

Quantum Approximate Optimization Algorithm (QAOA) on Constrained Optimization Problems

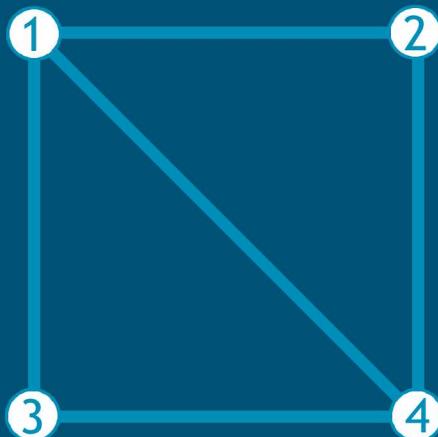
Jaimie Stephens, Ciaran Ryan-Anderson, and
Ojas Parekh

Optimization Problems

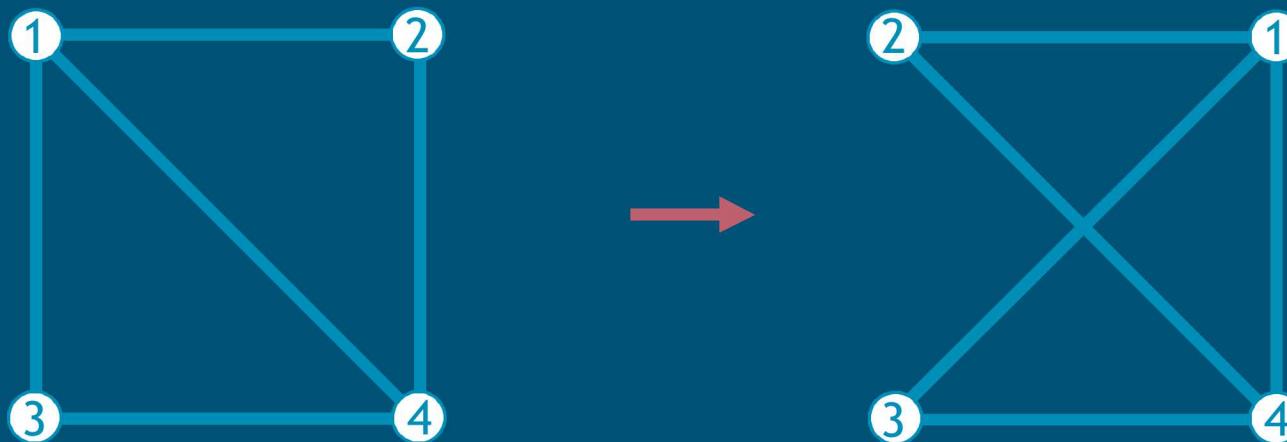
Types of Binary Optimization Problems

- Unconstrained Optimization
 - MAXCUT
 - MAXE3LIN2
- Constrained Optimization
 - MINVERTEXCOVER

- Given a graph $G = (V, E)$, we want to partition the vertices into two sets $V' \subseteq V$ and V/V' , s.t. the number of edges, $\{u, v\} \in E$, that have $u \in V'$ and $v \in V/V'$ is maximized.
- Example: MAXCUT = ?

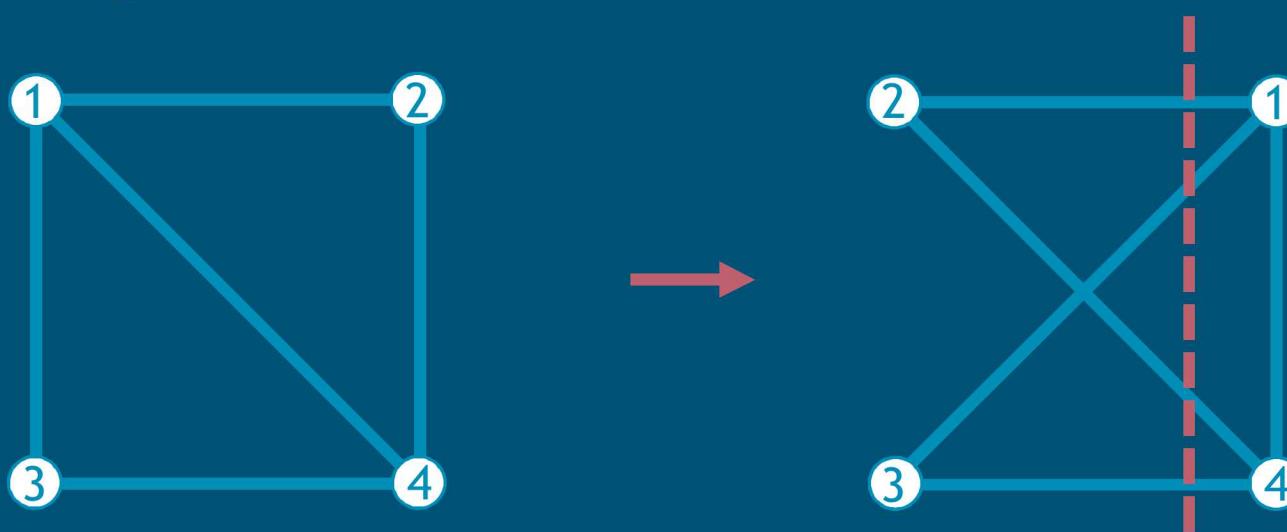


- Given a graph $G = (V, E)$, we want to partition the vertices into two sets $V' \subseteq V$ and V/V' , s.t. the number of edges, $\{u, v\} \in E$, that have $u \in V'$ and $v \in V/V'$ is maximized.
- Example: MAXCUT = ?



- Given a graph $G = (V, E)$, we want to partition the vertices into two sets $V' \subseteq V$ and V/V' , s.t. the number of edges, $\{u, v\} \in E$, that have $u \in V'$ and $v \in V/V'$ is maximized.

- Example: MAXCUT = 4



Given a system of linear equations E_1, E_2, \dots, E_n , over \mathbb{Z}_2 where each linear equation, E_j , has exactly three variables, $(x_j, x_k, x_l) \in \{0,1\}$. We want to find variables, x_1, \dots, x_m , s.t. the maximum number of equations are satisfied.

Example: MAXE3LIN2 = ?

$$E_1: x_1 + x_2 + x_3 = 1$$

$$E_2: x_1 + x_3 + x_5 = 0$$

$$E_3: x_2 + x_4 + x_6 = 1$$

$$E_4: x_4 + x_5 + x_6 = 1$$

Example: MAXE3LIN2 = ?

$$E_1: x_1 + x_2 + x_3 = 1$$

$$E_2: x_1 + x_3 + x_5 = 0$$

$$E_3: x_2 + x_4 + x_6 = 1$$

$$E_4: x_4 + x_5 + x_6 = 1$$

If we let $x_1 = x_2 = x_3 = x_5 = 1$ and $x_4 = x_6 = 0$ then E_1 , E_3 , and E_4 are satisfied, but not E_2 .

Example: MAXE3LIN2 = ?

$$E_1: x_1 + x_2 + x_3 = 1$$

$$E_2: x_1 + x_3 + x_5 = 0$$

$$E_3: x_2 + x_4 + x_6 = 1$$

$$E_4: x_4 + x_5 + x_6 = 1$$

Note that the LHS adds up to 0 while the RHS adds up to 1. Thus we cannot satisfy all four clauses simultaneously.

Example: MAXE3LIN2 = 3

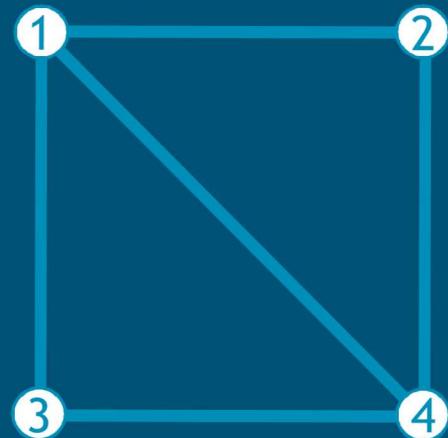
$$E_1: x_1 + x_2 + x_3 = 1$$

$$E_2: x_1 + x_3 + x_5 = 0$$

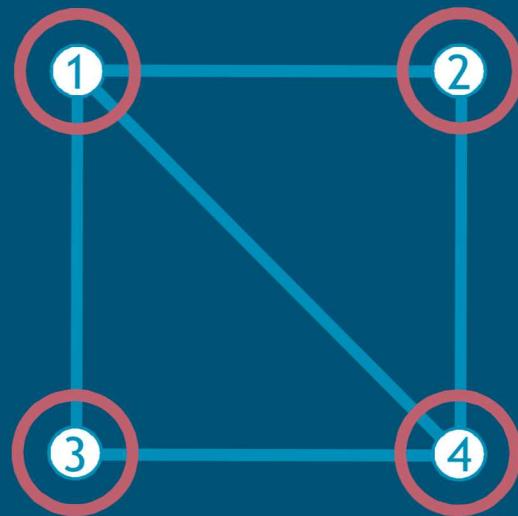
$$E_3: x_2 + x_4 + x_6 = 1$$

$$E_4: x_4 + x_5 + x_6 = 1$$

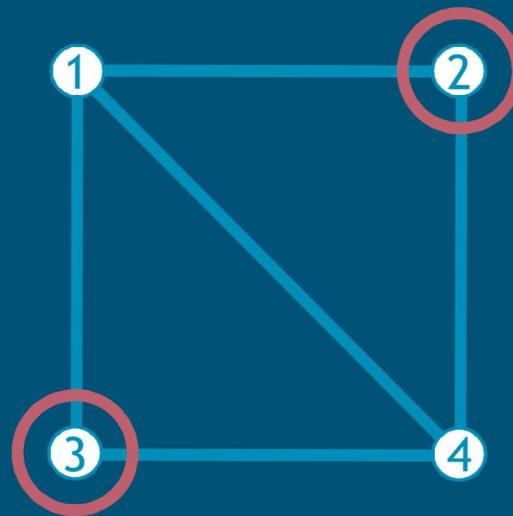
Given a graph $G = (V, E)$, we want to find a subset of vertices $V' \subseteq V$, s.t. \forall edges $\{u, v\} \in E$, $u \in V'$ or $v \in V'$.



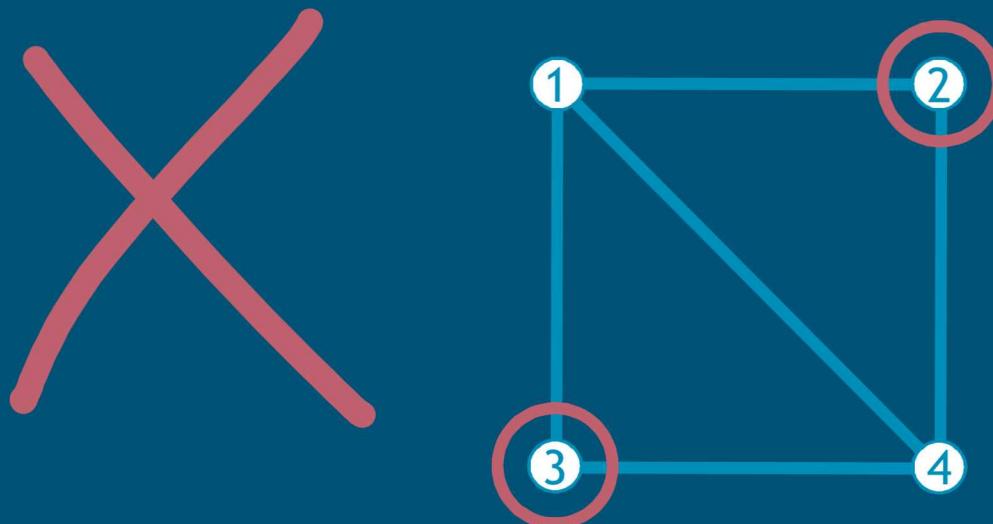
Given a graph $G = (V, E)$, we want to find a subset of vertices $V' \subseteq V$, s.t. \forall edges $\{u, v\} \in E$, $u \in V'$ or $v \in V'$.



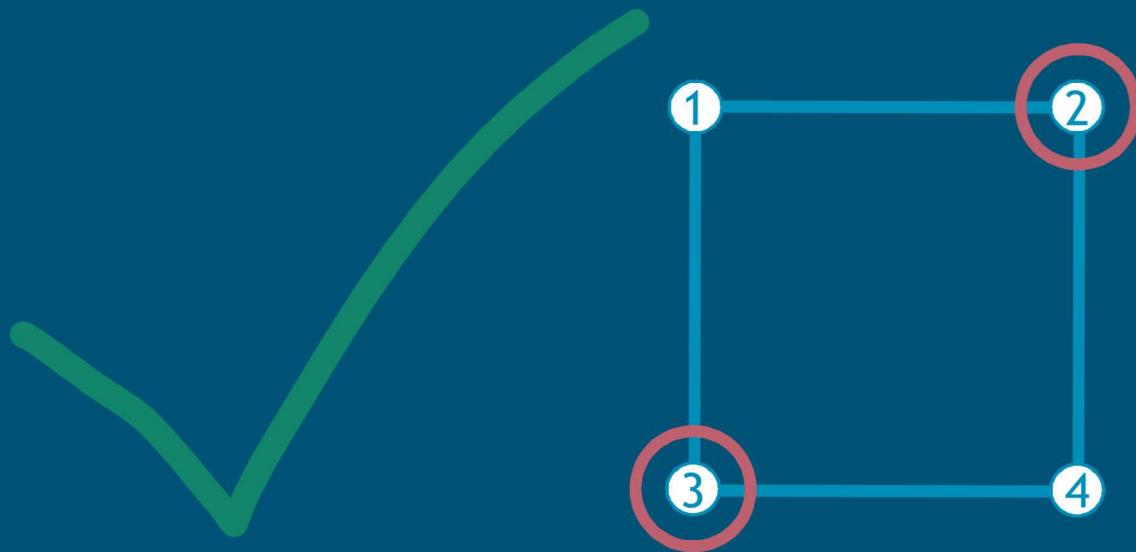
Given a graph $G = (V, E)$, we want to find a subset of vertices $V' \subseteq V$, s.t. \forall edges $\{u, v\} \in E$, $u \in V'$ or $v \in V'$.



Given a graph $G = (V, E)$, we want to find a subset of vertices $V' \subseteq V$, s.t. \forall edges $\{u, v\} \in E$, $u \in V'$ or $v \in V'$.

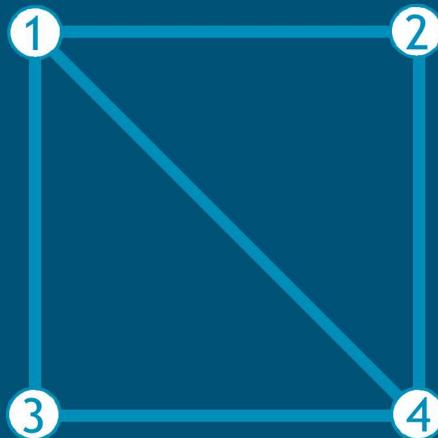


Given a graph $G = (V, E)$, we want to find a subset of vertices $V' \subseteq V$, s.t. \forall edges $\{u, v\} \in E$, $u \in V'$ or $v \in V'$.



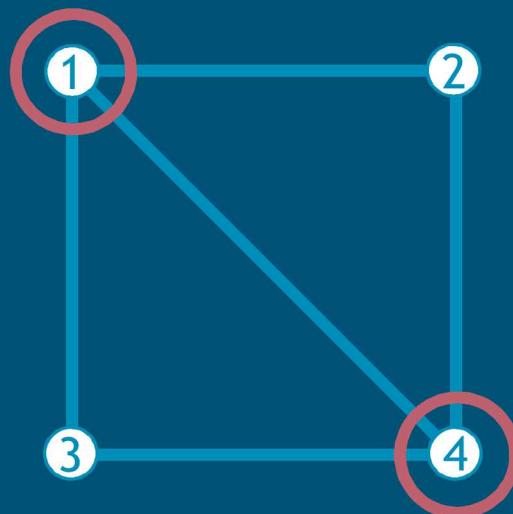
MINVERTEXCOVER

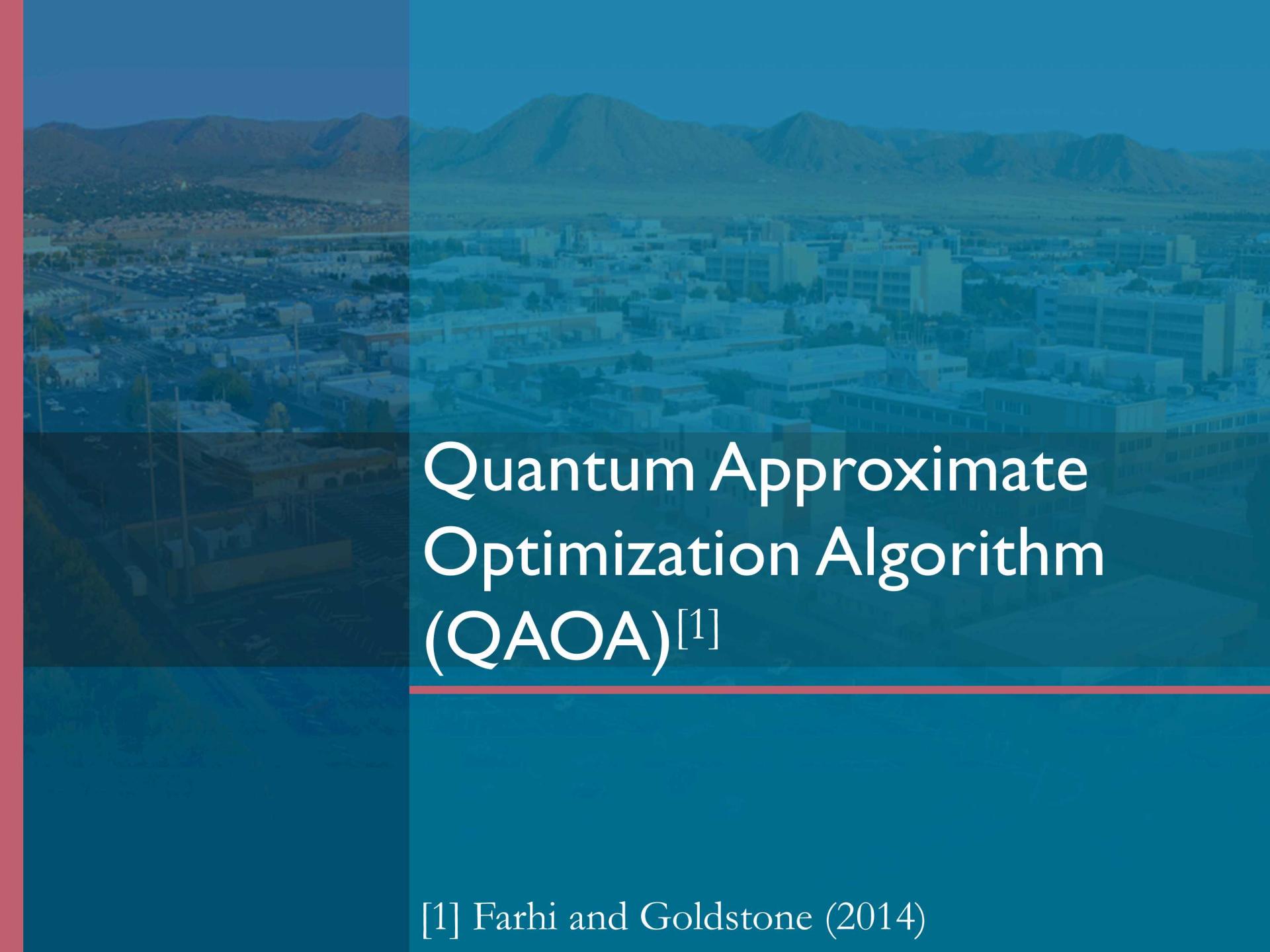
- Given a graph $G = (V, E)$, we want to find the minimum subset of vertices $V' \subseteq V$, s.t. for all edges $\{u, v\} \in E$, $u \in V'$ or $v \in V'$.
- Example: MINVERTEXCOVER = ?



MINVERTEXCOVER

- Given a graph $G = (V, E)$, we want to find the minimum subset of vertices $V' \subseteq V$, s.t. for all edges $\{u, v\} \in E$, $u \in V'$ or $v \in V'$.
- Example: $\text{MINVERTEXCOVER} = 2$





Quantum Approximate Optimization Algorithm (QAOA)^[1]

[1] Farhi and Goldstone (2014)

What is QAOA?

- The goal of QAOA is to approximate hard optimization problems on a quantum computer.
- Given $f: \{0, 1\}^n \rightarrow \mathbb{R}$, find $x \in \{0, 1\}^n$ s.t. $f(x)$ is a minimum (maximum).
- We can represent $f(x)$ as a problem Hamiltonian,

$$H_P |x\rangle = f(x) |x\rangle.$$

Inspiration

QAOA was inspired by Trotterization of Adiabatic Quantum Computing (AQC)

- In AQC we start in a ground state of a driver Hamiltonian that is easy to prepare i.e.

$$|s\rangle = |+\rangle^{\otimes n}, \text{ the ground state of } H_D = - \sum_{j=1}^n X_j$$

- We then evolve under the Hamiltonian,

$$H(t) = s(t)H_P + (1 - s(t))H_D$$

where $s = s(t)$ is a smooth function of t , $s(t = 0) = 0$, and $s(t = T) = 1$.

Trotterization

$$U(T, 0) = \\ U_N(T, T - \Delta t)U(T - \Delta t, T - 2\Delta t) \dots U(\Delta t, 0) = \\ \prod_{k=1}^N U(k\Delta t, (k - 1)\Delta t)$$

where $\Delta t = T/N$ and,

$$U(t_2, t_1) = \mathcal{T}\exp\left[-i \int_{t_1}^{t_2} H(t) dt\right].$$

Trotterization

For $\Delta t \ll T$, $H(t)$ is approximately constant over the time interval Δt .

$$U(T, 0) \approx \prod_{k=1}^N e^{-i\Delta t H(k\Delta t)}$$

Lie-Trotter-Suzuki

We now use the Lie-Trotter-Suzuki decomposition,

$$e^{\delta(A+B)} \approx e^{\delta A} e^{\delta B} + O(\delta^2)$$

with the assumption that $\Delta t \ll T$ to make the approximation

$$\begin{aligned} U(T, 0) &\approx \prod_{k=0}^N e^{-i\Delta t[s(k\Delta t)H_P + (1-s(k\Delta t))H_D]} \\ &\approx \prod_{k=0}^N e^{-i\Delta t(1-s(k\Delta t))H_D} e^{-i\Delta t s(k\Delta t)H_P}. \end{aligned}$$

- Now for QAOA we let N become p where $p \ll N$.
- We then define $\boldsymbol{\beta} = \beta_1 \beta_2 \dots \beta_p$ and $\boldsymbol{\gamma} = \gamma_1 \gamma_2 \dots \gamma_p$ as free parameters.
- We let $\Delta t(1 - s(k\Delta t))$ go to β_k and $\Delta t s(k\Delta t)$ go to γ_k .
- Now we define the $QAOA_p$ operator

$$Q_p(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \prod_{k=0}^p e^{-i\beta_k H_D} e^{-i\gamma_k H_P}.$$

Goal

We want to find optimal times β and γ for some number of iterations $p \ll \infty$ such that the expectation value of the problem Hamiltonian is minimized.

$$\min_{\beta, \gamma} \langle \beta, \gamma | H_P | \beta, \gamma \rangle$$

Does it work?

- From Trotterization, it follows that we obtain the optimal solution when $p \rightarrow \infty$. Due to the curse of dimensionality, it is difficult to analyze $p > 1$.
- For MAXE3LIN2, Farhi and Goldstone showed $QAOA_1$ made a better approximation than the best known classical algorithm only to inspire a better classical algorithm. [1]

[1] Farhi and Goldstone (2014)

Approximating Constrained Optimization Problems

QAOA++[1][2]

- Problem Hamiltonian:

$$H_P = \sum_{x=0}^{2^n-1} f(x) |x\rangle\langle x|$$

- Driving Hamiltonian:

$$H_D |x\rangle = \sum_j c_j |x_j\rangle \quad \forall |x\rangle \in \mathcal{F}$$

where $\{|x_j\rangle\}$ is the basis for \mathcal{F} , and \mathcal{F} is the space of feasible solutions.

- Initial state: $|s\rangle \in \mathcal{F}$

Constrained Quantum Annealing^[1] (CQA)

- Problem Hamiltonian:

$$H_P = \sum_{x=0}^{2^n-1} f(x) |x\rangle\langle x|$$

- Driving Hamiltonian: Choose H_D s.t. $[H_D, H_F] = 0$ where for the computational basis $\{|x_j\rangle\}$,

$$H_F |x_j\rangle = \begin{cases} 0 & \text{if } |x_j\rangle \in \mathcal{F} \\ \lambda_j |x_j\rangle \text{ s.t. } \lambda_j \gg 0 & \text{if } |x_j\rangle \notin \mathcal{F} \end{cases}.$$

- Initial state: $|s\rangle \in \mathcal{F}$

QAOA with Penalties

- Problem Hamiltonian:

$$H_P = \sum_{x=0}^{2^n-1} f(x) |x\rangle\langle x| + \alpha H_F$$

- Driving Hamiltonian:

$$H_D = \sum_{j=0}^{2^n} X_j$$

- Initial state: $|s\rangle = |+\rangle^{\otimes n}$

QAOA++ \Leftrightarrow CQA

(\Rightarrow)

- Suppose $\forall |f\rangle \in \mathcal{F}$,

$$H_D |f\rangle = \sum_j c_j |f_j\rangle.$$

- Define

$$H_F = \sum_{x=0}^{2^n-1} c_x |x\rangle\langle x| \text{ where } c_x = \begin{cases} 0 & \text{if } |x\rangle \in \mathcal{F} \\ 1 & \text{o.w.} \end{cases}.$$

(\Rightarrow)

If $\langle x | H_D H_F | y \rangle = \langle x | H_F H_D | y \rangle \quad \forall$ basis vectors $|x\rangle$ and $|y\rangle$ of the full space then $[H_D, H_F] = 0$.

There are three cases:

- $|x\rangle \in \mathcal{F}$ and $|y\rangle \in \mathcal{F}$
- Either $|x\rangle$ or $|y\rangle \in \mathcal{F}$, but not both.
- $|x\rangle \notin \mathcal{F}$ and $|y\rangle \notin \mathcal{F}$.

QAOA++ \Leftrightarrow CQA

(\Rightarrow)

- Case 1: $|x\rangle \in \mathcal{F}$ and $|y\rangle \in \mathcal{F}$.

$$H_F|x\rangle = H_F|y\rangle = 0$$

$$\Rightarrow \langle x|H_DH_F|y\rangle = \langle x|H_FH_D|y\rangle = 0.$$

(\Rightarrow)

■ Case 2: Either $|x\rangle$ or $|y\rangle \in \mathcal{F}$, but not both.

WLOG let $|x\rangle \in \mathcal{F}$.

Then $H_D|x\rangle \in \mathcal{F}$.

$$\Rightarrow H_F|x\rangle = H_F(H_D|x\rangle) = 0.$$

Thus $\langle x|H_DH_F|y\rangle = \langle x|H_FH_D|y\rangle = 0$.

QAOA++ \Leftrightarrow CQA

(\Rightarrow)

- Case 3: $|x\rangle \notin \mathcal{F}$ and $|y\rangle \notin \mathcal{F}$.

$H_F|x\rangle = |x\rangle$ and $H_F|y\rangle = |y\rangle$.

$\Rightarrow \langle x|H_DH_F|y\rangle = \langle x|H_D|y\rangle = \langle x|H_FH_D|y\rangle$.

(\Leftarrow)

- Suppose $[H_D, H_F] = 0$, and let the feasible subspace be the ground state of the feasible Hamiltonian

$$H_F |x\rangle = 0 \text{ iff } |x\rangle \in \mathcal{F}.$$

- Let $|x\rangle \in \mathcal{F}$. Then

$$H_F(H_D|x\rangle) = H_D H_F|x\rangle = 0.$$

- Thus $H_D|x\rangle \in \mathcal{F} \quad \forall |x\rangle \in \mathcal{F}$.

Therefore if you have a driving Hamiltonian for QAOA++ you can use it for CQA and if you have a driving Hamiltonian for CQA you can use it for QAOA++. ■

Future Work

How does QAOA with penalties compare?

- Look at MINVERTEXCOVER .
- Then look at the general case.

MINVERTEXCOVER Mapping^[1]

- Given a graph, $G = (V, E)$, assign each qubit to a vertex $v \in V$.
- If a qubit is in the -1 eigenstate of Z , $|1\rangle$, the vertex represented by that qubit is in the vertex cover. If a qubit is in the $+1$ eigenstate of Z , $|0\rangle$, the vertex represented by that qubit is not in the vertex cover.

QAOA++ [1]

- Problem Hamiltonian:

$$H_P = \sum_{u \in V} W_u$$

where $W_u = |1\rangle\langle 1|_u$

- Driving Hamiltonian:

$$H_D = \sum_{u \in V} \left(X_u \sum_{\substack{v \in V \\ s.t. \{u,v\} \in E}} W_v \right)$$

- Initial state:

$$|s\rangle = |1\rangle^{\otimes |V|}$$

QAOA with penalties

- Problem Hamiltonian:

$$H_P = \sum_{u \in V} W_v + \sum_{\{u,v\} \in E} (I - W_u - W_v + W_u W_v)$$

- Driving Hamiltonian:

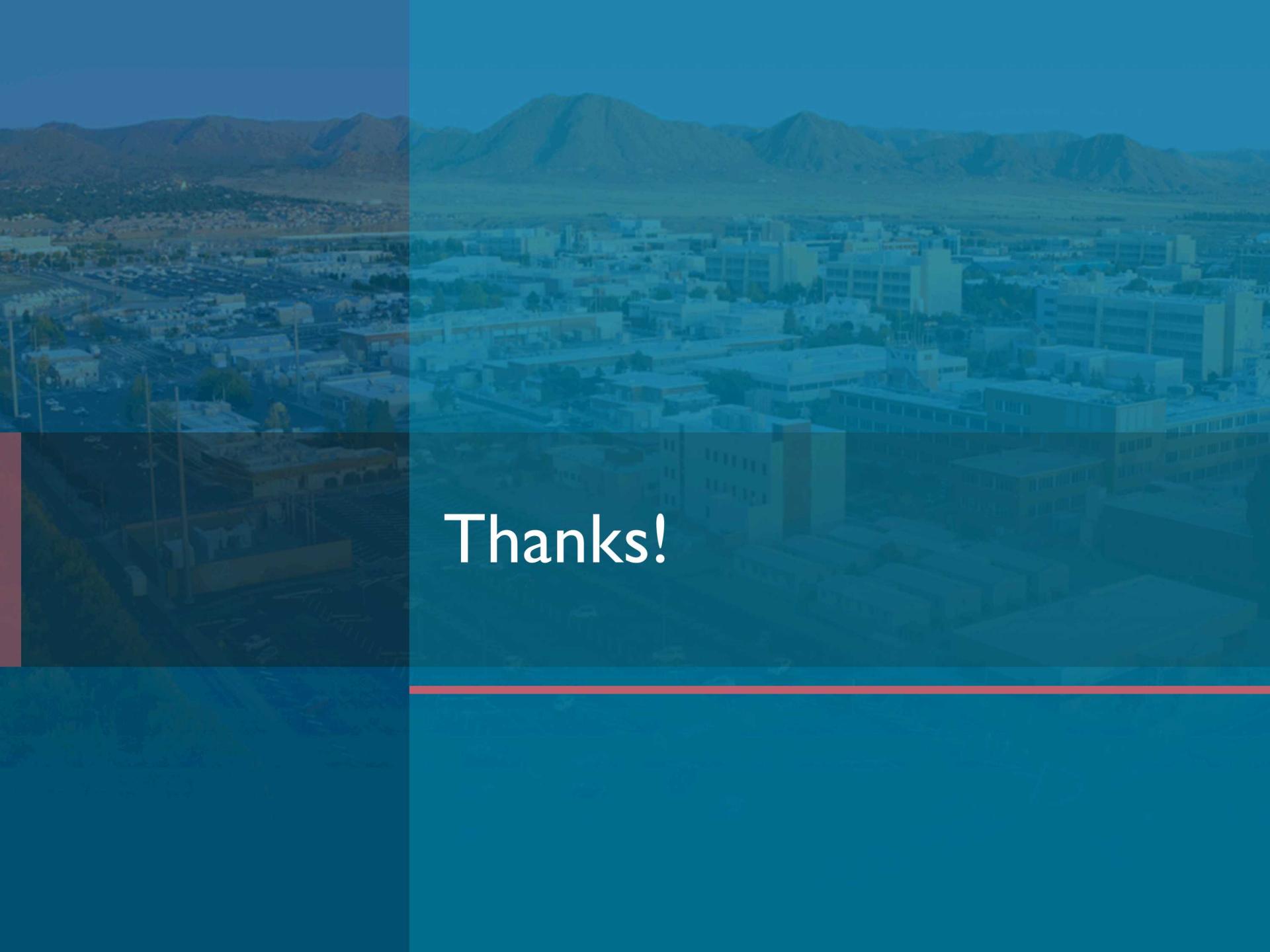
$$H_D = - \sum_{u \in V} X_u$$

- Initial state:

$$|s\rangle = |+\rangle^{\otimes |V|}$$

Goal

- Compare how these two techniques perform on MINVERTEXCOVER using numerical approaches.
- Try to gain intuition to show connection analytically for MINVERTEXCOVER , and in general.
- Finding a connection between QAOA++ and QAOA with penalties could allow us to show that if good values of β and γ can be found for one of these techniques, they can also be found for the other one.



Thanks!