 1R, find x E 0, 1111 s.t.
f (x) is a minimum (maximum).

We can represent f (x) as a problem
Hamiltonian,

HPIXT) = (x)lx).
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Inspiration

QAOA was inspired by Trotterization of
Adiabatic Quantum Computing (AQC)



22 AQC •

In AQC we start in a ground state of a driver
Hamiltonian that is easy to prepare i.e.

Is) 1+)°n, the ground state of H D

We then evolve under the Hamiltonian,

H(t) = s(t)Hp + (1 — s(t))HD

where S s(t) is a smooth function of t,
s(t 0) 0, and s(t T) = 1.

n

X •

j=1



21 Trotterization .

II(' T, 0)
UAcT,T — 6,01I(T — At,T 26,T) ... U(At, 0)

n U(kAt, (k 1),At)

k=1

where At = T/N and,
t2

U(t2,-t1) = Texp [ i H(t)d-t1 .
tl



20 Trotterization •

For At « T , H (t) is approximately constant
over the time interval At.

N

U (77 , 0) '-' n e-LA-tH(LAt)
k=1



1, Lie-Trotter-Suzuki •

We now use the Lie-Trotter-Suzuki decomposition,
e8(a+B) , e8Ae8B + 0(82 )

with the assumption that At « T to make the
approximation N

U(T, 0)

N,n e
k=0

,ne_i„,s(k„)„„(1_5(k„))„D1
k=0

-LAt(l-s(kAt))HD e -iAts(kAt)Hp .



18 QAOA

°Now for QAOA we let N become p where p << N.

We then define 13 131132 ... flp and y= ny2 yp as free
parameters.

We let At(1 — s (k At)) go to flic and At s (k At) go to Yk•

Now we define the QAOAp operator

Qp(A.Y)
k=0

e-ikHDe-inHP •

•
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Goal

We want to find optimal times li and y for
some number of iterations p << $30 such
that the expectation value of the problem
Hamiltonian is minimized.

minAy (/3, y 1Hp Ifl) y )
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Does it work? .

From Trotterization, it follows that we
obtain the optimal solution when p c 0 .
Due to the curse of dimensionality, it is
difficult to analyze p > 1.

For MAxE3LiN2, Farhi and Goldstone
showed QAOA1 made a better approximation
than the best known classical algorithm only
to inspire a better classical algorithm. [1]

[1] Farhi and Goldstone (2014)



Approximating Constrained
Optimization Problems
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QAOA++[1] [2]

Problem Hamiltonian:
2n-1

Hp f(x)1xXxl
x=0

°Driving Hamiltonian:

HDIX.) cjl xj) lx) E

where flxj)} is the basis for F, and is the space of
feasible solutions.

°Initial state: l s) E

•

[1] Hadfield et. al. (2017) [2] Marsh and Wang (2018)
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Constrained Quantum
Annealing[1] (CQA)
Problem Hamiltonian:

Hp

2n -

f (x)IxXxl

•

x=o
Driving Hamiltonian: Choose HD s.t. [HD, HF] = 0
where for the computational basis tlxj)1,

0 if lxi) E F
HFIxj)

Ajix1) s.t. Ai >> 0 if lxj) E F

Initial state: ls) E F
[1] Hen and Spedalieri (2016)



1, QAOA with Penalties

°Problem Hamiltonian:
2n-1

Hp =IA f (x)lx)(xl + aH F
x=o

°Driving Hamiltonian:
2n

HD =IX./
j=0

°Initial state: Is) l+)®
n

•



12 QAOA++ <##. CQA

()

Suppose V In E FT,

Define
2n-1

HF

HD f) C j

cx1x)(xl where cx

fi)•

f0 if Ix) E FT .1 o.w.

•



QAOA++ •• CQA •

()
If (x1HDHFIY) (XIHFHD1Y) V basis vectors

Ix) and ly) of the full space then [HD, HF] = O.
There are three cases:

Ix) E and ly) E
Either Ix) or ly) E F, but not both.

Ix) E and ly)



0 QAOA++ •• CQA

()
Case 1: Ix) E and ly) c F.

HFlax) = HFly)

(x1HDHFly) (x1HFHD ly) = 0

•



9 QAOA++ <#* CQA •

Case 2: Either Ix) or ly) E F, but not both.

WLOG let Ix) E F.

Then HDIX) E

HFIX) — 11F (HDIX)) O.
Thus (xIHDHF ly) (xIHFHD ly) O.



8 QAOA++ •• CQA •

Case 3: Ix) and ly)
HFI,x) = Ix) and HFly) =

WHDHFIY) (x1HDly) (x1HFHDly)•



7 QAOA++ •• CQA

()
Suppose [HD, HF] = 0, and let the feasible
subspace be the ground state of the feasible
Hamiltonian

H F IX) = 0 iff Ix) E F.

Let Ix) E F. Then
H F (H DIX)) HD HF I X)

Thus H DIX) E F V Ix) E F.

O.

•



6 QAOA++ <•CQA

Therefore if you have a driving Hamiltonian
for QAOA++ you can use it for CQA and if
you have a driving Hamiltonian for CQA you
can use it for QAOA++.•

•



Future Work



5 How does QAOA with
penalties compare?

°Look at MINVERTEXCOVER.

°Then look at the general case.

•



4 MINVERTEXCOVER Mappine •

•Given a graph, G = (V,E), assign each qubit
to a vertex v E V.

If a qubit is in the 1 eigenstate of Z, 11),
the vertex represented by that qubit is in the
vertex cover. If a qubit is in the +1 eigenstate
of Z, 10), the vertex represented by that qubit
is not in the vertex cover.

[1] Hadfield et. al. (2017)



3 
QAOA++ [1]

Problem Hamiltonian:

where Wu

Hp Wu
ucv

Driving Hamiltonian:

/
XuHD

ucv

Initial state:
\ vEV

s.t. {u,v}EE

Is) — 11)01171

wv)

II

[1] Hadfield et. al. (2017)



2 QAOA with penalties

Problem Hamiltonian:

Hp =I vvy +  (I

7,,E17 fu,v1EE
Driving Hamiltonian:

Initial state:

HD

Wit Wv + Wuvvv)

itEV

Xu

Is) = l+)01171

•



i Goal
■Compare how these two techniques perform on
MINVERTEXCOVER using numerical approaches.

■Try to gain intuition to show connection
analytically for MINVERTEXCOVER, and in general.

■

■Fincling a connection between QAOA++ and
QAOA with penalties could allow us to show that
if good values of /3 and y can be found for one of
these techniques, they can also be found for the
other one.



Thanks!


