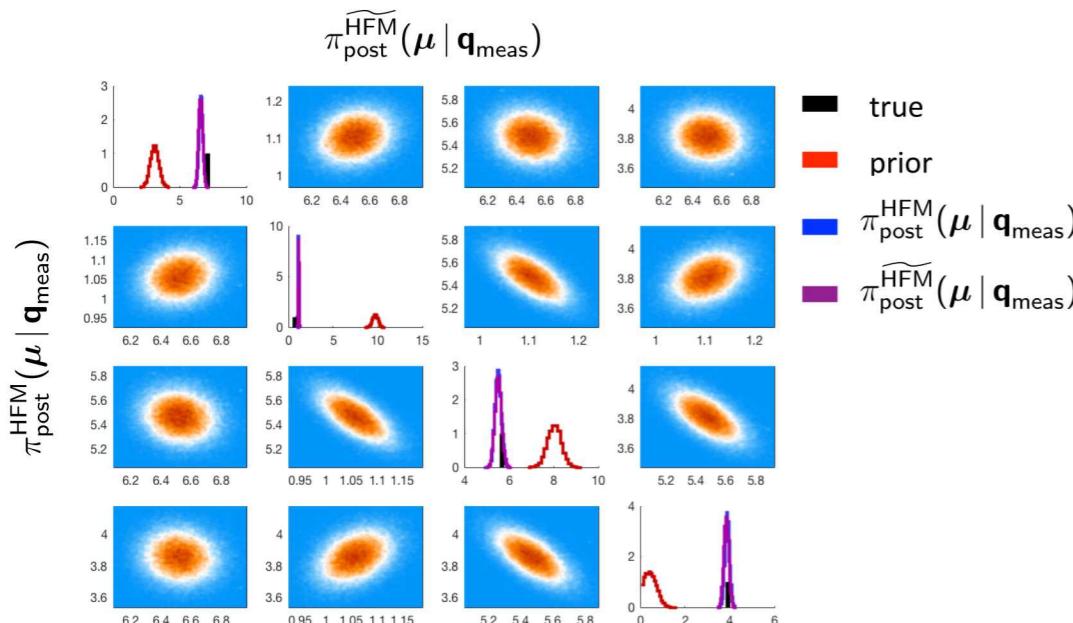
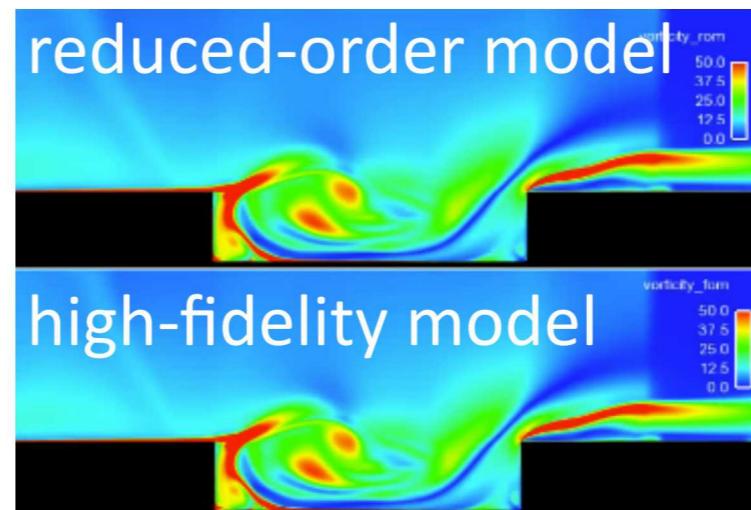
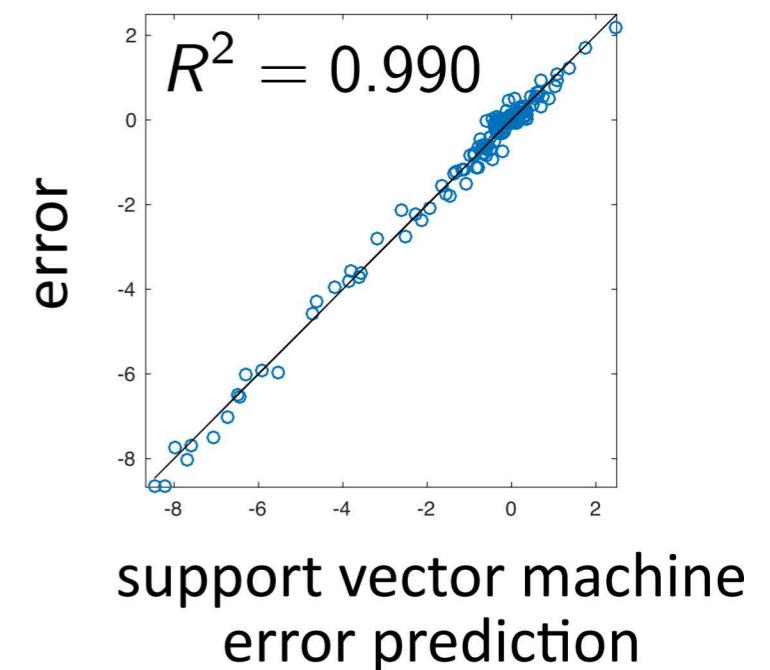


Advances in nonlinear model reduction: *least-squares Petrov–Galerkin projection and machine-learning error models*

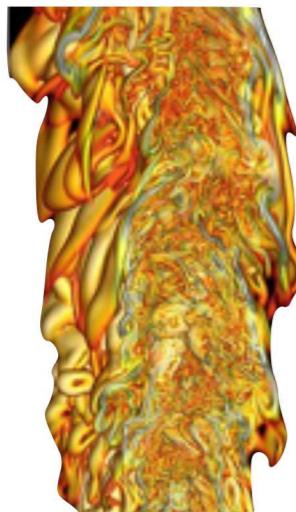


Kevin Carlberg
Sandia National Laboratories

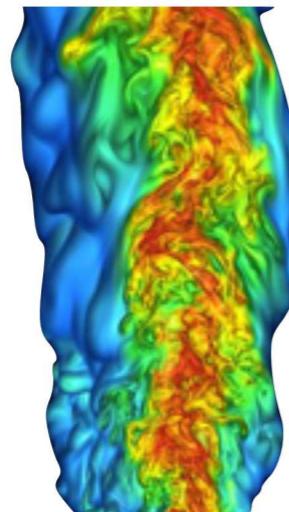
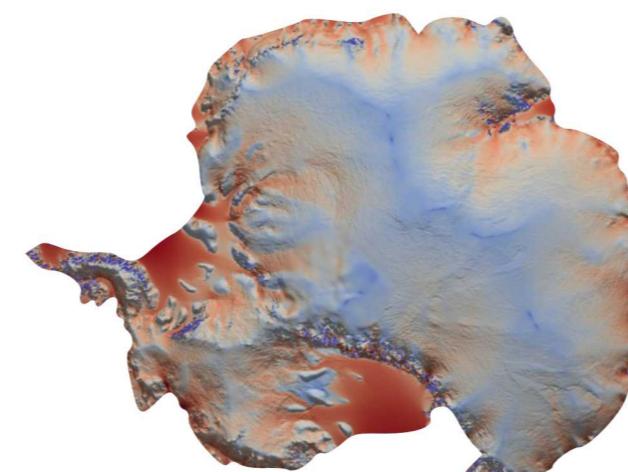
SAMSI MUMS Opening Workshop
Duke University
August 21, 2018

High-fidelity simulation

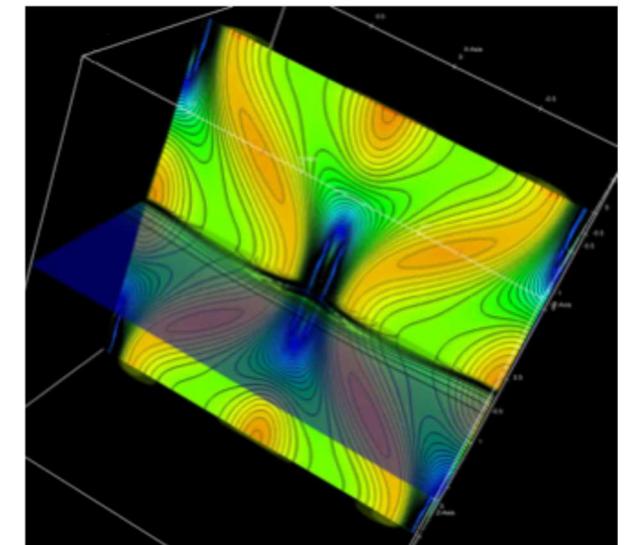
- + Indispensable across science and engineering
- *High fidelity*: extreme-scale nonlinear dynamical system models



Turbulent reacting flows
courtesy J. Chen, Sandia



Antarctic ice sheet modeling
courtesy R. Tuminaro, Sandia



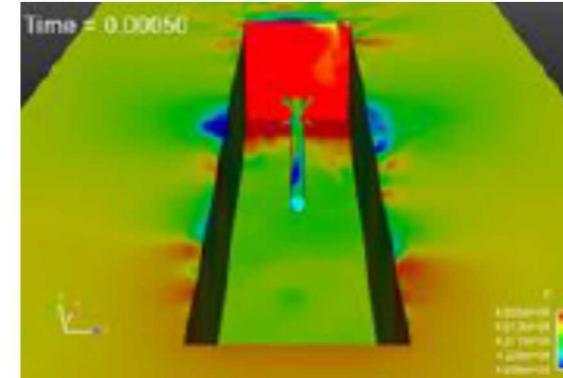
Magnetohydrodynamics
courtesy J. Shadid, Sandia

computational barrier

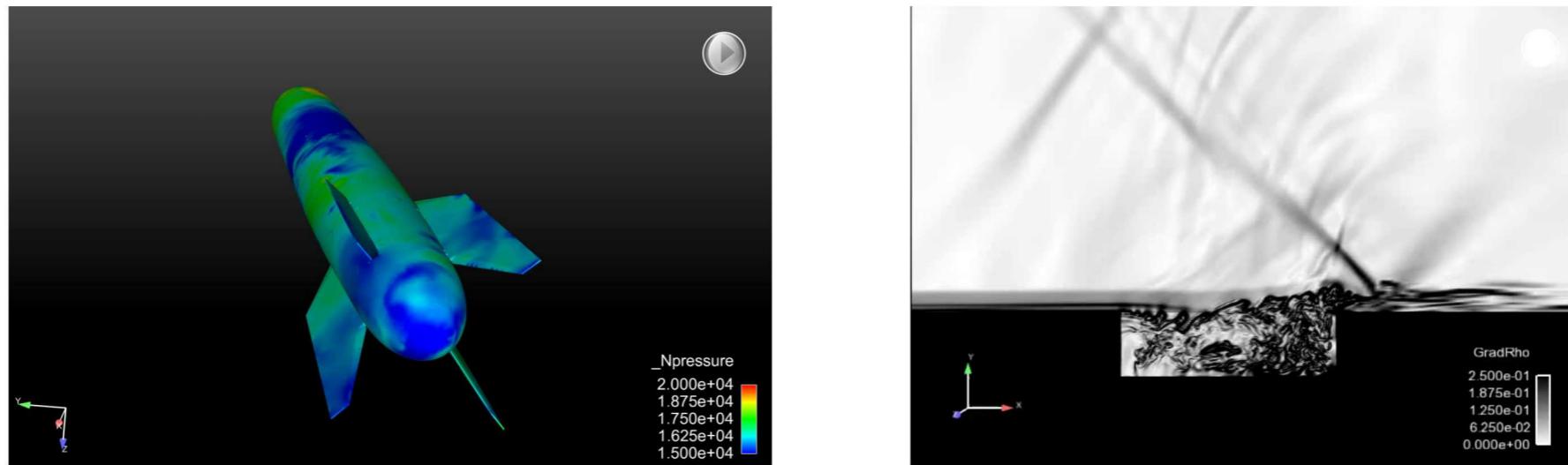
Many-query problems

- uncertainty propagation
- multi-objective optimization
- Bayesian inference
- stochastic optimization

High-fidelity simulation: captive carry



High-fidelity simulation: captive carry



- + *Validated and predictive*: matches wind-tunnel experiments to within 5%
- *Extreme-scale*: 100 million cells, 200,000 time steps
- *High simulation costs*: 6 weeks, 5000 cores

computational barrier

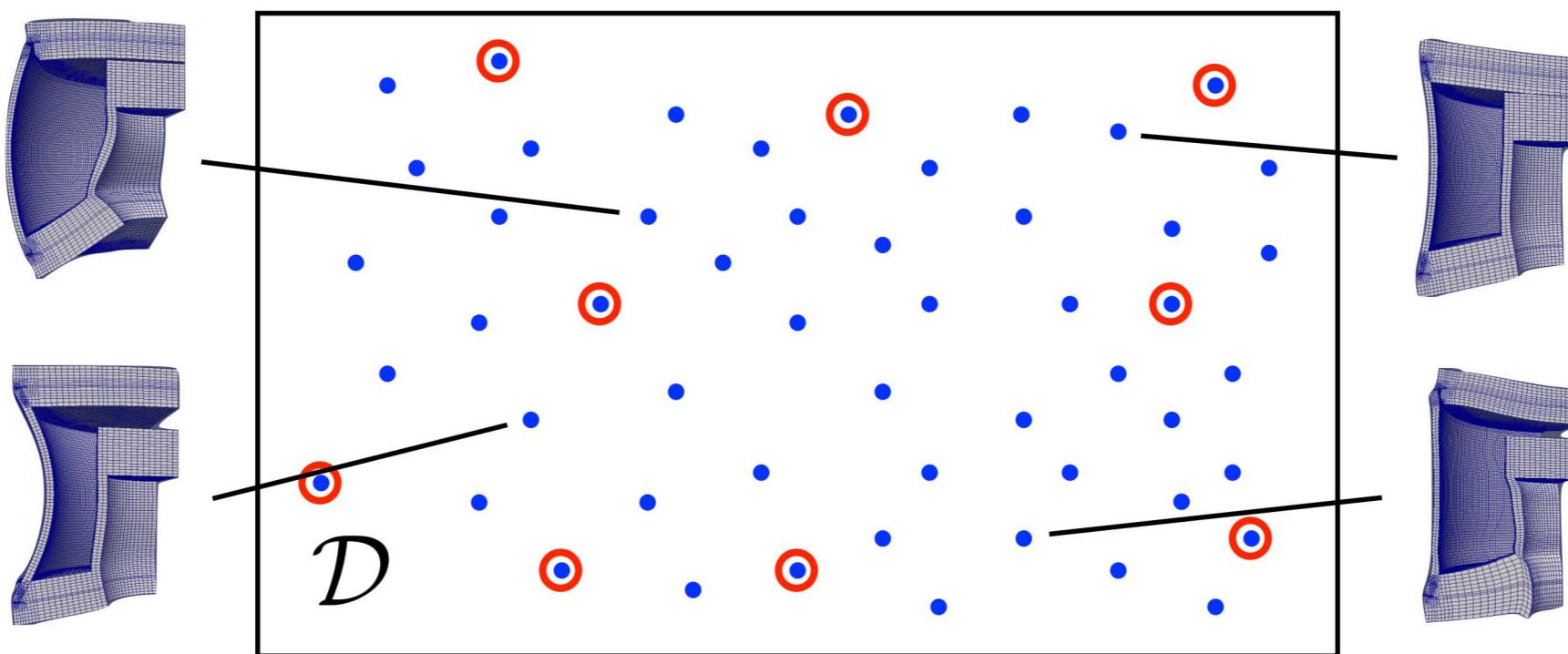
Many-query problems

- explore flight envelope
- quantify effects of uncertainties on store load
- robust design of store and cavity

Approach: exploit simulation data

ODE: $\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu), \quad \mathbf{x}(0, \mu) = \mathbf{x}_0(\mu), \quad t \in [0, T_{\text{final}}], \quad \mu \in \mathcal{D}$

Many-query problem: solve ODE for $\mu \in \mathcal{D}_{\text{query}}$



Idea: exploit simulation data collected at *a few points*

1. *Training:* Solve ODE for $\mu \in \mathcal{D}_{\text{training}}$ and collect simulation data
2. *Machine learning:* Identify structure in data
3. *Reduction:* Reduce cost of ODE solve for $\mu \in \mathcal{D}_{\text{query}} \setminus \mathcal{D}_{\text{training}}$

Model reduction criteria

1. **Accuracy:** achieves less than 1% error
2. **Low cost:** achieves at least 100x computational savings
3. **Structure preservation:** preserves important physical properties
4. **Reliability:** guaranteed satisfaction of any error tolerance (fail safe)
5. **Certification:** quantifies ROM-induced epistemic uncertainty

Model reduction: previous state of the art

Linear time-invariant systems: **mature** [Antoulas, 2005]

- **Balanced truncation** [Moore, 1981; Willcox and Peraire, 2002; Rowley, 2005]
- **Transfer-function interpolation** [Bai, 2002; Freund, 2003; Gallivan et al, 2004; Baur et al., 2001]
- + *Accurate, reliable, certified*: sharp *a priori* error bounds
- + *Inexpensive*: pre-assemble operators
- + *Structure preservation*: guaranteed stability

Elliptic/parabolic PDEs: **mature** [Prud'Homme et al., 2001; Barrault et al., 2004; Rozza et al., 2008]

- **Reduced-basis method**
- + *Accurate, reliable, certified*: sharp *a priori* error bounds, convergence
- + *Inexpensive*: pre-assemble operators
- + *Structure preservation*: preserve operator properties

Nonlinear dynamical systems: **ineffective**

- **Proper orthogonal decomposition (POD)–Galerkin** [Sirovich, 1987]
- *Inaccurate, unreliable*: often unstable
- *Not certified*: error bounds grow exponentially in time
- *Expensive*: projection insufficient for speedup
- *Structure not preserved*: dynamical-system properties ignored

Our research

***Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction***

- ***accuracy***: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- ***low cost***: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- ***low cost***: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- ***structure preservation*** [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- ***reliability***: adaptivity [C., 2015]
- ***certification***: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- ***accuracy***: LSPG projection [C., Bou-Mosleh, Farhat, 2011*; C., Barone, Antil, 2017]
- ***low cost***: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- ***low cost***: reduce temporal complexity [C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- ***structure preservation*** [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- ***reliability***: adaptivity [C., 2015]
- ***certification***: machine learning error models [Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

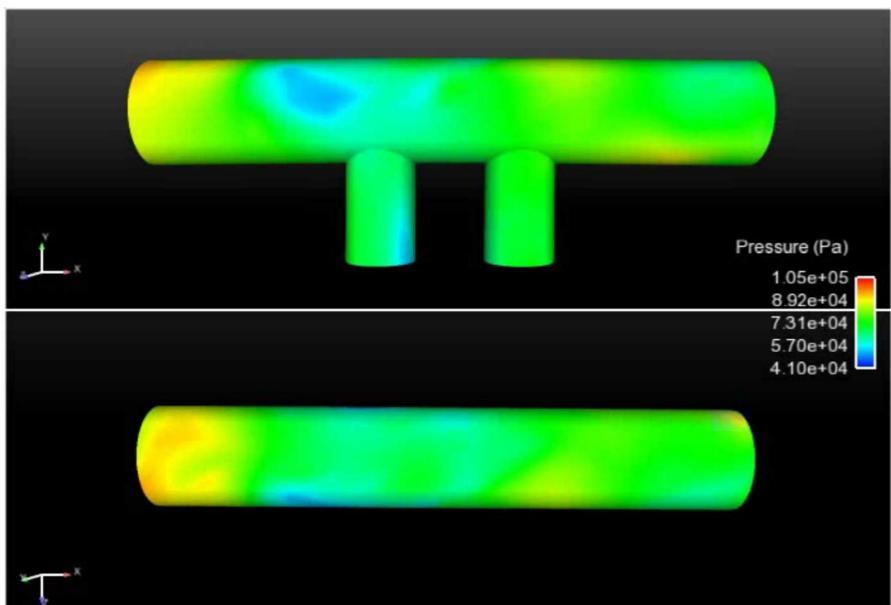
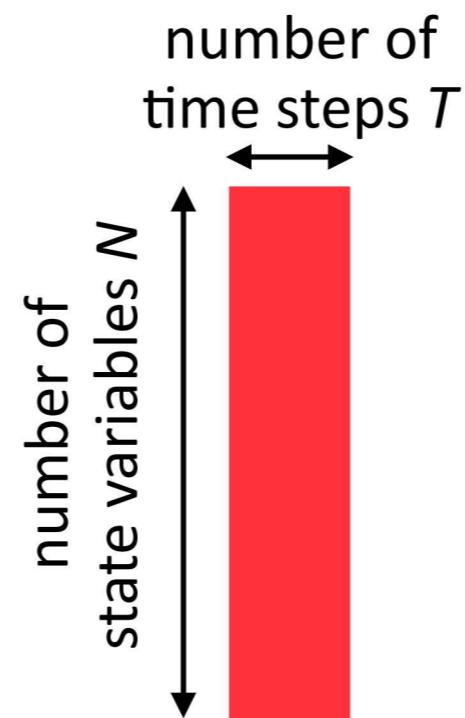
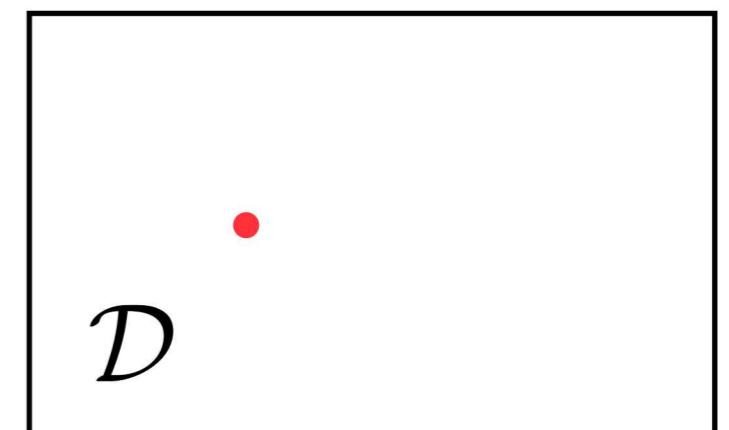
Collaborators:

- Matthew Barone (Sandia)
- Harbir Antil (GMU)
- Charbel Farhat (Stanford University)
- Julien Cortial (Stanford University)

Training simulations: state tensor

$$\text{ODE: } \frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu)$$

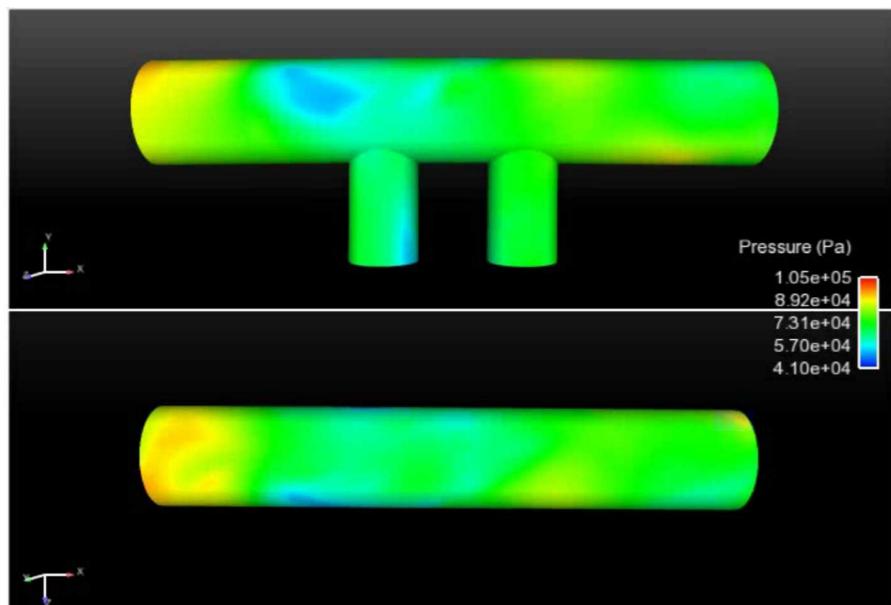
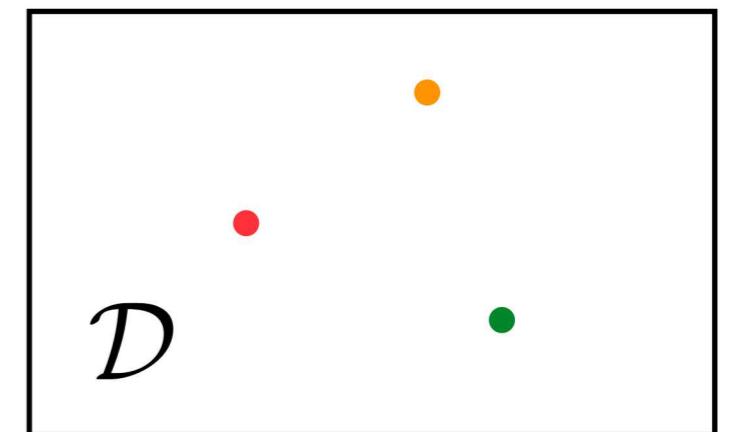
1. *Training*: Solve ODE for $\mu \in \mathcal{D}_{\text{training}}$ and collect simulation data
2. *Machine learning*: Identify structure in data
3. *Reduction*: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\text{query}} \setminus \mathcal{D}_{\text{training}}$



Training simulations: state tensor

$$\text{ODE: } \frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu)$$

1. *Training*: Solve ODE for $\mu \in \mathcal{D}_{\text{training}}$ and collect simulation data
2. *Machine learning*: Identify structure in data
3. *Reduction*: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\text{query}} \setminus \mathcal{D}_{\text{training}}$



Tensor decomposition

$$\text{ODE: } \frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu)$$

1. *Training*: Solve ODE for $\mu \in \mathcal{D}_{\text{training}}$ and collect simulation data
2. *Machine learning*: Identify structure in data
3. *Reduction*: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\text{query}} \setminus \mathcal{D}_{\text{training}}$

Compute dominant left singular vectors of mode-1 unfolding

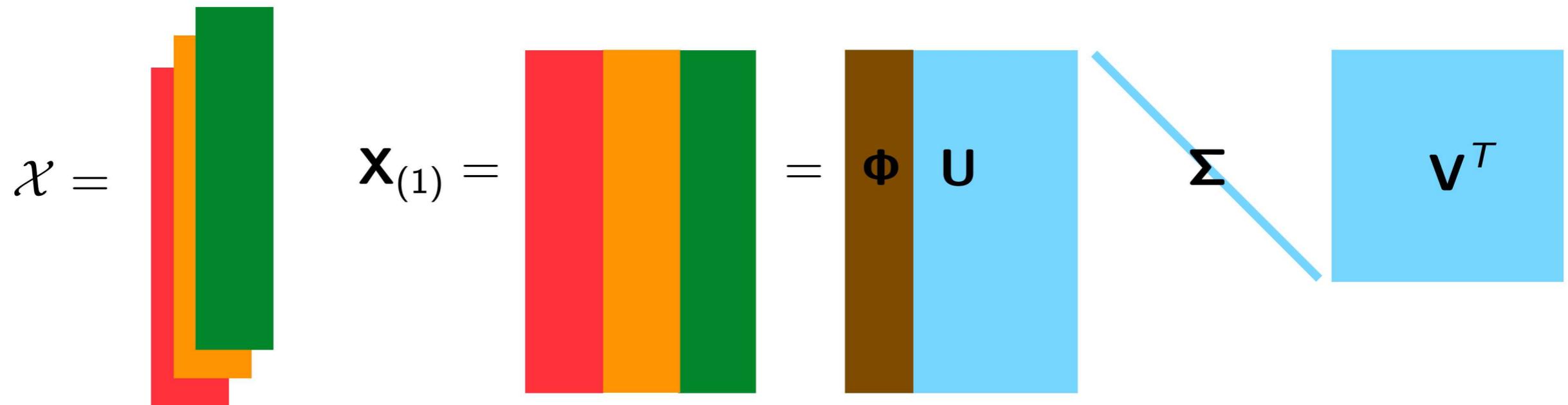
$$\mathcal{X} = \mathbf{x}_{(1)} = \begin{array}{c|c|c} \text{Red} & \text{Orange} & \text{Green} \end{array} = \begin{array}{c|c|c} \text{Red} & \text{Orange} & \text{Green} \end{array} = \mathbf{U} \begin{array}{c} \Sigma \\ \diagdown \end{array} \mathbf{V}^T$$

Tensor decomposition

$$\text{ODE: } \frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu)$$

1. *Training*: Solve ODE for $\mu \in \mathcal{D}_{\text{training}}$ and collect simulation data
2. *Machine learning*: Identify structure in data
3. *Reduction*: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\text{query}} \setminus \mathcal{D}_{\text{training}}$

Compute dominant left singular vectors of mode-1 unfolding

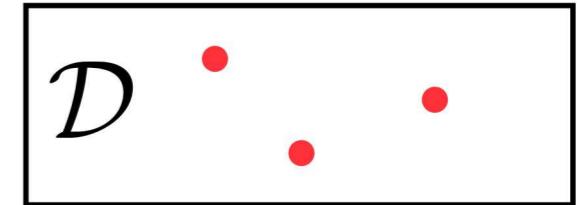


Φ columns are principal components of the spatial simulation data

How to integrate these data with the computational model?

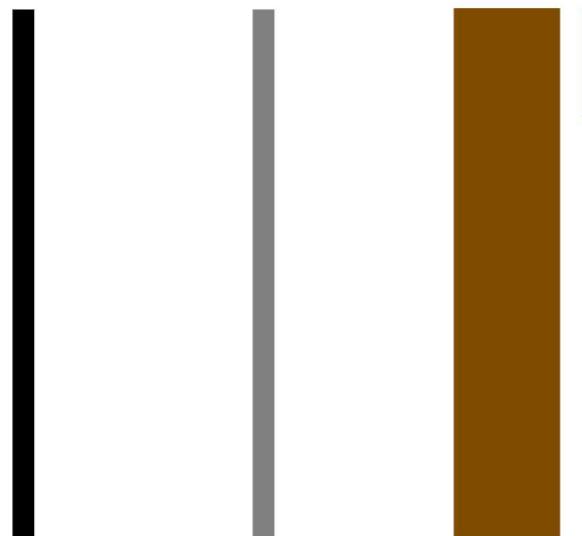
Previous state of the art: POD–Galerkin

$$\text{ODE: } \frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t, \mu)$$

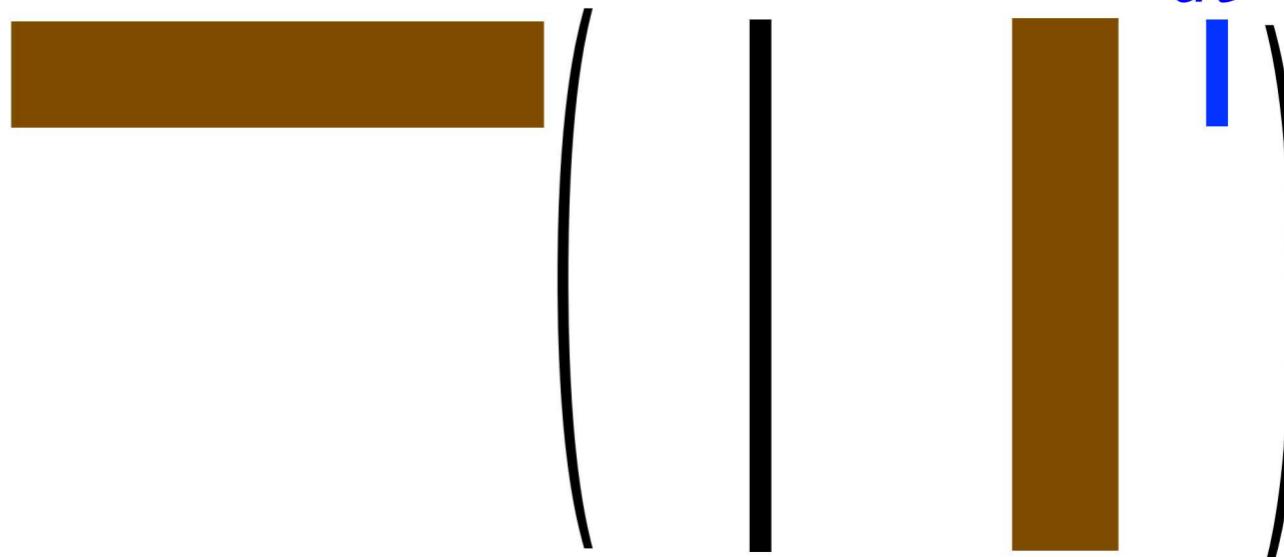


1. *Training*: Solve ODE for $\mu \in \mathcal{D}_{\text{training}}$ and collect simulation data
2. *Machine learning*: Identify structure in data
3. *Reduction*: Reduce the cost of solving ODE for $\mu \in \mathcal{D}_{\text{query}} \setminus \mathcal{D}_{\text{training}}$
1. Reduce the number of **unknowns** 2. Reduce the number of **equations**

$$\mathbf{x}(t) \approx \tilde{\mathbf{x}}(t) = \Phi \hat{\mathbf{x}}(t)$$

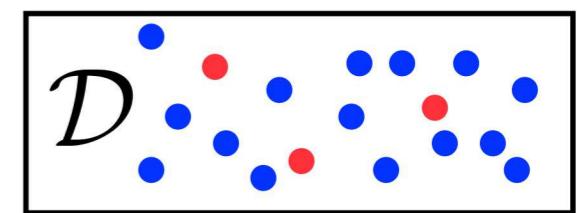


$$\Phi^T (\mathbf{f}(\Phi \hat{\mathbf{x}}; t, \mu) - \Phi \frac{d\hat{\mathbf{x}}}{dt}) = 0$$

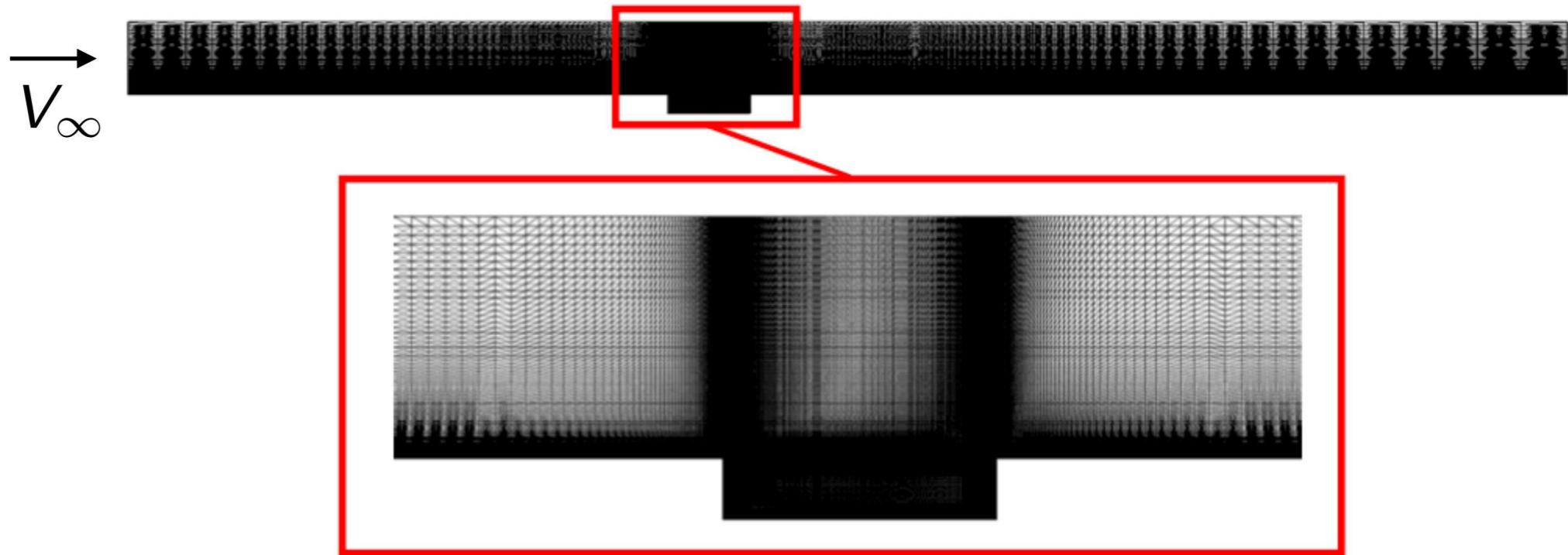


Galerkin ODE:

$$\frac{d\hat{\mathbf{x}}}{dt} = \Phi^T \mathbf{f}(\Phi \hat{\mathbf{x}}; t, \mu)$$



Captive carry



- Unsteady Navier–Stokes
- $Re = 6.3 \times 10^6$
- $M_\infty = 0.6$

Spatial discretization

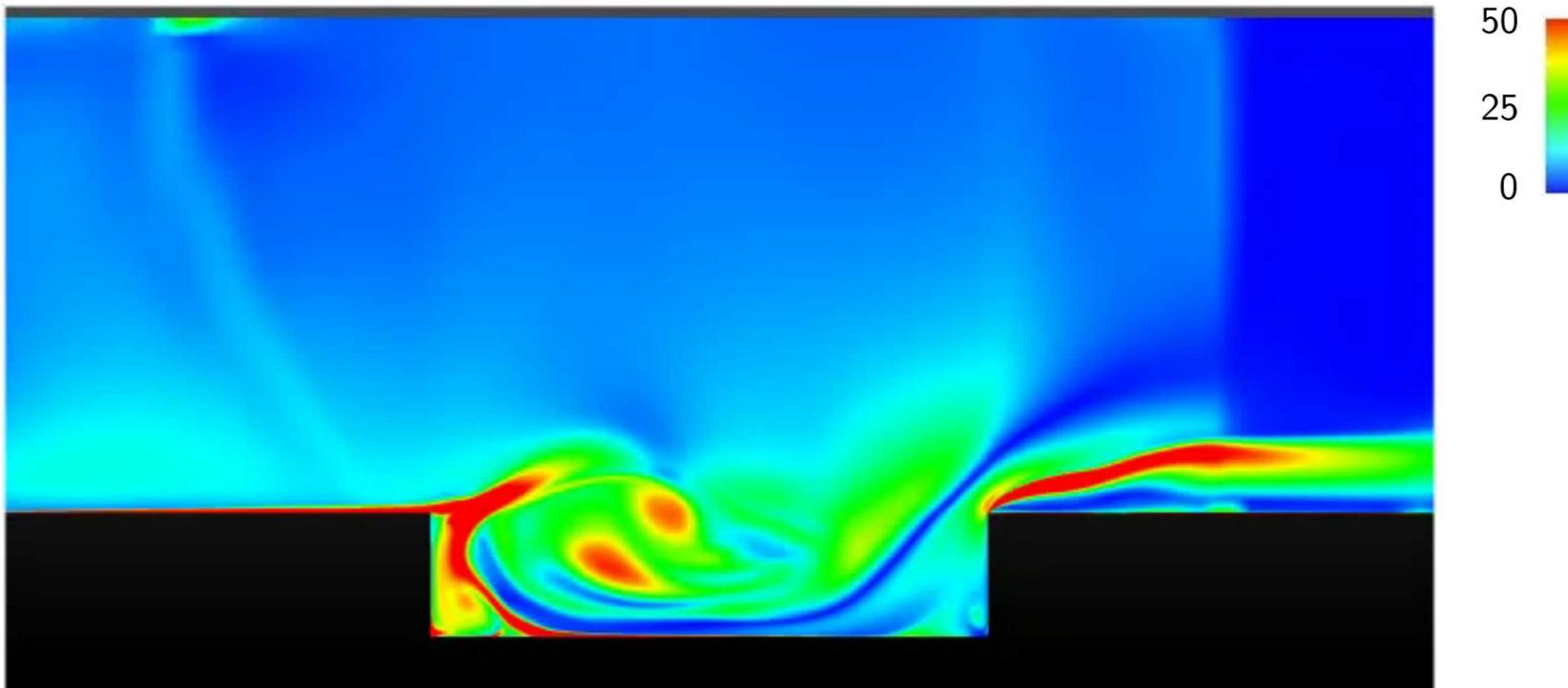
- 2nd-order finite volume
- DES turbulence model
- 1.2×10^6 degrees of freedom

Temporal discretization

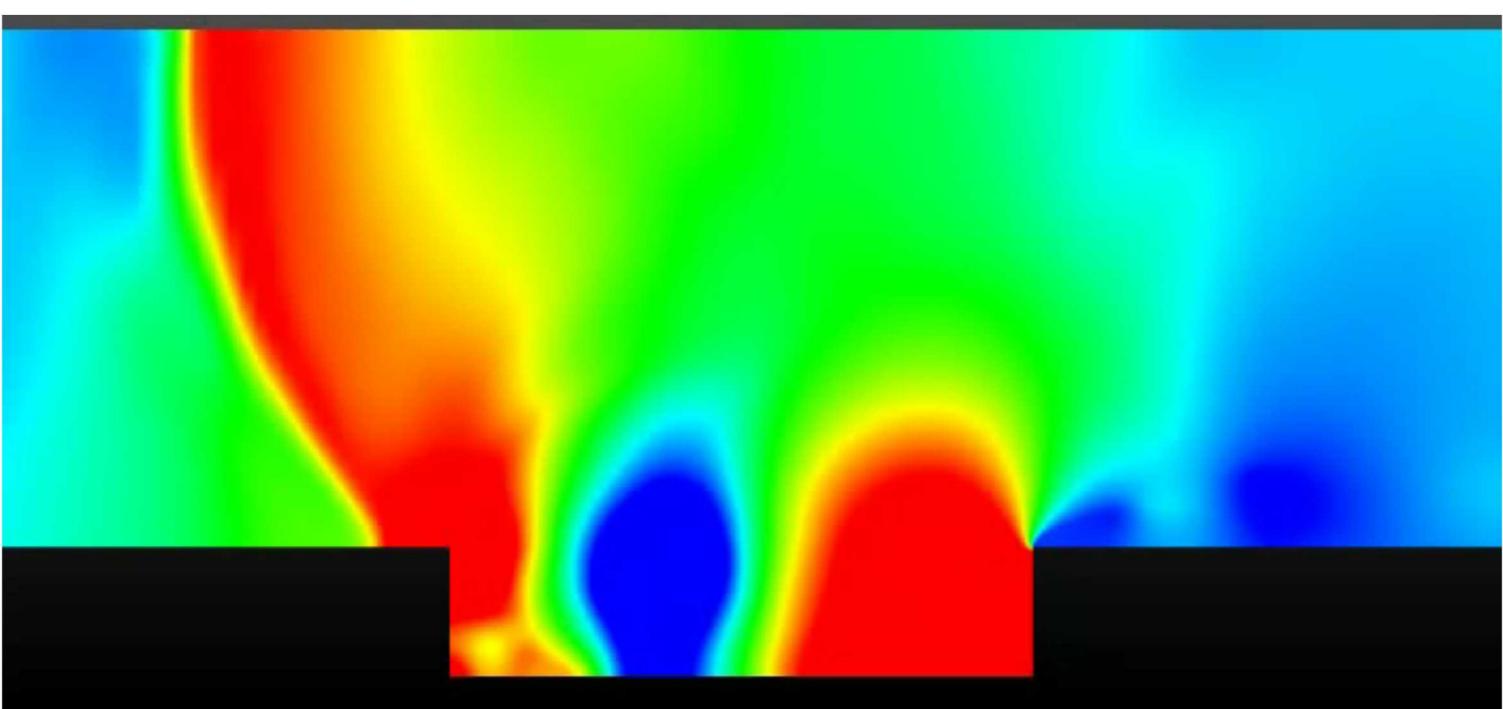
- 2nd-order BDF
- Verified time step $\Delta t = 1.5 \times 10^{-3}$
- 8.3×10^3 time instances

High-fidelity model solution

vorticity field

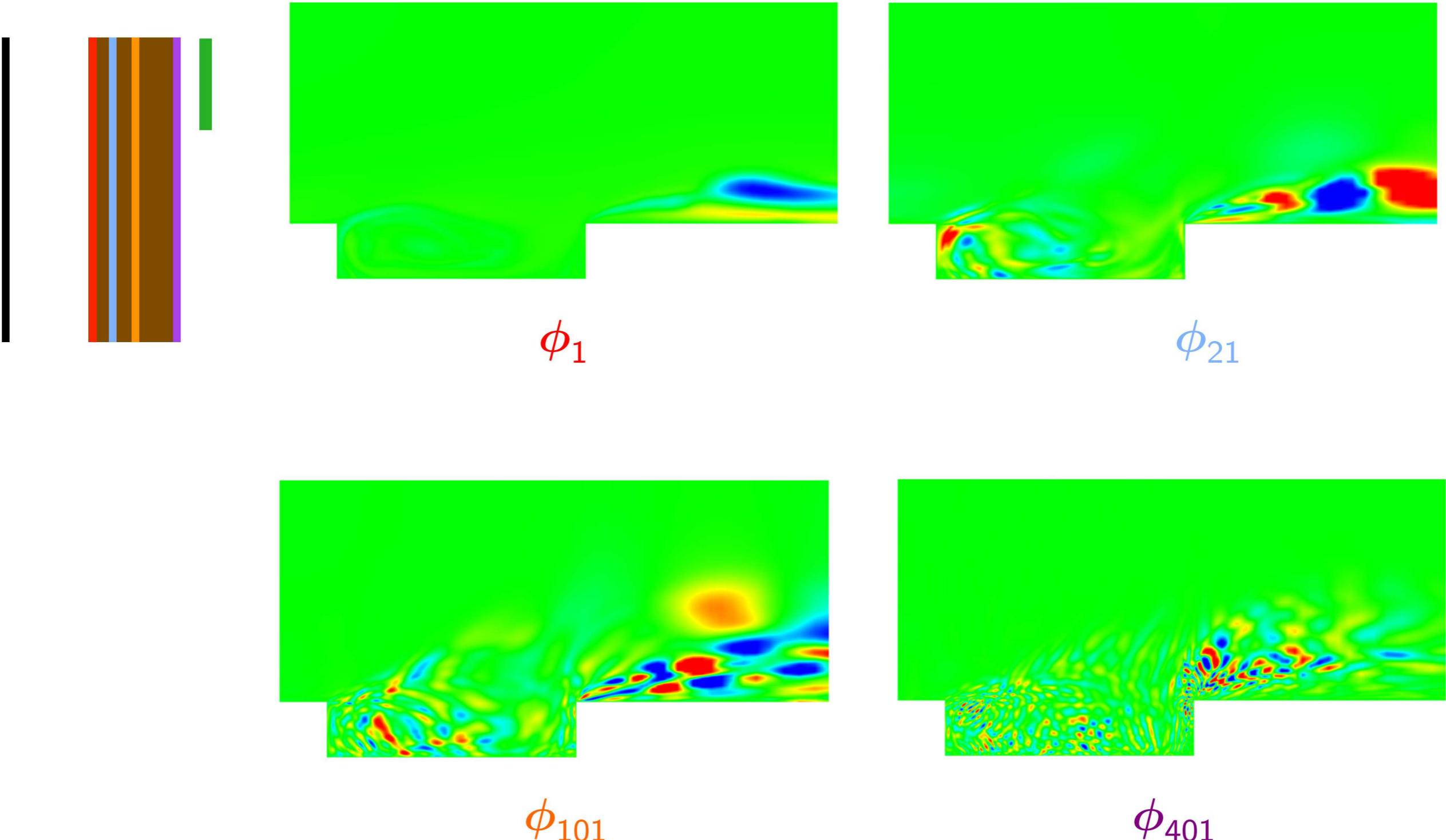


pressure field

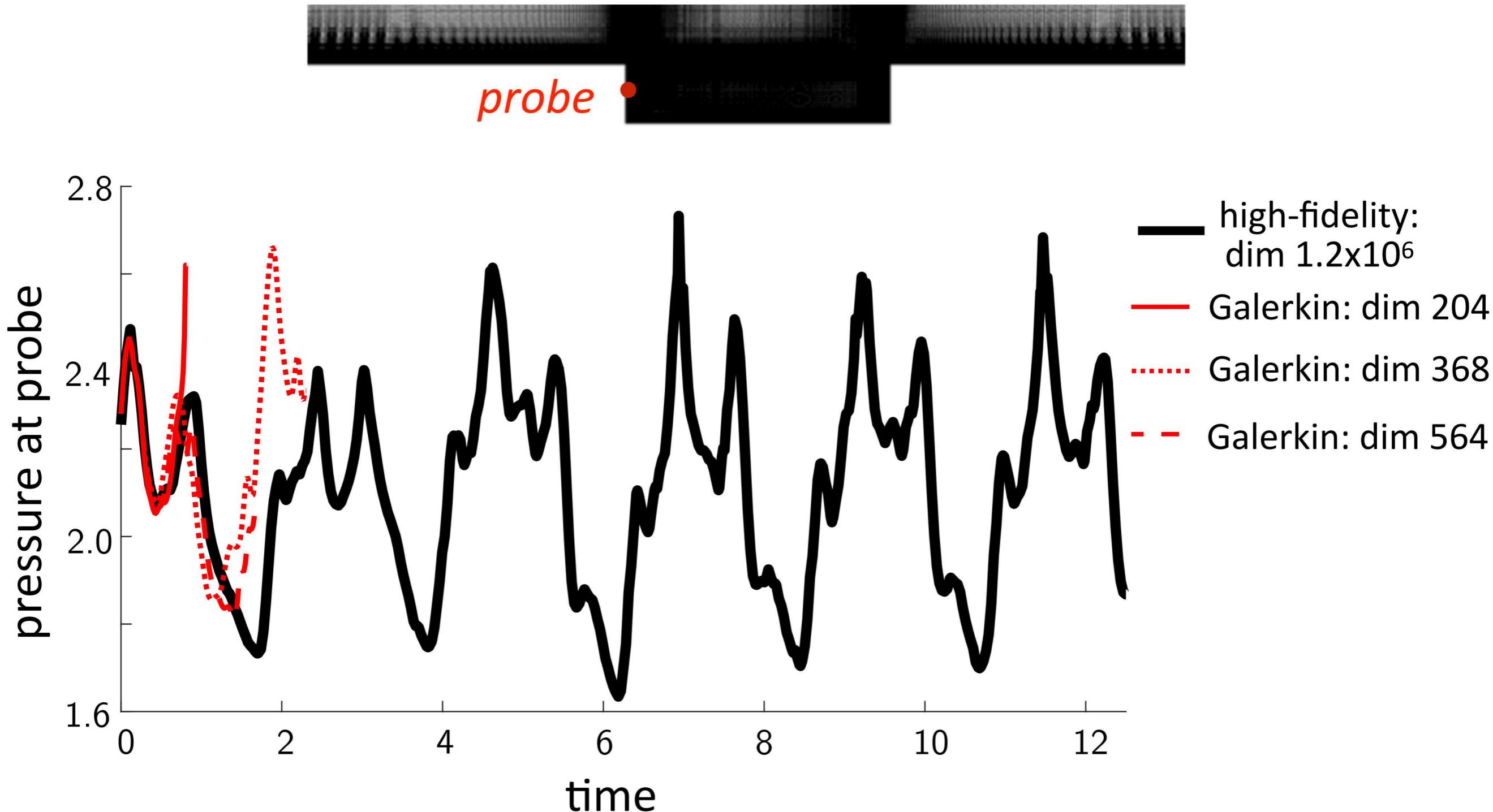


Principal components

$$\mathbf{x}(t) \approx \Phi \hat{\mathbf{x}}(t)$$



Galerkin performance



- *Galerkin projection fails* regardless of basis dimension

Can we construct a better projection?

Galerkin: time-continuous optimality

ODE

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}; t)$$



Galerkin ODE

$$\Phi \frac{d\hat{\mathbf{x}}}{dt} = \Phi \Phi^T \mathbf{f}(\Phi \hat{\mathbf{x}}; t)$$



+ *Time-continuous Galerkin solution: optimal in the minimum-residual sense:*

$$\Phi \frac{d\hat{\mathbf{x}}}{dt}(\mathbf{x}, t) = \underset{\mathbf{v} \in \text{range}(\Phi)}{\text{argmin}} \|\mathbf{r}(\mathbf{v}, \mathbf{x}; t)\|_2$$

$$\mathbf{r}(\mathbf{v}, \mathbf{x}; t) := \mathbf{v} - \mathbf{f}(\mathbf{x}; t)$$

OΔE

$$\mathbf{r}^n(\mathbf{x}^n) = 0, \quad n = 1, \dots, T$$

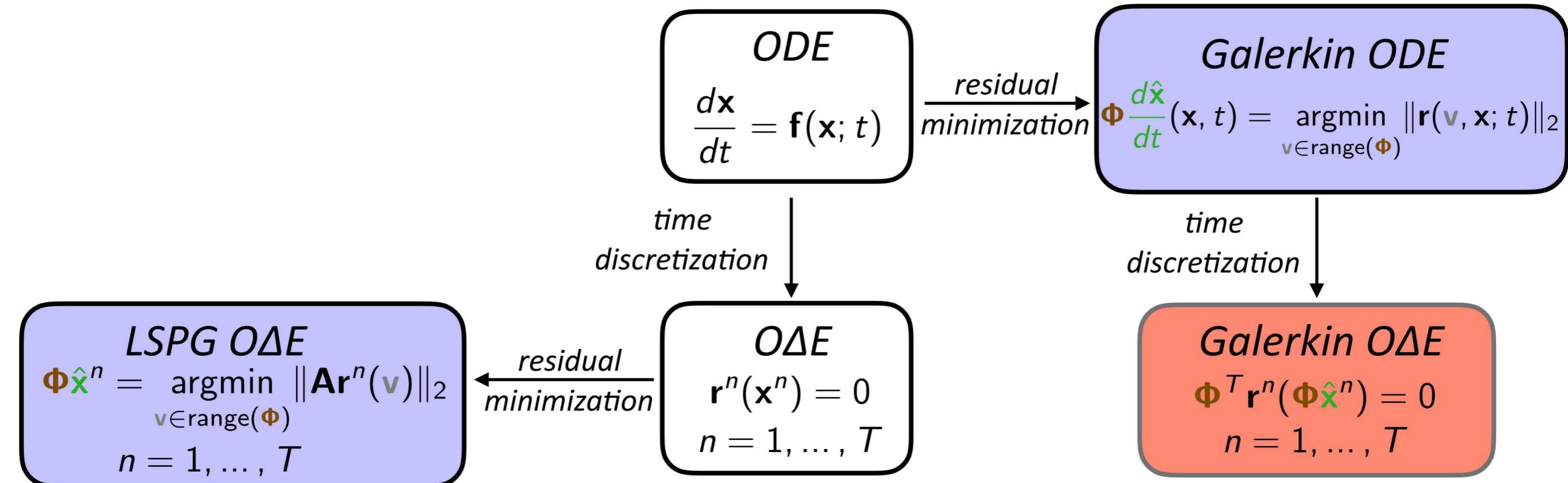
Galerkin OΔE

$$\Phi^T \mathbf{r}^n(\Phi \hat{\mathbf{x}}^n) = 0, \quad n = 1, \dots, T$$

$$\mathbf{r}^n(\mathbf{x}) := \alpha_0 \mathbf{x} - \Delta t \beta_0 \mathbf{f}(\mathbf{x}; t^n) + \sum_{j=1}^k \alpha_j \mathbf{x}^{n-j} - \Delta t \sum_{j=1}^k \beta_j \mathbf{f}(\mathbf{x}^{n-j}; t^{n-j})$$

- *Time-discrete Galerkin solution: not generally optimal in any sense*

Residual minimization and time discretization



[C., Bou-Mosleh, Farhat, 2011]

$$\Phi \hat{\mathbf{x}}^n = \operatorname{argmin}_{\mathbf{v} \in \operatorname{range}(\Phi)} \|\mathbf{A}\mathbf{r}^n(\mathbf{v})\|_2 \quad \Leftrightarrow \quad \Psi^n(\hat{\mathbf{x}}^n)^T \mathbf{r}^n(\Phi \hat{\mathbf{x}}^n) = 0$$

$$\boxed{\quad}$$

$$\Psi^n(\hat{\mathbf{x}}^n) := \mathbf{A}^T \mathbf{A} \left(\alpha_0 \mathbf{I} - \Delta t \beta_0 \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\Phi \hat{\mathbf{x}}^n; t) \right) \Phi$$

Least-squares Petrov–Galerkin (LSPG) projection

Discrete-time error bound

Theorem [C., Barone, Antil, 2017]

If the following conditions hold:

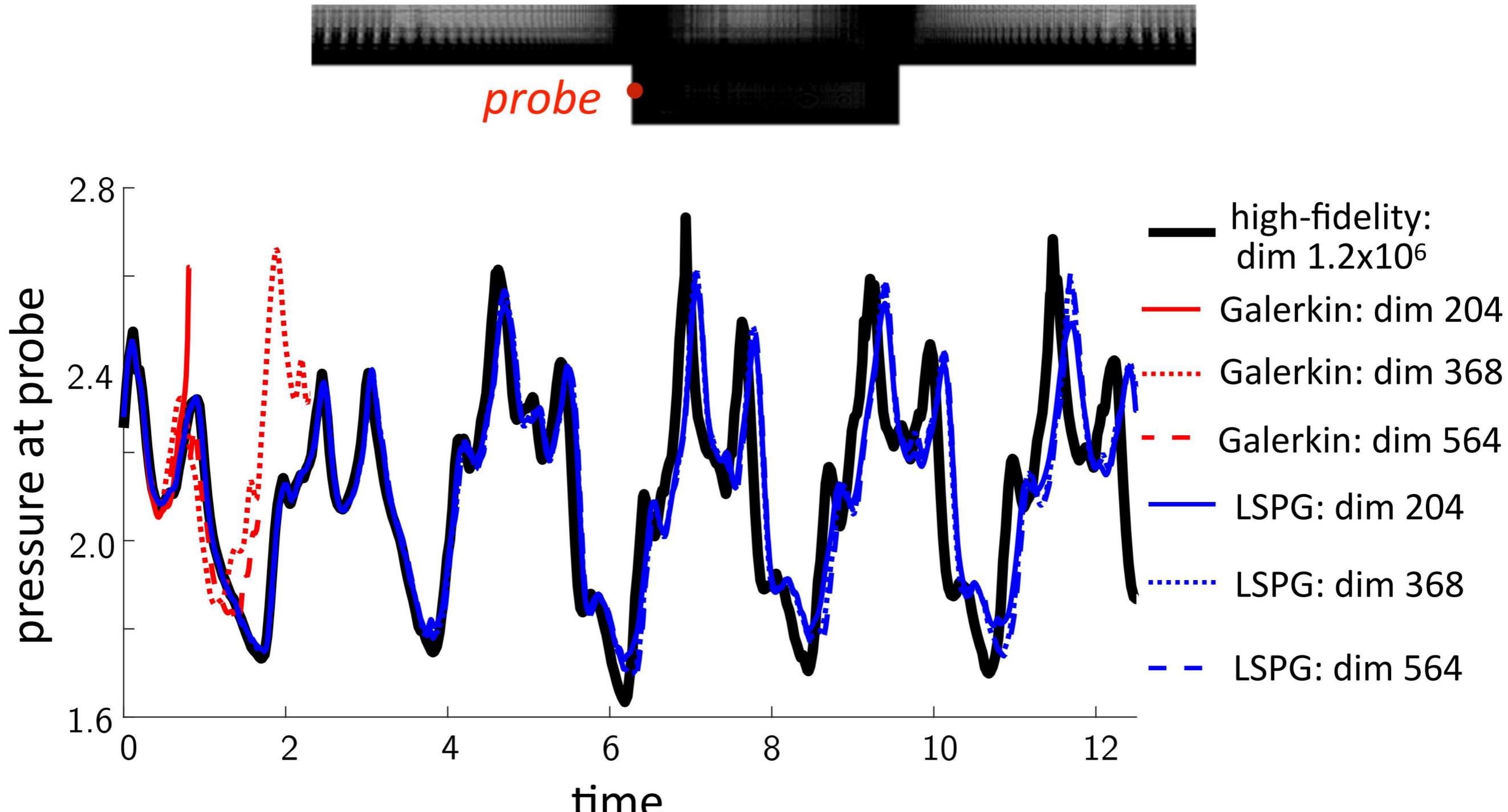
1. $\mathbf{f}(\cdot; t)$ is Lipschitz continuous with Lipschitz constant κ
2. The time step Δt is small enough such that $0 < h := |\alpha_0| - |\beta_0|\kappa\Delta t$,
3. A backward differentiation formula (BDF) time integrator is used,
4. LSPG employs $\mathbf{A} = \mathbf{I}$, then

$$\|\mathbf{x}^n - \Phi \hat{\mathbf{x}}_G^n\|_2 \leq \frac{1}{h} \|\mathbf{r}_G^n(\Phi \hat{\mathbf{x}}_G^n)\|_2 + \frac{1}{h} \sum_{\ell=1}^k |\alpha_\ell| \|\mathbf{x}^{n-\ell} - \Phi \hat{\mathbf{x}}_G^{n-\ell}\|_2$$

$$\|\mathbf{x}^n - \Phi \hat{\mathbf{x}}_{LSPG}^n\|_2 \leq \frac{1}{h} \min_{\hat{\mathbf{v}}} \|\mathbf{r}_{LSPG}^n(\Phi \hat{\mathbf{v}})\|_2 + \frac{1}{h} \sum_{\ell=1}^k |\alpha_\ell| \|\mathbf{x}^{n-\ell} - \Phi \hat{\mathbf{x}}_{LSPG}^{n-\ell}\|_2$$

+ LSPG sequentially *minimizes the error bound*

LSPG performance



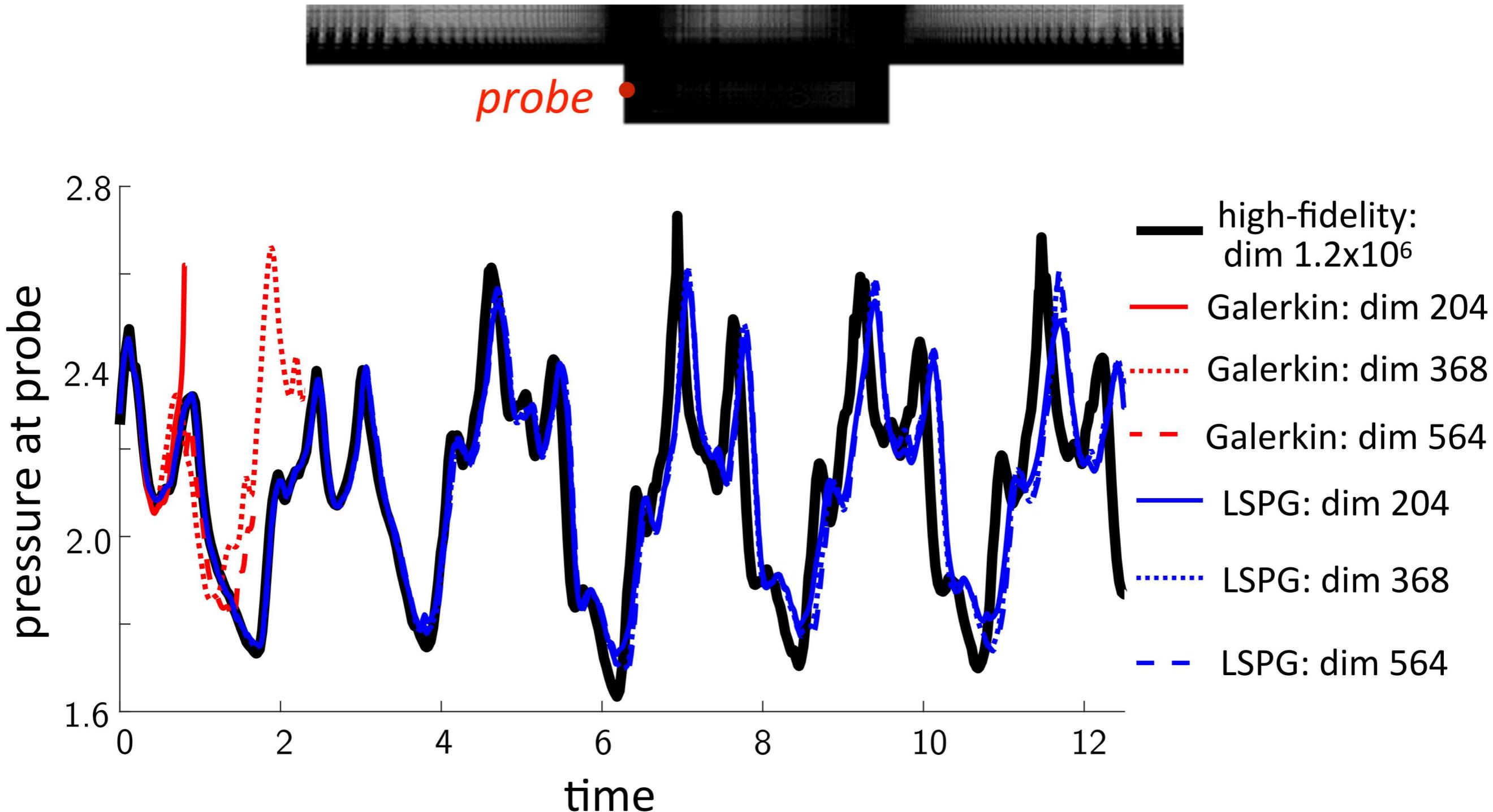
+ LSPG is *far more accurate* than Galerkin

Our research

***Accurate, **low-cost**, structure-preserving,
reliable, certified nonlinear model reduction***

- *accuracy*: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- ***low cost***: sample mesh [C., Farhat, Cortial, Amsallem, 2013*]
- *low cost*: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- *structure preservation* [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- *reliability*: adaptivity [C., 2015]
- *certification*: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

Wall-time problem



- *High-fidelity simulation: 1 hour, 48 cores*
- *Fastest LSPG simulation: 1.3 hours, 48 cores*

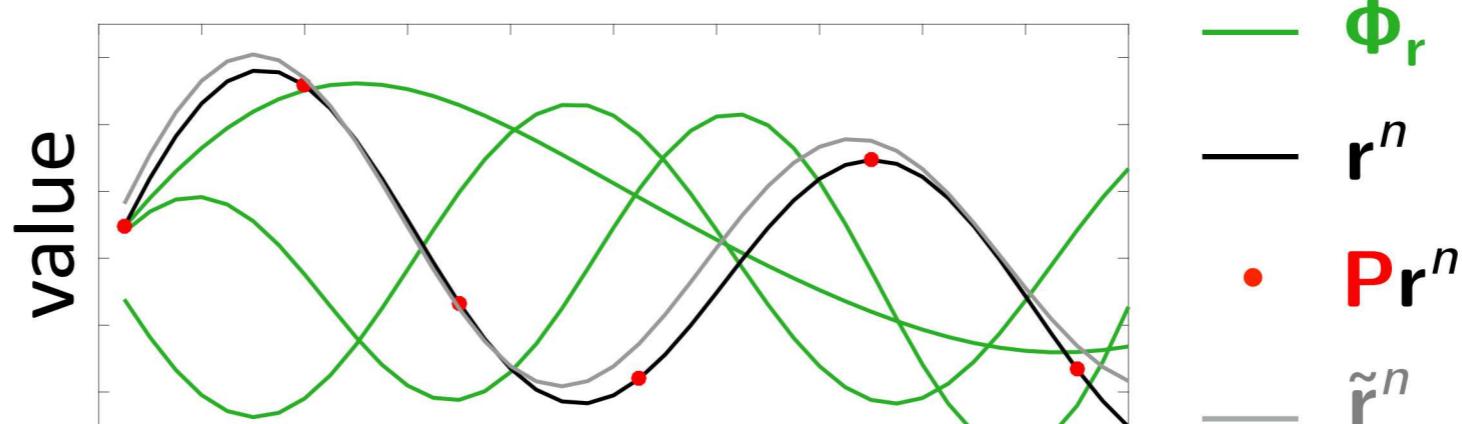
Why does this occur?
Can we fix it?

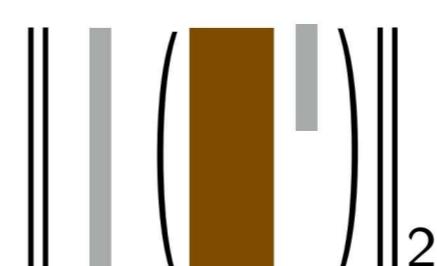
Cost reduction by gappy PCA [Everson and Sirovich, 1995]

$$\underset{\hat{v}}{\text{minimize}} \parallel \mathbf{A} \mathbf{r}^n(\Phi \hat{v}) \parallel_2$$

Can we select \mathbf{A} to make this less expensive?

1. **Training:** collect residual tensor \mathcal{R}^{ijk} while solving ODE for $\mu \in \mathcal{D}_{\text{training}}$
2. **Machine learning:** compute residual PCA Φ_r and sampling matrix \mathbf{P}
3. **Reduction:** compute regression approximation $\mathbf{r}^n \approx \tilde{\mathbf{r}}^n = \Phi_r (\mathbf{P} \Phi_r)^+ \mathbf{P} \mathbf{r}^n$



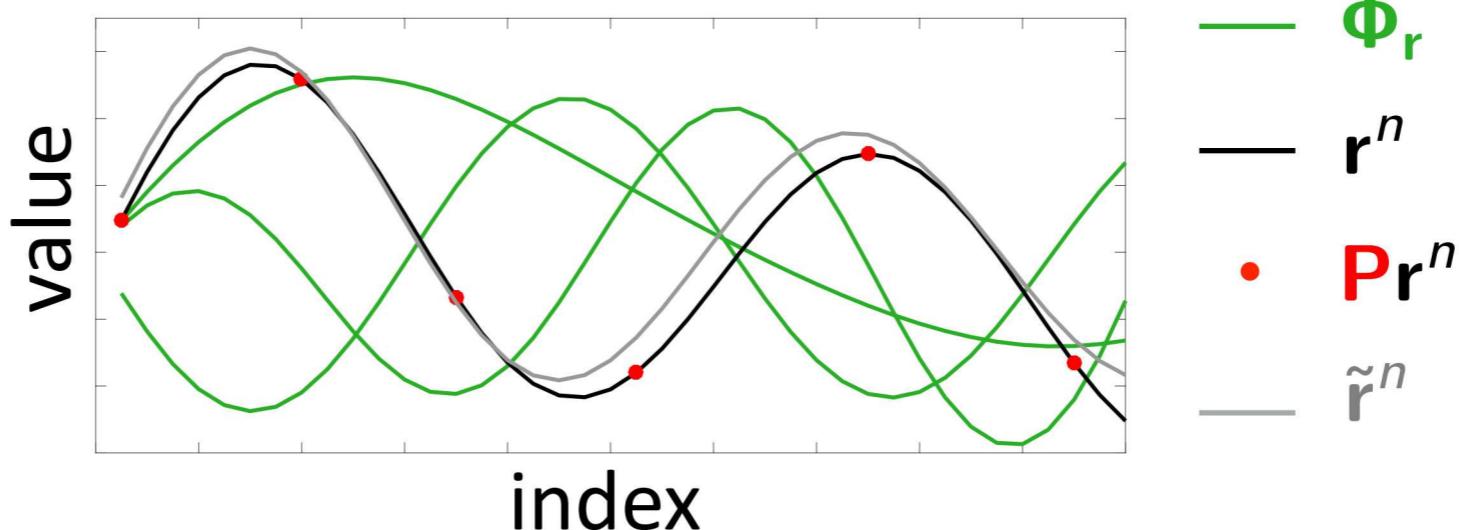
$$\underset{\hat{v}}{\text{minimize}} \parallel \tilde{\mathbf{r}}^n(\Phi \hat{v}) \parallel_2$$


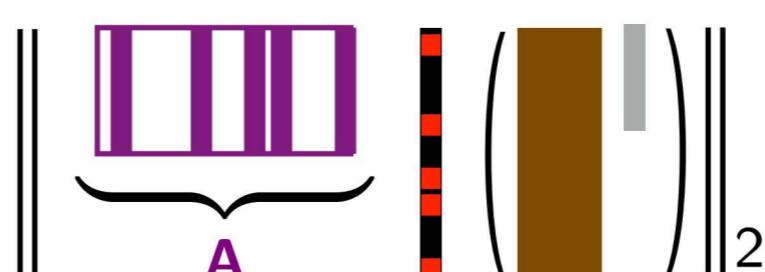
Cost reduction by gappy PCA [Everson and Sirovich, 1995]

$$\underset{\hat{v}}{\text{minimize}} \parallel \mathbf{A} \mathbf{r}^n(\Phi \hat{v}) \parallel_2$$

Can we select \mathbf{A} to make this less expensive?

1. **Training:** collect residual tensor \mathcal{R}^{ijk} while solving ODE for $\mu \in \mathcal{D}_{\text{training}}$
2. **Machine learning:** compute residual PCA Φ_r and sampling matrix \mathbf{P}
3. **Reduction:** compute regression approximation $\mathbf{r}^n \approx \tilde{\mathbf{r}}^n = \Phi_r (\mathbf{P} \Phi_r)^+ \mathbf{P} \mathbf{r}^n$

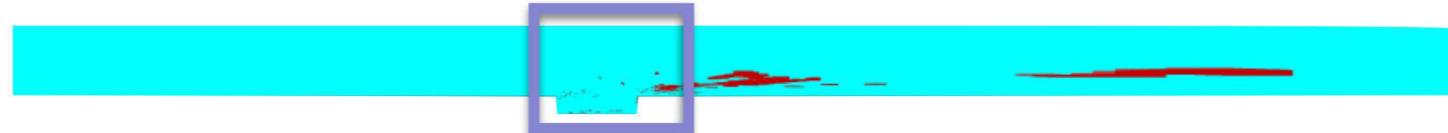
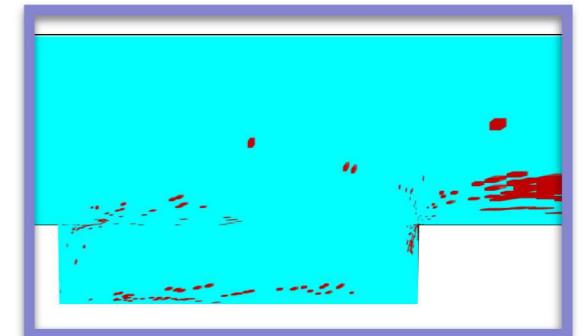


$$\underset{\hat{v}}{\text{minimize}} \parallel (\mathbf{P} \Phi_r)^+ \mathbf{P} \mathbf{r}^n(\Phi \hat{v}) \parallel_2 + \text{Only a few elements of } \mathbf{r}^n \text{ must be computed}$$


Sample mesh [C., Farhat, Cortial, Amsallem, 2013]

$$\underset{\hat{\mathbf{v}}}{\text{minimize}} \left\| (\mathbf{P} \Phi_r)^+ \mathbf{P} \mathbf{r}^n (\Phi \hat{\mathbf{v}}) \right\|_2$$

sample
mesh

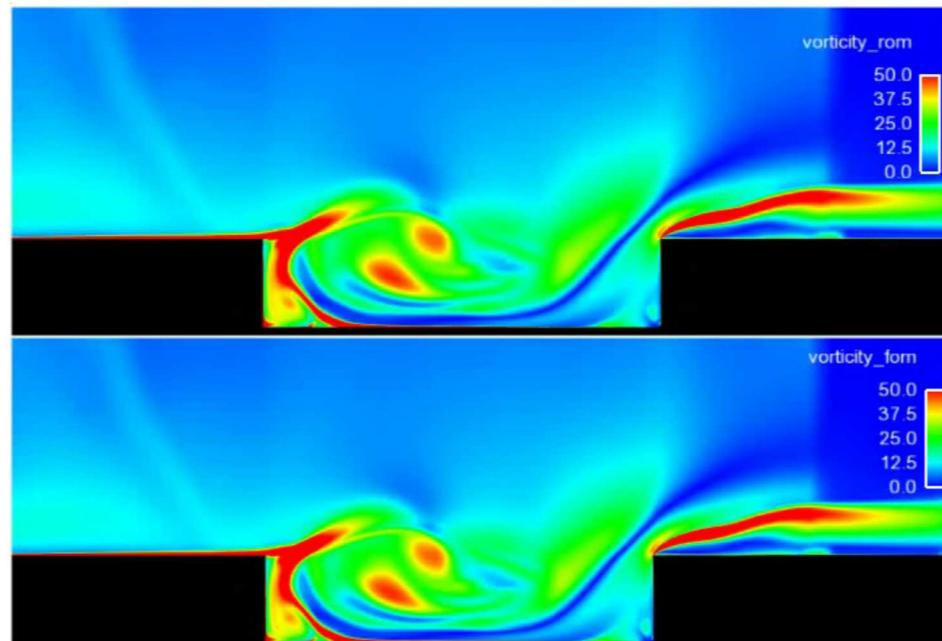
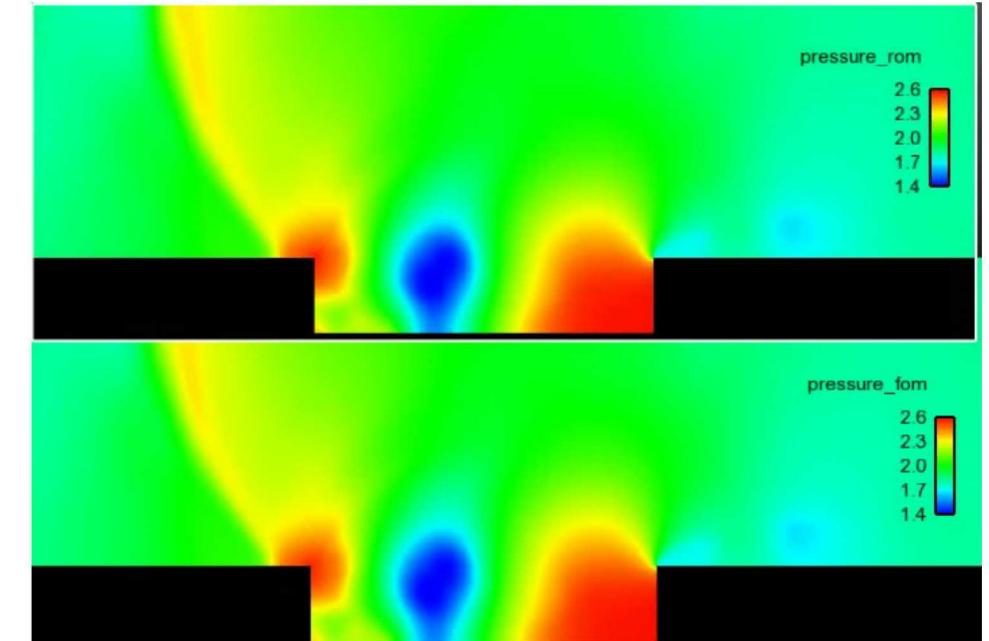


+ *HPC on a laptop*

vorticity field

pressure field

LSPG ROM with
 $\mathbf{A} = (\mathbf{P} \Phi_r)^+ \mathbf{P}$
32 min, 2 cores

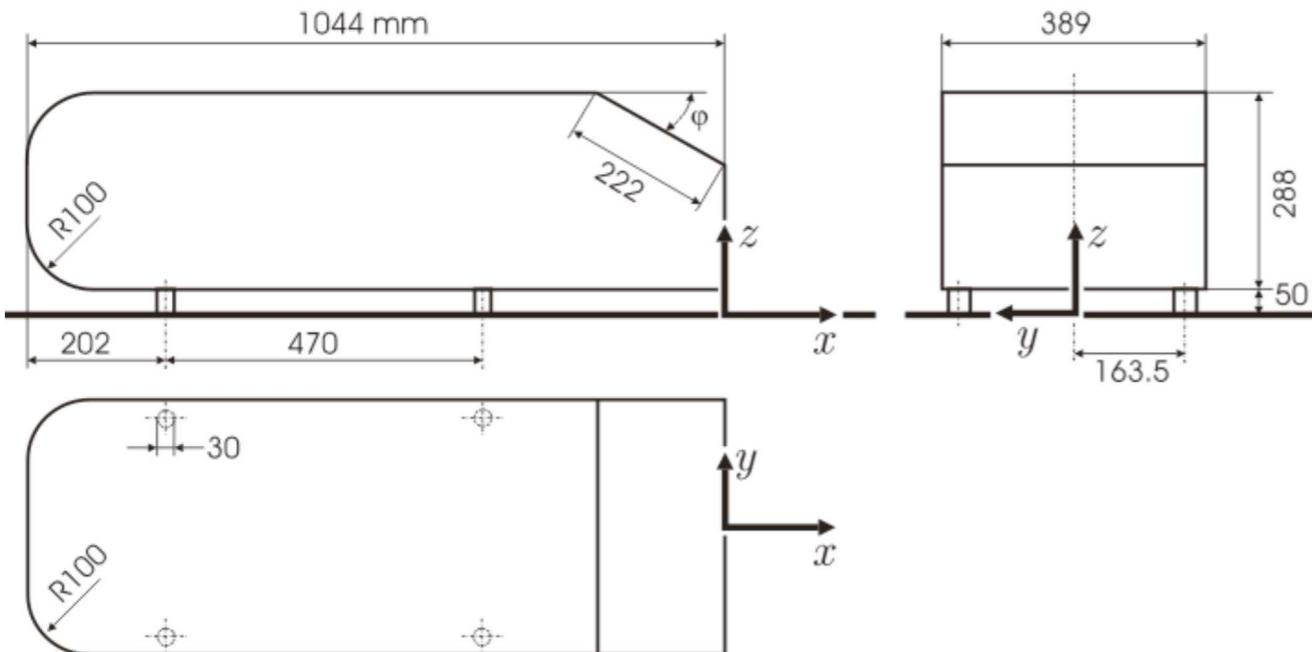
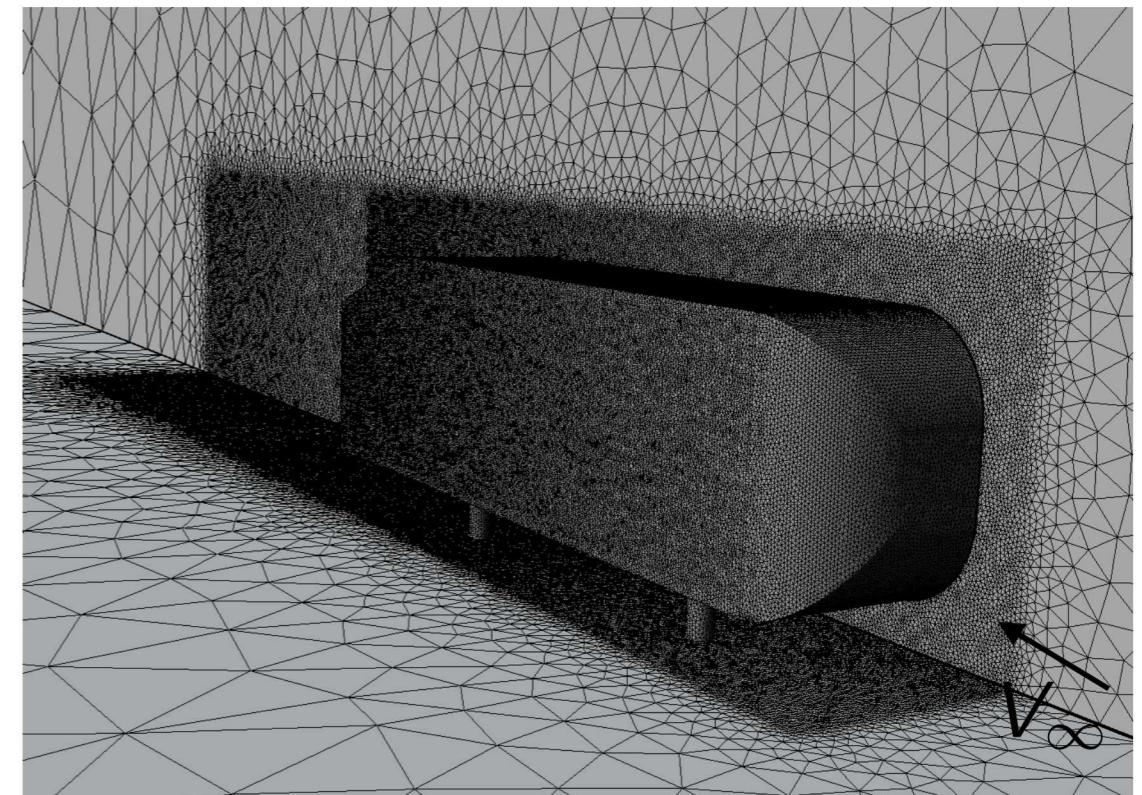


high-fidelity
5 hours, 48 cores

+ 229x savings in core-hours
+ < 1% error in time-averaged drag

Implemented in three computational-mechanics codes at Sandia

Ahmed body [Ahmed, Ramm, Faitin, 1984]



- Unsteady Navier–Stokes
- $Re = 4.3 \times 10^6$
- $M_\infty = 0.175$

Spatial discretization

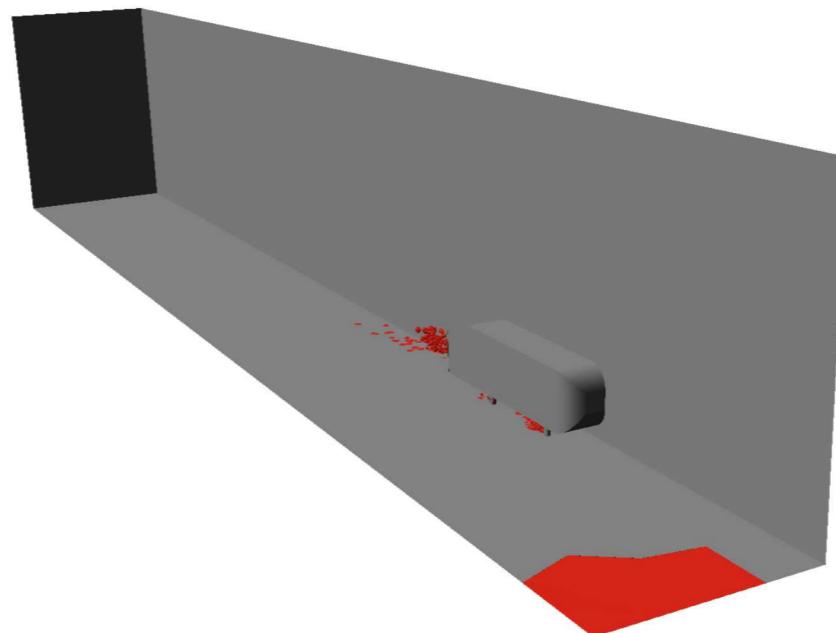
- 2nd-order finite volume
- DES turbulence model
- 1.7×10^7 degrees of freedom

Temporal discretization

- 2nd-order BDF
- Time step $\Delta t = 8 \times 10^{-5}$ s
- 1.3×10^3 time instances

Ahmed body results [C., Farhat, Cortial, Amsallem, 2013]

sample
mesh

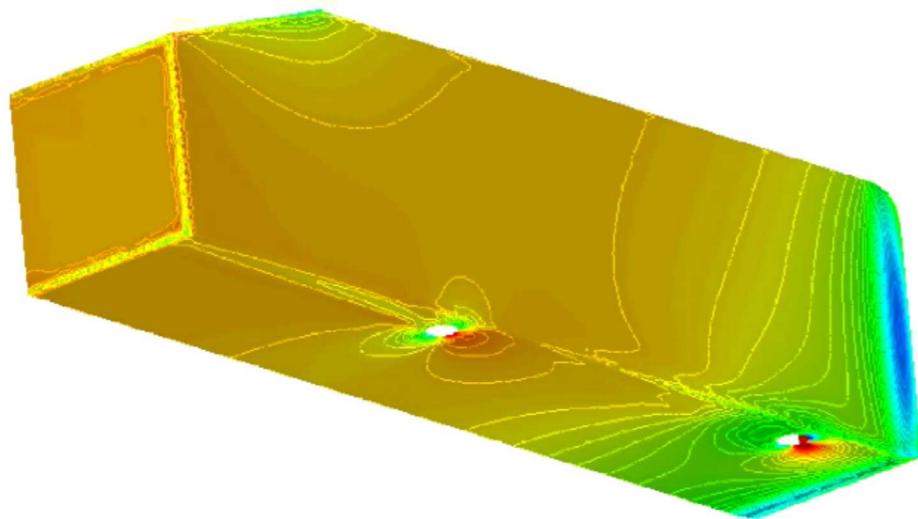
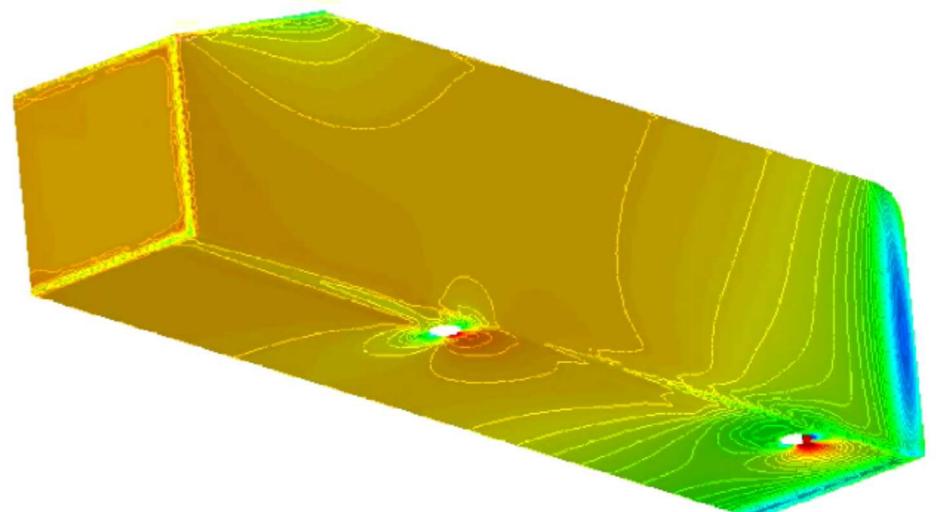


+ HPC on a laptop

LSPG ROM with $\mathbf{A} = (\mathbf{P}\Phi_r)^+\mathbf{P}$
4 hours, 4 cores

high-fidelity model
13 hours, 512 cores

pressure
field



+ 438x savings in core-hours

+ Largest nonlinear dynamical system on which ROM has ever had success

Our research

***Accurate, **low-cost**, structure-preserving,
reliable, certified nonlinear model reduction***

- *accuracy*: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- *low cost*: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- ***low cost***: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- *structure preservation* [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- *reliability*: adaptivity [C., 2015]
- *certification*: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

Our research

***Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction***

- *accuracy*: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- *low cost*: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- *low cost*: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- ***structure preservation*** [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- *reliability*: adaptivity [C., 2015]
- *certification*: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

Our research

***Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction***

- *accuracy*: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- *low cost*: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- *low cost*: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- *structure preservation* [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
- *reliability*: adaptivity [C., 2015]
- *certification*: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

Our research

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- *accuracy*: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- *low cost*: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- *low cost*: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- *structure preservation* [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C. and Choi, 2017]
- *reliability*: adaptivity [C., 2015]
- *certification*: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2018]

Collaborators:

- Martin Drohmann (formerly Sandia)
- Wayne Uy (Cornell University)
- Fei Lu (Johns Hopkins University)
- Matthias Morzfeld (U of Arizona)
- Brian Freno (Sandia)

Surrogate modeling in UQ

inputs μ → *high-fidelity model* → *outputs* \mathbf{q}_{HFM}

- high-fidelity-model (HFM) noise model: $\mathbf{q}_{\text{meas}} = \mathbf{q}_{\text{HFM}}(\mu) + \varepsilon$
- measurement noise ε has probability distribution $\pi_\varepsilon(\cdot)$
- HFM likelihood: $\pi_{\text{HFM}}(\mathbf{q}_{\text{meas}} \mid \mu) = \pi_\varepsilon(\mathbf{q}_{\text{meas}} - \mathbf{q}_{\text{HFM}}(\mu))$

inputs μ → *surrogate model* → *outputs* \mathbf{q}_{surr}

- surrogate noise model: $\mathbf{q}_{\text{meas}} = \mathbf{q}_{\text{surr}}(\mu) + \varepsilon$
- surrogate likelihood: $\pi_{\text{surr}}(\mathbf{q}_{\text{meas}} \mid \mu) = \pi_\varepsilon(\mathbf{q}_{\text{meas}} - \mathbf{q}_{\text{surr}}(\mu))$
 - **inconsistent** with HFM noise model

Surrogate modeling in UQ

$$\mathbf{q}_{\text{HFM}}(\mu) = \mathbf{q}_{\text{surr}}(\mu) + \boldsymbol{\delta}(\mu)$$

- › HFM noise model: $\mathbf{q}_{\text{meas}} = \mathbf{q}_{\text{HFM}}(\mu) + \boldsymbol{\varepsilon}$
 $= \mathbf{q}_{\text{surr}}(\mu) + \boldsymbol{\delta}(\mu) + \boldsymbol{\varepsilon}$
 - › HFM likelihood: $\pi_{\text{HFM}}(\mathbf{q}_{\text{meas}} \mid \mu) = \pi_{\boldsymbol{\varepsilon}}(\mathbf{q}_{\text{meas}} - \mathbf{q}_{\text{HFM}}(\mu))$
 $= \pi_{\boldsymbol{\varepsilon}}(\mathbf{q}_{\text{meas}} - \mathbf{q}_{\text{surr}}(\mu) - \boldsymbol{\delta}(\mu))$
-
- + equivalent to HFM formulation
 - + not practical: the (deterministic) error $\boldsymbol{\delta}(\mu)$ is generally unknown

How can we account for the error $\boldsymbol{\delta}(\mu)$ in a manner that is consistent and practical?

Surrogate modeling in UQ

$$\mathbf{q}_{\text{HFM}}(\mu) = \mathbf{q}_{\text{surr}}(\mu) + \delta(\mu)$$

Approach: statistical model $\tilde{\delta}(\mu)$ for the error that models its uncertainty

$$\tilde{\mathbf{q}}_{\text{HFM}}(\mu) = \underbrace{\mathbf{q}_{\text{surr}}(\mu)}_{\text{deterministic}} + \underbrace{\tilde{\delta}(\mu)}_{\text{stochastic}}$$

- statistical HFM noise model: $\mathbf{q}_{\text{meas}} = \tilde{\mathbf{q}}_{\text{HFM}}(\mu) + \epsilon$
 $= \mathbf{q}_{\text{surr}}(\mu) + \tilde{\delta}(\mu) + \epsilon$
- stochastic HFM likelihood: $\pi_{\widetilde{\text{HFM}}}(\mathbf{q}_{\text{meas}} \mid \mu) = \pi_{\epsilon + \tilde{\delta}}(\mathbf{q}_{\text{meas}} - \mathbf{q}_{\text{surr}}(\mu))$
 - + consistent with HFM noise model
 - + practical if the statistical error model $\tilde{\delta}$ is computable

Desired properties in statistical error model $\tilde{\delta}(\mu)$

1. **cheaply computable**: similar cost to evaluating the surrogate
2. **low variance**: introduces little epistemic uncertainty
3. **generalizable**: correctly models the error

How can we construct a statistical error model for reduced-order models?

Approximate-solution surrogate models

High-fidelity model

- › governing equations: $\mathbf{r}(\mathbf{x}(\mu); \mu) = \mathbf{0}$
- › quantity of interest: $q_{\text{HFM}}(\mu) := q(\mathbf{x}(\mu))$

Approximate-solution surrogate model

- › approximate solution: $\tilde{\mathbf{x}}(\mu) \approx \mathbf{x}(\mu)$
- › quantity of interest: $q_{\text{surr}}(\mu) := q(\tilde{\mathbf{x}}(\mu))$

Types of approximate solutions

- › *Reduced-order model*:

$$\Psi^T \mathbf{r}(\Phi \hat{\mathbf{x}}; \mu) = \mathbf{0}, \quad \tilde{\mathbf{x}} = \Phi \hat{\mathbf{x}}$$

- › *Low-fidelity model*:

$$\mathbf{r}_{\text{LF}}(\mathbf{x}_{\text{LF}}; \mu) = \mathbf{0}, \quad \tilde{\mathbf{x}} = \mathbf{p}(\mathbf{x}_{\text{LF}})$$

- › *Inexact solution*: compute $\mathbf{x}^{(k)}$, $k = 1, \dots, K$ such that

$$\|\mathbf{r}(\mathbf{x}^{(K)}; \mu) = \mathbf{0}\|_2 \leq \epsilon, \quad \tilde{\mathbf{x}} = \mathbf{x}^{(K)}$$

What methods exist for quantifying the error $\delta(\mu) := q_{\text{HFM}}(\mu) - q_{\text{surr}}(\mu)$?

1) Error indicators: residual norm

- HFM governing equations: $\mathbf{r}(\mathbf{x}(\mu); \mu) = \mathbf{0}$ (1)
- Approximate solution: $\tilde{\mathbf{x}}(\mu) \approx \mathbf{x}(\mu)$ (2)
- Substitute (2) into the residual of (1) and take the norm:

$$\|\mathbf{r}(\tilde{\mathbf{x}}; \mu)\|_2$$

- *Applications*: termination criterion, greedy methods, trust regions
[Bui-Thanh et al., 2008; Hine and Kunkel, 2012; Wu and Hetmaniuk, 2015; Zahr, 2016]
 - + *Informative*: zero for high-fidelity model
 - *Deterministic*: not a statistical error model
 - *Low quality*: relationship to error depends on conditioning

1) Error indicators: dual-weighted residual

- Approximate HFM quantity of interest to first order

$$q(\mathbf{x}) = q(\tilde{\mathbf{x}}) + \frac{\partial q}{\partial \mathbf{x}}(\tilde{\mathbf{x}})(\mathbf{x} - \tilde{\mathbf{x}}) + O(\|\mathbf{x} - \tilde{\mathbf{x}}\|^2) \quad (1)$$

- Approximate HFM residual to first order

$$\mathbf{0} = \mathbf{r}(\mathbf{x}) = \mathbf{r}(\tilde{\mathbf{x}}) + \frac{\partial \mathbf{r}}{\partial \mathbf{x}}(\tilde{\mathbf{x}})(\mathbf{x} - \tilde{\mathbf{x}}) + O(\|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$$

- Solve for the error

$$\mathbf{x} - \tilde{\mathbf{x}} = -\left[\frac{\partial \mathbf{r}}{\partial \mathbf{x}}(\tilde{\mathbf{x}})\right]^{-1} \mathbf{r}(\tilde{\mathbf{x}}) + O(\|\mathbf{x} - \tilde{\mathbf{x}}\|^2) \quad (2)$$

- Substitute (2) in (1): $q(\mathbf{x}) - q(\tilde{\mathbf{x}}) = \mathbf{y}^T \mathbf{r}(\tilde{\mathbf{x}}) + O(\|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$

$$\frac{\partial \mathbf{r}}{\partial \mathbf{x}}(\tilde{\mathbf{x}})^T \mathbf{y} = -\frac{\partial q}{\partial \mathbf{x}}(\tilde{\mathbf{x}})^T$$

- Applications:* adaptive mesh refinement

[Babuska and Miller, 1984; Becker and Rannacher, 1996; Rannacher, 1999; Venditti and Darmofal, 2000; Fidkowski, 2007]

- + *Accurate*: second-order-accurate approximation
- *Deterministic*: not a statistical error model

2) Rigorous *a posteriori* error bound

Proposition

If the following conditions hold:

1. $\mathbf{r}(\cdot; \mu)$ is inf–sup stable, i.e., for all $\mu \in \mathcal{D}$, there exists $\alpha(\mu) > 0$ s.t.

$$\|\mathbf{r}(\mathbf{z}_1; \mu) - \mathbf{r}(\mathbf{z}_2; \mu)\|_2 \geq \alpha(\mu) \|\mathbf{z}_1 - \mathbf{z}_2\|_2, \quad \forall \mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^N$$

2. $q(\cdot)$ is Lipschitz continuous, i.e., there exists $\beta > 0$ such that

$$|q(\mathbf{z}_1) - q(\mathbf{z}_2)| \leq \beta \|\mathbf{z}_1 - \mathbf{z}_2\|_2, \quad \forall \mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^N$$

then the quantity-of-interest error can be bounded as

$$|q(\mathbf{x}) - q(\tilde{\mathbf{x}})| \leq \frac{\beta}{\alpha} \|\mathbf{r}(\tilde{\mathbf{x}}; \mu)\|_2$$

‣ Applications: reduced-order models

[Rathinam and Petzold, 2003; Grepl and Patera, 2005; Antoulas, 2005; Hinze and Volkwein, 2005; C. et al., 2017]

‣ *Certification*: guaranteed bound

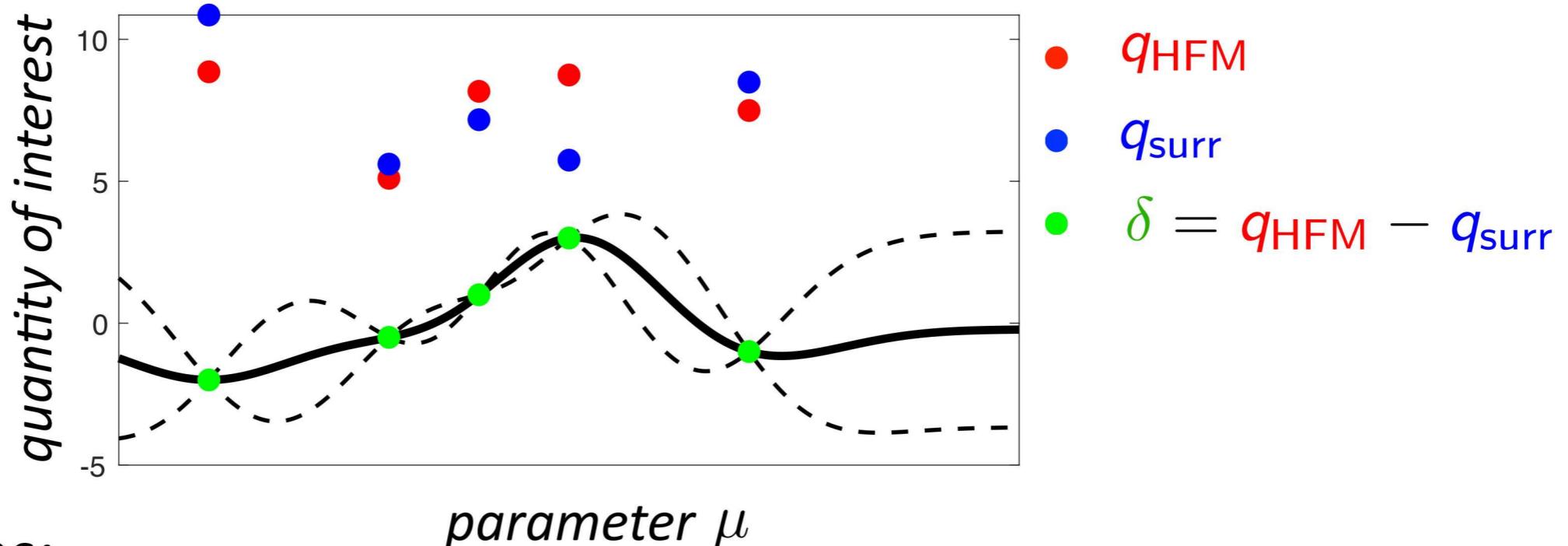
‣ *Lack sharpness*: orders-of-magnitude overestimation

‣ *Difficult to implement*: require bounds for inf–sup/Lipschitz constants

‣ *Deterministic*: not a statistical error model

3) Model-discrepancy approach

$$\tilde{\delta}(\mu) \sim \mathcal{N}(\mu(\mu); \sigma^2(\mu))$$



- *Applications:*
 - Model calibration [Kennedy, O'Hagan, 2001; Higdon et al., 2003; Higdon et al., 2004]
 - Multifidelity optimization [Gano et al., 2005; Huang et al., 2006; March, Willcox, 2012; Ng, Eldred, 2012]
- + *General*: applicable to any surrogate model
- + *Statistical*: interpretable as a statistical error model
- + *Epistemic uncertainty quantified*: through variance
- *Poorly informative inputs*: parameters μ weakly related to the error
- *Poor scalability*: difficult in high-dimensional parameter spaces
- *Thus, can introduce large epistemic uncertainty*: large variance

Objective

Goal: combine the strengths of

1. *error indicators*,
2. *rigorous a posteriori error bounds*, and
3. *the model-discrepancy approach*

A posteriori: use residual-based quantities computed by the surrogate

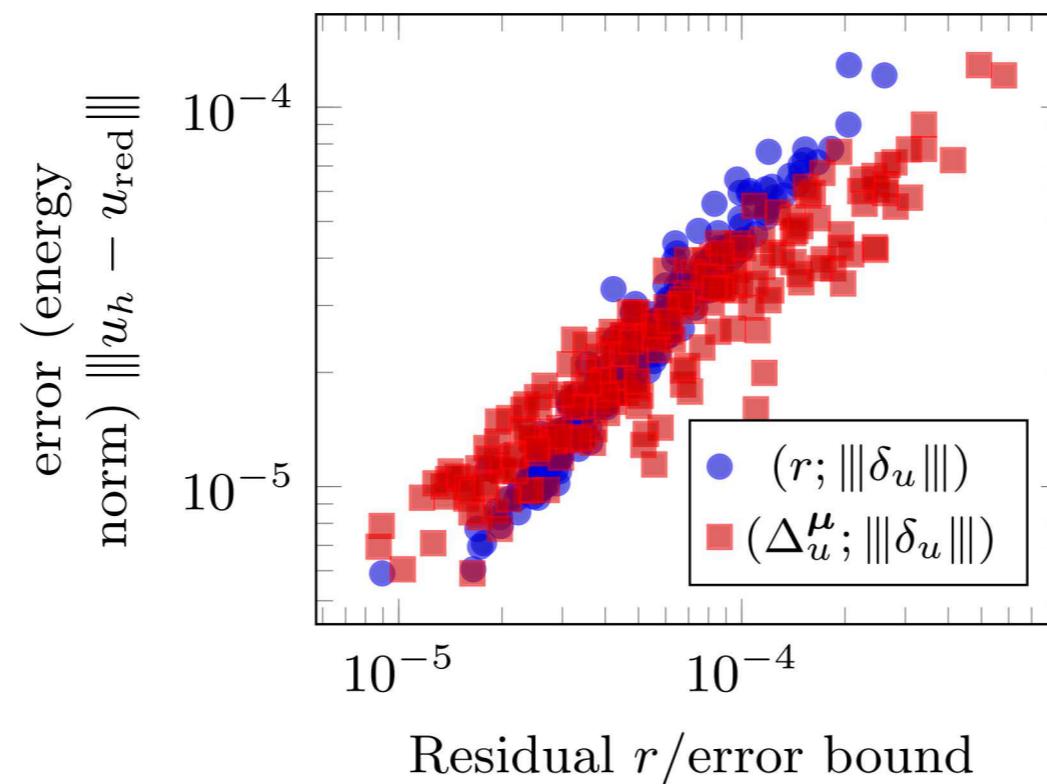
- strength of #1 and #2
- + *Informative inputs*: quantities are strongly related to the error
- + *Thus, can lead to lower epistemic uncertainty*: lower variance

Error modeling: statistical model for the error

- strength of #3
- + *Statistical*: interpretable as a statistical error model
- + *Epistemic uncertainty quantified*: through variance

Main idea

- **Observation:** residual-based quantities are **informative** of the error



- So, these are **informative features**: can predict the error with **low variance**

*Idea: Apply **machine learning regression** to generate a mapping from residual-based quantities to a random variable for the error*

- + Can produce **lower-variance** models than the model-discrepancy approach

Machine-learning error models

Machine-learning error models: formulation

$$\delta(\mu) = \underbrace{f(\rho(\mu))}_{\text{deterministic}} + \underbrace{\epsilon(\rho(\mu))}_{\text{stochastic}}$$

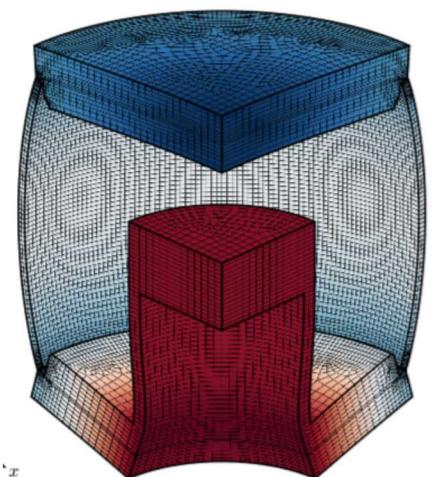
- features: $\rho(\mu) \in \mathbb{R}^{N_\rho}$
- regression function: $f(\rho) = \mathbb{E}[\delta | \rho]$
- noise: $\epsilon(\rho)$
- *Note:* model-discrepancy approach uses $\rho = \mu$

$$\tilde{\delta}(\mu) = \underbrace{\tilde{f}(\rho(\mu))}_{\text{deterministic}} + \underbrace{\tilde{\epsilon}(\rho(\mu))}_{\text{stochastic}}$$

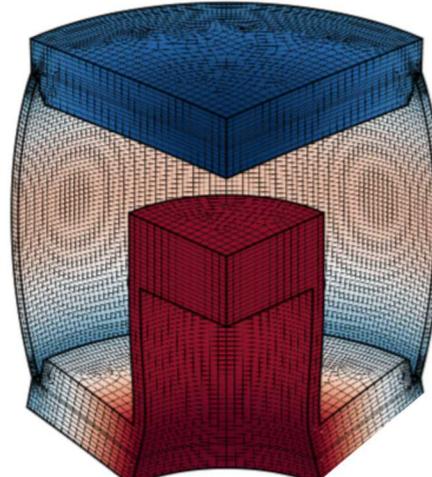
- regression-function model: $\tilde{f}(\approx f)$
- noise model: $\tilde{\epsilon}(\approx \epsilon)$
- Desired properties in error model $\tilde{\delta}$
 1. **cheaply computable:** features $\rho(\mu)$ are inexpensive to compute
 2. **low variance:** noise model $\tilde{\epsilon}(\rho)$ has low variance
 3. **generalizable:** empirical distributions of δ and $\tilde{\delta}$ ‘close’ on test data

Training and machine learning

1. *Training*: Solve high-fidelity and multiple surrogates for $\mu \in \mathcal{D}_{\text{training}}$
2. *Machine learning*: Construct regression model
3. *Reduction*: predict surrogate-model error for $\mu \in \mathcal{D}_{\text{query}} \setminus \mathcal{D}_{\text{training}}$



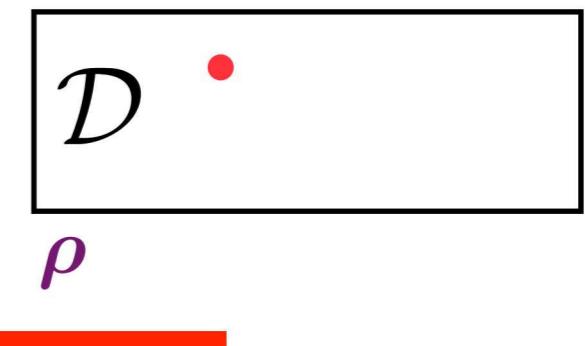
*high-fidelity
model*



*surrogate
models*

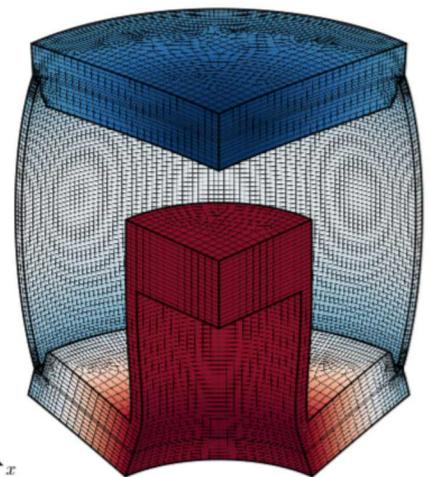
$$\delta = q_{\text{HFM}} - q_{\text{surr}}$$

■

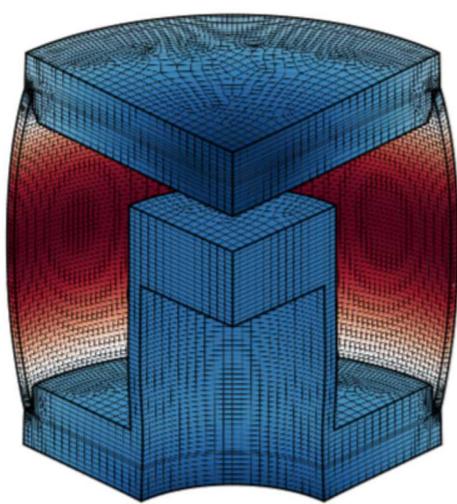


Training and machine learning

1. *Training*: Solve high-fidelity and multiple surrogates for $\mu \in \mathcal{D}_{\text{training}}$
2. *Machine learning*: Construct regression model
3. *Reduction*: predict surrogate-model error for $\mu \in \mathcal{D}_{\text{query}} \setminus \mathcal{D}_{\text{training}}$



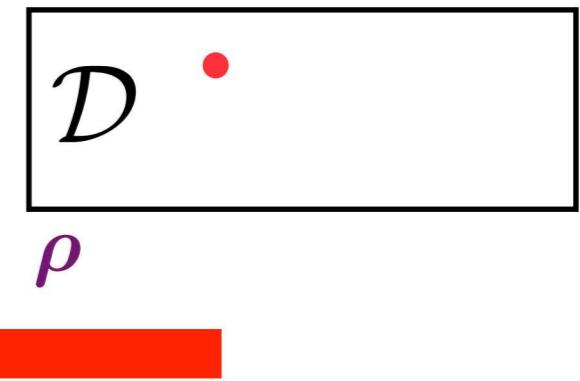
*high-fidelity
model*



*surrogate
models*

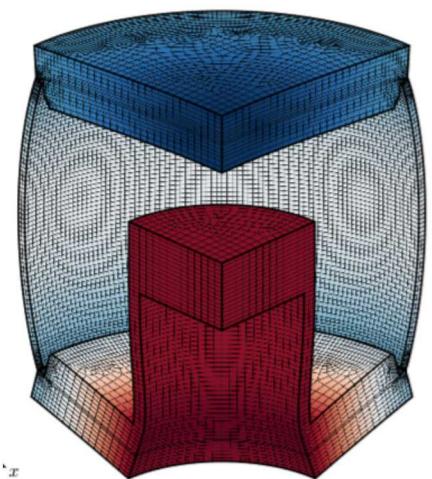
$$\delta = q_{\text{HFM}} - q_{\text{surr}}$$

■

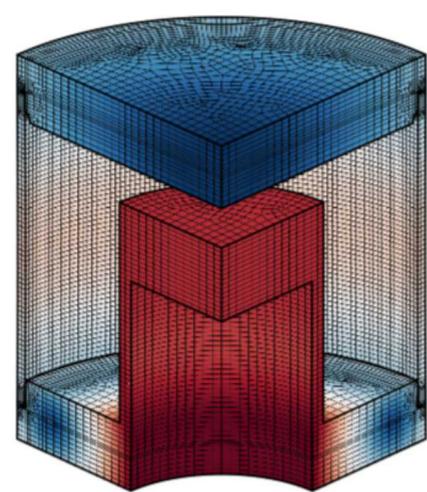


Training and machine learning

1. *Training*: Solve high-fidelity and multiple surrogates for $\mu \in \mathcal{D}_{\text{training}}$
2. *Machine learning*: Construct regression model
3. *Reduction*: predict surrogate-model error for $\mu \in \mathcal{D}_{\text{query}} \setminus \mathcal{D}_{\text{training}}$



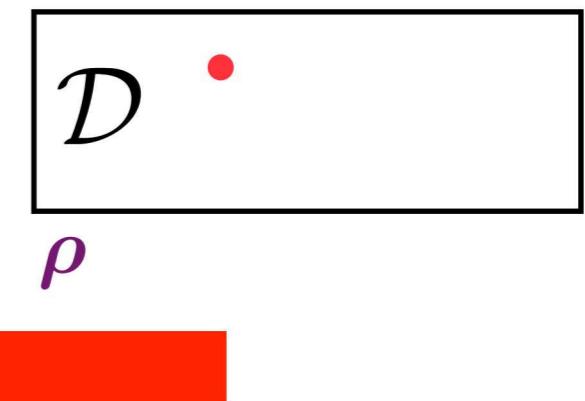
*high-fidelity
model*



*surrogate
models*

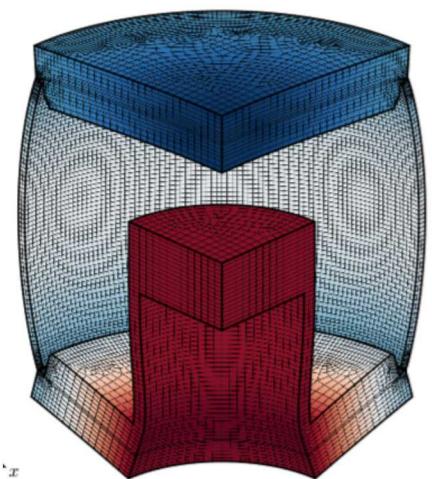
$$\delta = q_{\text{HFM}} - q_{\text{surr}}$$

|

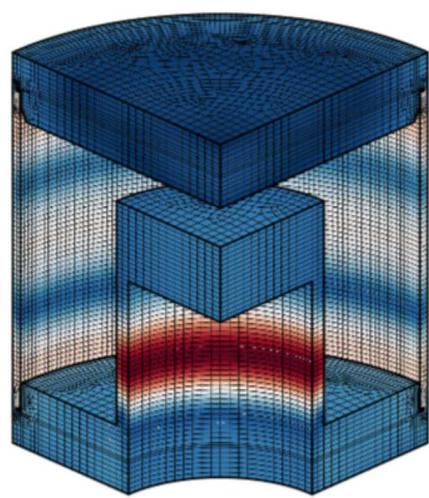


Training and machine learning

1. *Training*: Solve high-fidelity and multiple surrogates for $\mu \in \mathcal{D}_{\text{training}}$
2. *Machine learning*: Construct regression model
3. *Reduction*: predict surrogate-model error for $\mu \in \mathcal{D}_{\text{query}} \setminus \mathcal{D}_{\text{training}}$



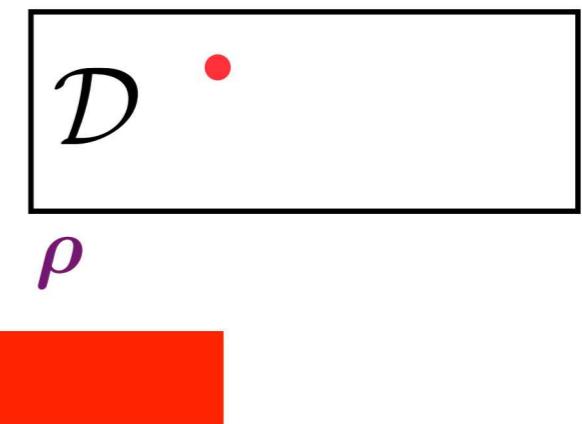
*high-fidelity
model*



*surrogate
models*

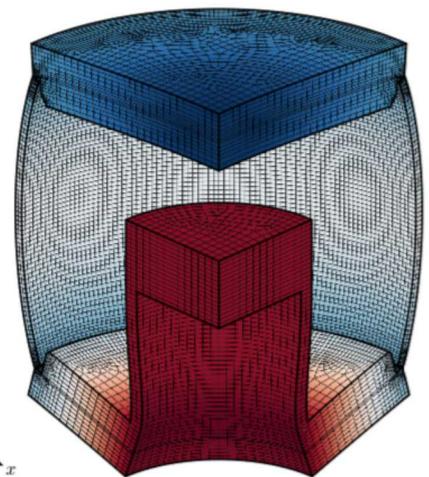
$$\delta = q_{\text{HFM}} - q_{\text{surr}}$$

|

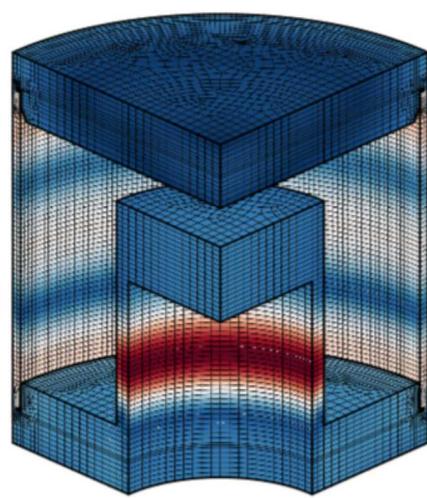


Training and machine learning

1. *Training*: Solve high-fidelity and multiple surrogates for $\mu \in \mathcal{D}_{\text{training}}$
2. *Machine learning*: Construct regression model
3. *Reduction*: predict surrogate-model error for $\mu \in \mathcal{D}_{\text{query}} \setminus \mathcal{D}_{\text{training}}$

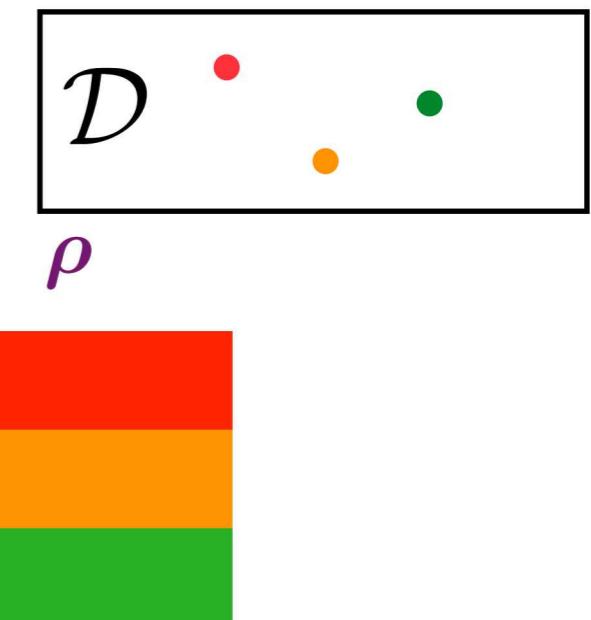


*high-fidelity
model*



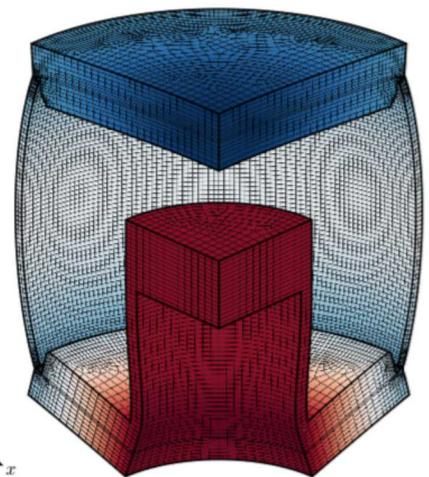
*surrogate
models*

$$\delta = q_{\text{HFM}} - q_{\text{surr}}$$

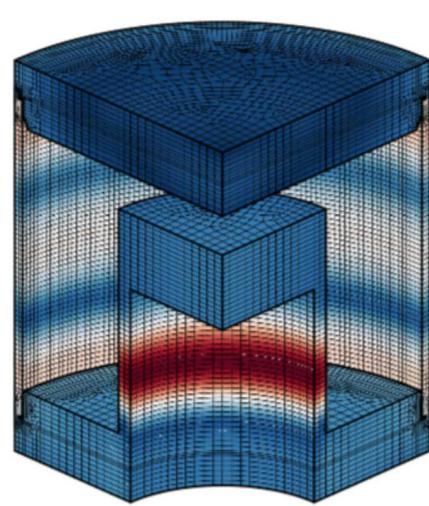


Training and machine learning

1. *Training*: Solve high-fidelity and multiple surrogates for $\mu \in \mathcal{D}_{\text{training}}$
2. *Machine learning*: Construct regression model
3. *Reduction*: predict surrogate-model error for $\mu \in \mathcal{D}_{\text{query}} \setminus \mathcal{D}_{\text{training}}$

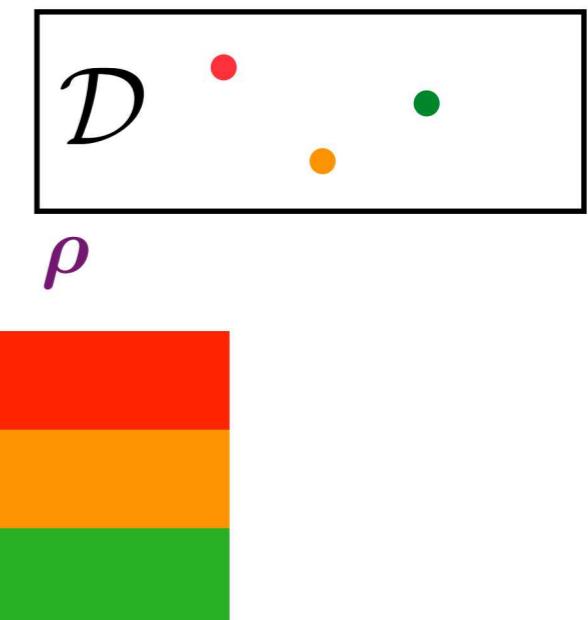


*high-fidelity
model*



*surrogate
models*

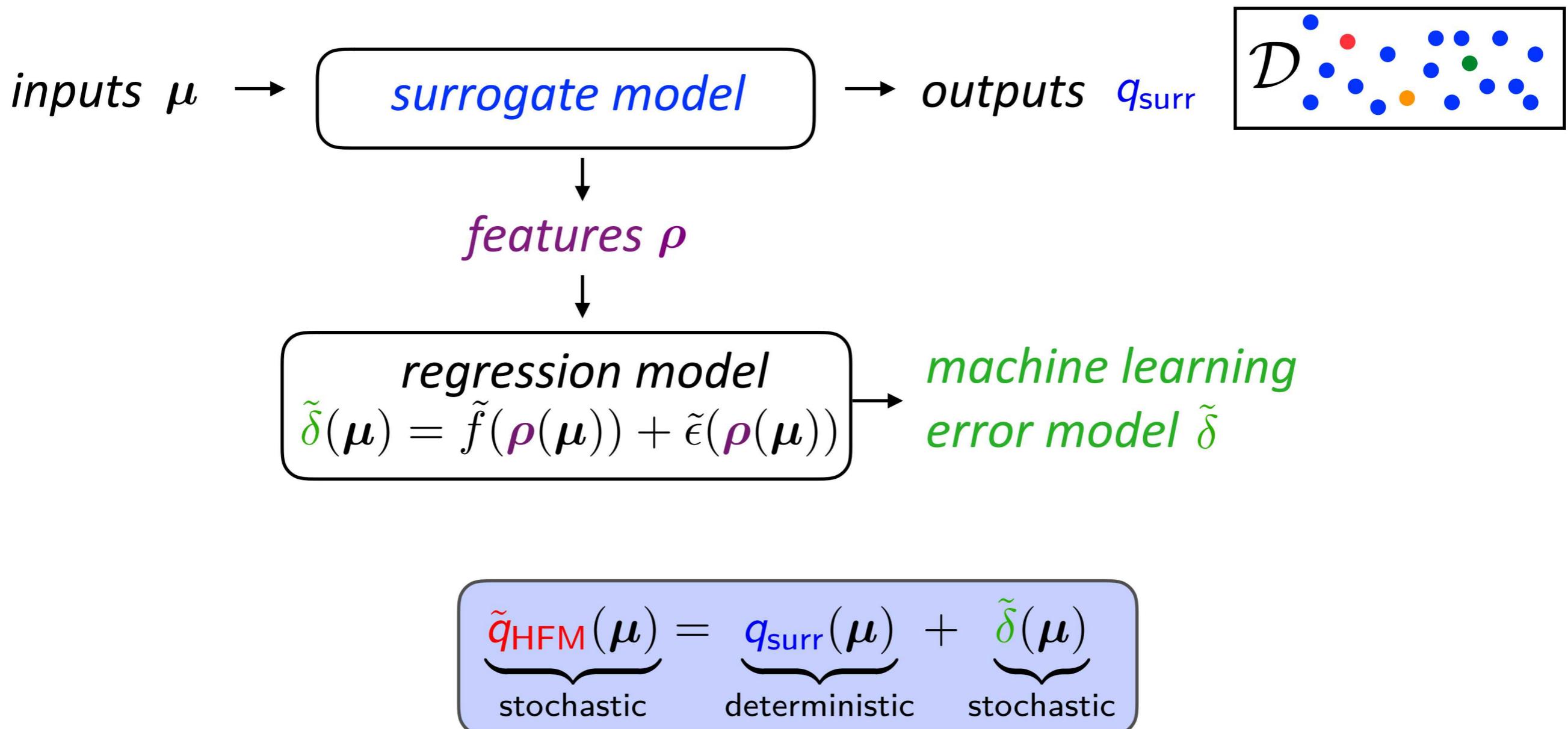
$$\delta = q_{\text{HFM}} - q_{\text{surr}}$$



- randomly divide data into (1) training data and (2) testing data
- construct regression-function model \tilde{f} via cross validation on **training data**
- construct noise model $\tilde{\epsilon}$ from sample variance on **test data**

Reduction

1. *Training*: Solve high-fidelity and reduced-order models for $\mu \in \mathcal{D}_{\text{training}}$
2. *Machine learning*: Construct regression model
3. *Reduction*: predict surrogate-model error for $\mu \in \mathcal{D}_{\text{query}} \setminus \mathcal{D}_{\text{training}}$



Error-model construction

$$\tilde{\delta}(\mu) = \tilde{f}(\rho(\mu)) + \tilde{\epsilon}(\rho(\mu))$$

Feature engineering: select $\text{features } \rho$ to trade off:

1. Number of features

- *Large number:* **costly**, **low variance**, **high-capacity regression**
- *Small number:* **cheap**, **high variance**, **low-capacity regression**

2. Quality of features

- *High quality:* **expensive**, **low variance**
- *Low quality:* **cheap**, **high variance**

Regression model: construct regression model \tilde{f} to trade off:

- *High capacity:* **low variance**, **more data to generalize**
- *Low capacity:* **high variance**, **less data to generalize**

Method 1: Dual-weighted residual and Gaussian process regression

[Drohmann, C., 2015; C., Uy, Lu, Morfeld, 2018]

Method 2: Large number of features and high-dimensional regression

[Trehan, C., Durlofsky, 2017; Freno, C., 2018]

Error-model construction

$$\tilde{\delta}(\mu) = \tilde{f}(\rho(\mu)) + \tilde{\epsilon}(\rho(\mu))$$

Feature engineering: select $\text{features } \rho$ to trade off:

1. Number of features

- *Large number:* **costly**, **low variance**, **high-capacity regression**
- *Small number:* **cheap**, **high variance**, **low-capacity regression**

2. Quality of features

- *High quality:* **expensive**, **low variance**
- *Low quality:* **cheap**, **high variance**

Regression model: construct regression model \tilde{f} to trade off:

- *High capacity:* **low variance**, **more data to generalize**
- *Low capacity:* **high variance**, **less data to generalize**

Method 1: Dual-weighted residual and Gaussian process regression

[Drohmann, C., 2015; C., Uy, Lu, Morfeld, 2018]

Method 2: Large number of features and high-dimensional regression

[Trehan, C., Durlofsky, 2017; Freno, C., 2018]

Feature: dual-weighted residual [Drohmann, C., 2015]

$$q(\mathbf{x}) - q(\tilde{\mathbf{x}}) = \mathbf{y}^T \mathbf{r}(\tilde{\mathbf{x}}) + O(\|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$$

$$\frac{\partial \mathbf{r}}{\partial \mathbf{x}}(\tilde{\mathbf{x}})^T \mathbf{y} = -\frac{\partial q}{\partial \mathbf{x}}(\tilde{\mathbf{x}})^T$$

- Want to avoid HFM-scale solves, so approximate dual as

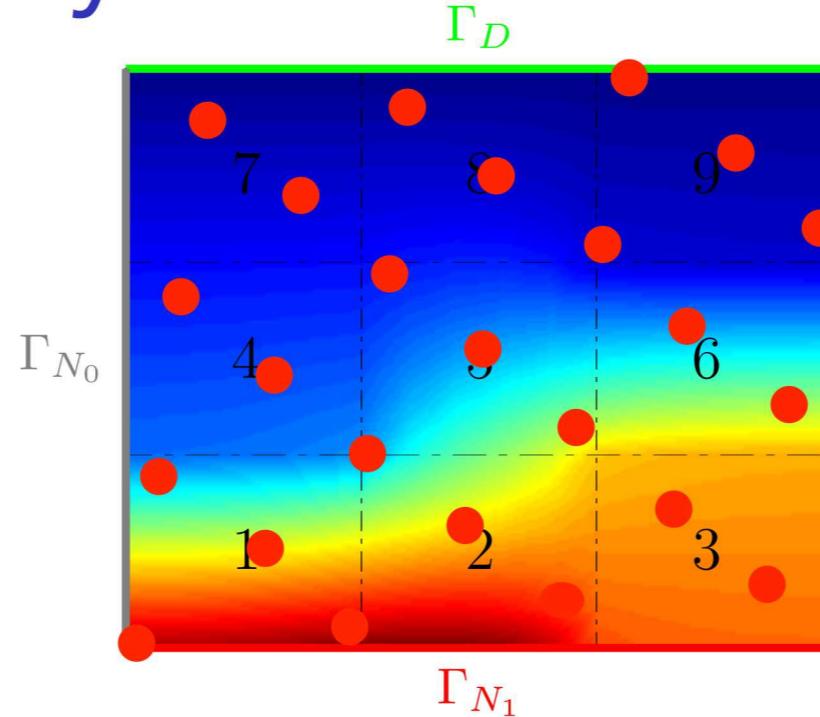
$$\mathbf{y} \approx \tilde{\mathbf{y}} = \Phi_y \hat{\mathbf{y}}$$

and construct a ROM for the dual

$$\Phi_y^T \frac{\partial \mathbf{r}}{\partial \mathbf{x}}(\tilde{\mathbf{x}})^T \Phi_y \hat{\mathbf{y}} = -\Phi_y^T \frac{\partial q}{\partial \mathbf{x}}(\tilde{\mathbf{x}})^T$$

- One feature:** $q(\mathbf{x}) - q(\tilde{\mathbf{x}}) \approx \hat{\mathbf{y}}^T \Phi_y^T \mathbf{r}(\tilde{\mathbf{x}})$
 - can control feature quality via dimension of Φ_y
- Regression model:** Gaussian process [Rasmussen, Williams, 2006]

Application: Bayesian inference



$$\Delta c(x; \mu)u(x; \mu) = 0 \text{ in } \Omega \quad x(\mu) = 0 \text{ on } \Gamma_D$$

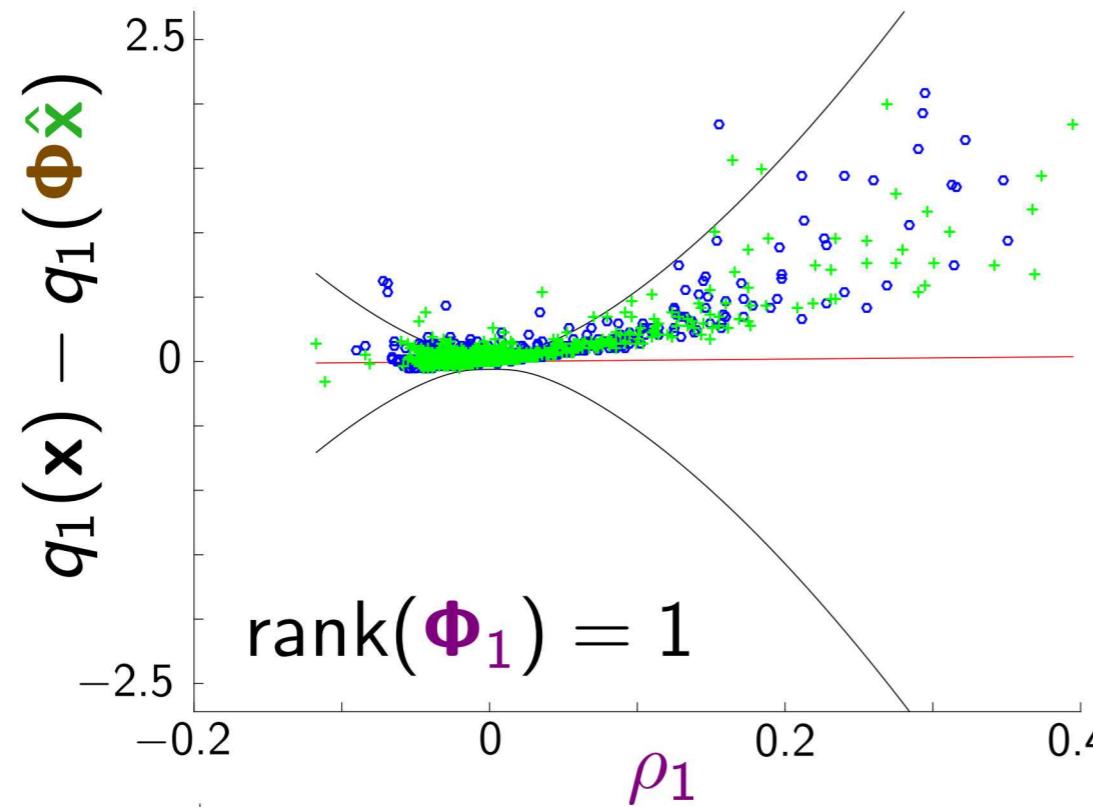
$$\nabla c(\mu)x(\mu) \cdot n = 0 \text{ on } \Gamma_{N_0} \quad \nabla c(\mu)x(\mu) \cdot n = 1 \text{ on } \Gamma_{N_1}$$

- Inputs $\mu \in [0.1, 10]^9$ define diffusivity in c in subdomains
- Outputs **q** are **24 measured temperatures**
- ROM constructed via RB-Greedy [Patera and Rozza, 2006]
- $\pi_{\text{prior}}(\mu)$: Gaussian with variance 0.1
- $\varepsilon \sim \mathcal{N}(0, 1 \times 10^{-3})$
- Posterior sampling: 1×10^5 samples w/ implicit sampling [Tu et al., 2013]

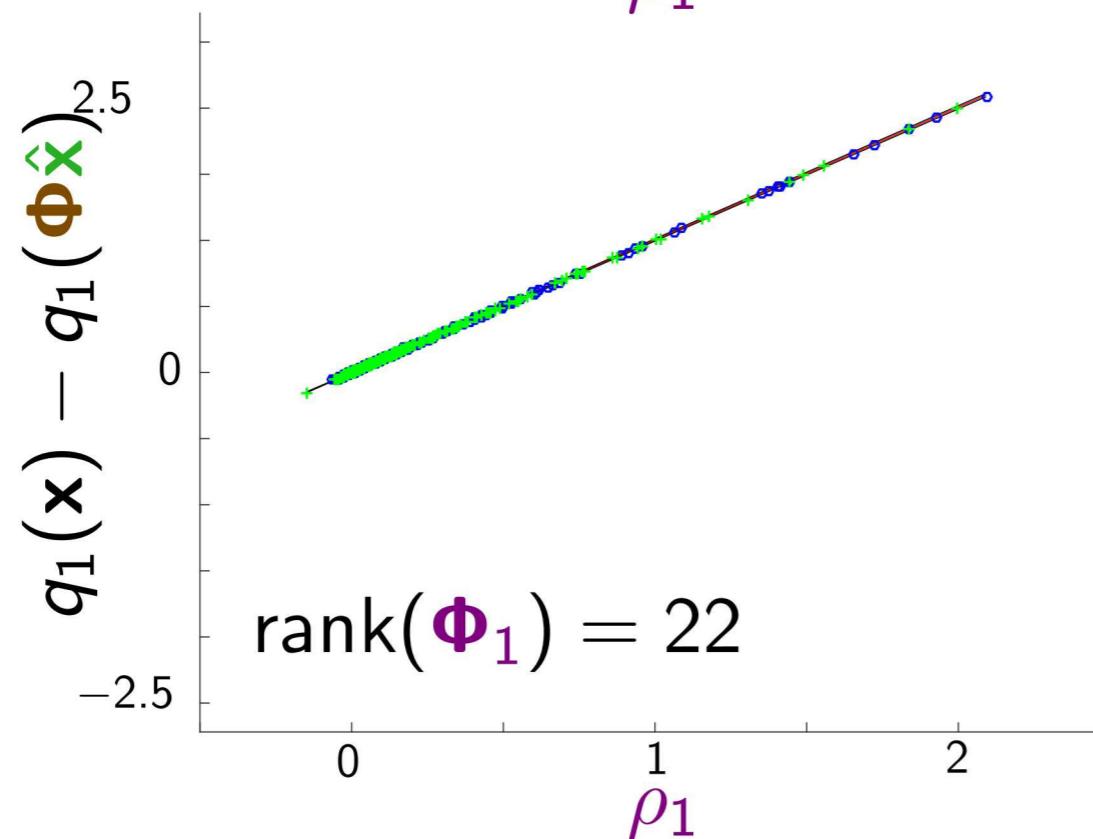
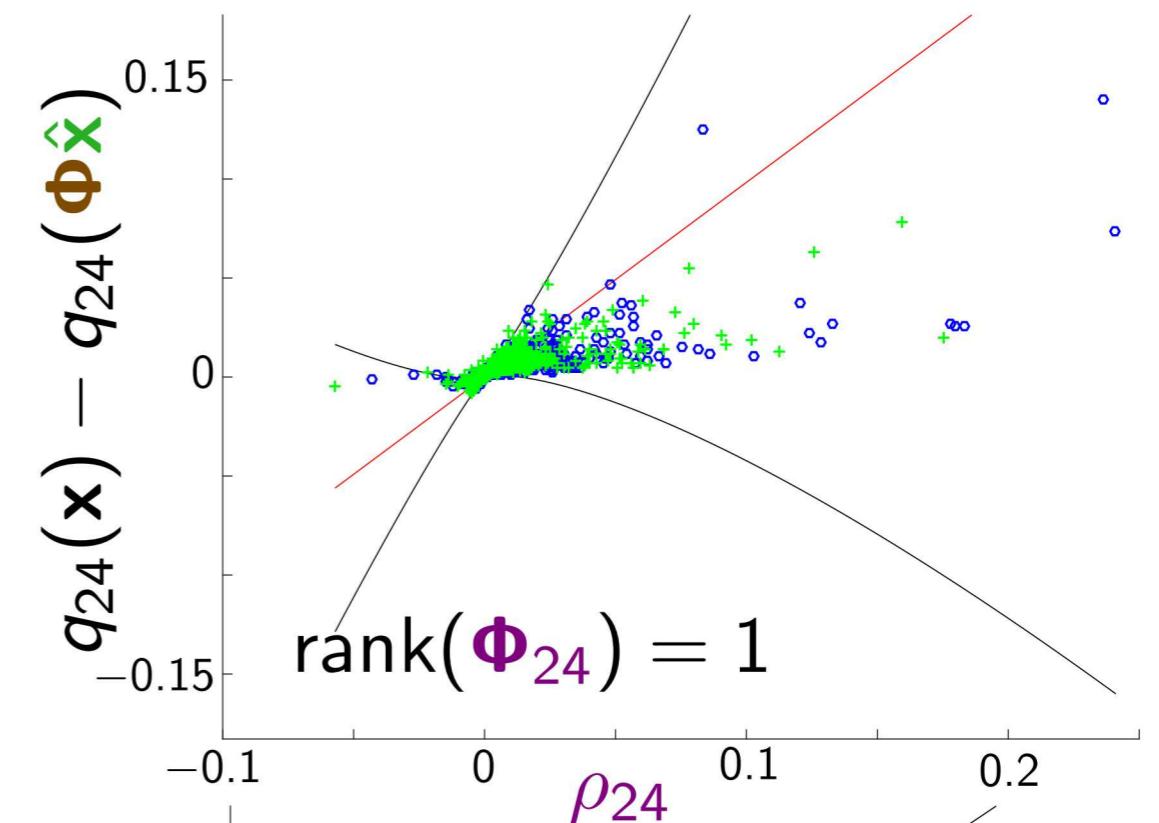
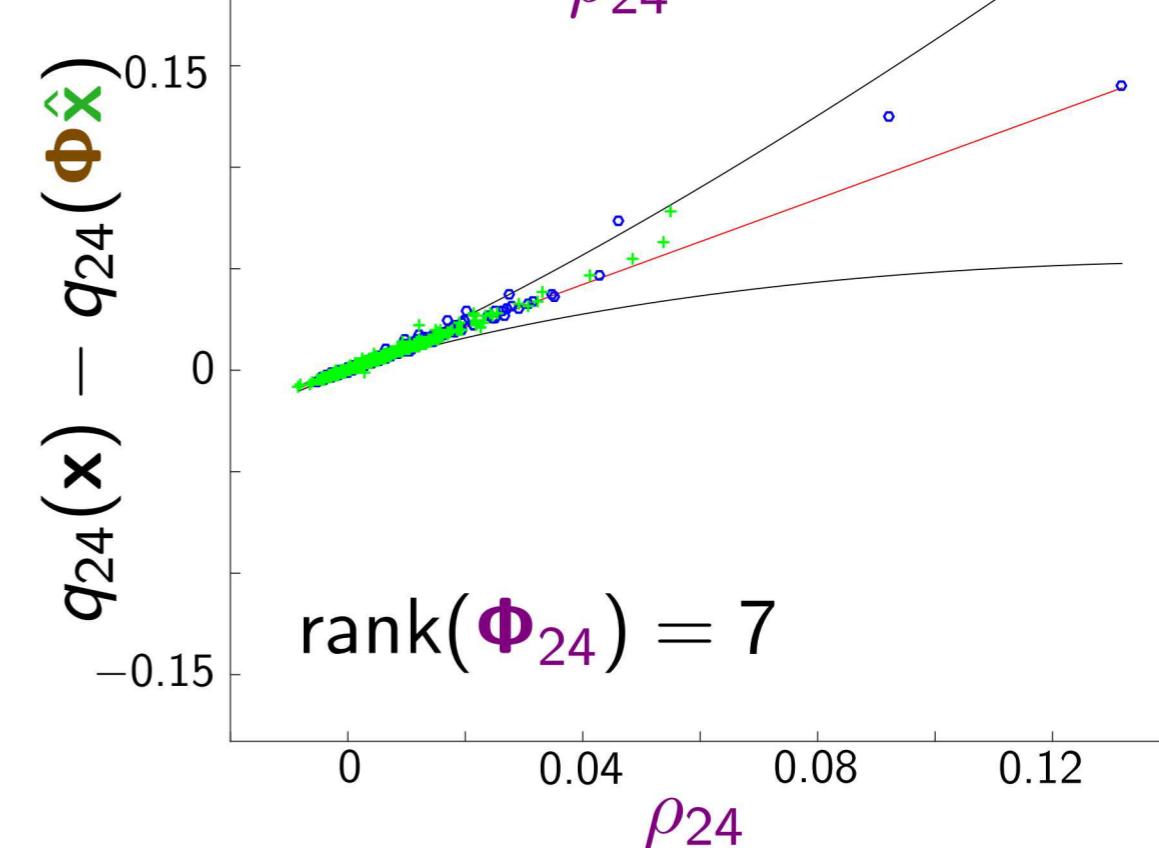
Machine learning error models

$$\tilde{\delta}_i(\mu) \sim \mathcal{N}(\beta \rho_i(\mu), \alpha_1 + \alpha_2 |\rho_i(\mu)|^{\alpha_3})$$

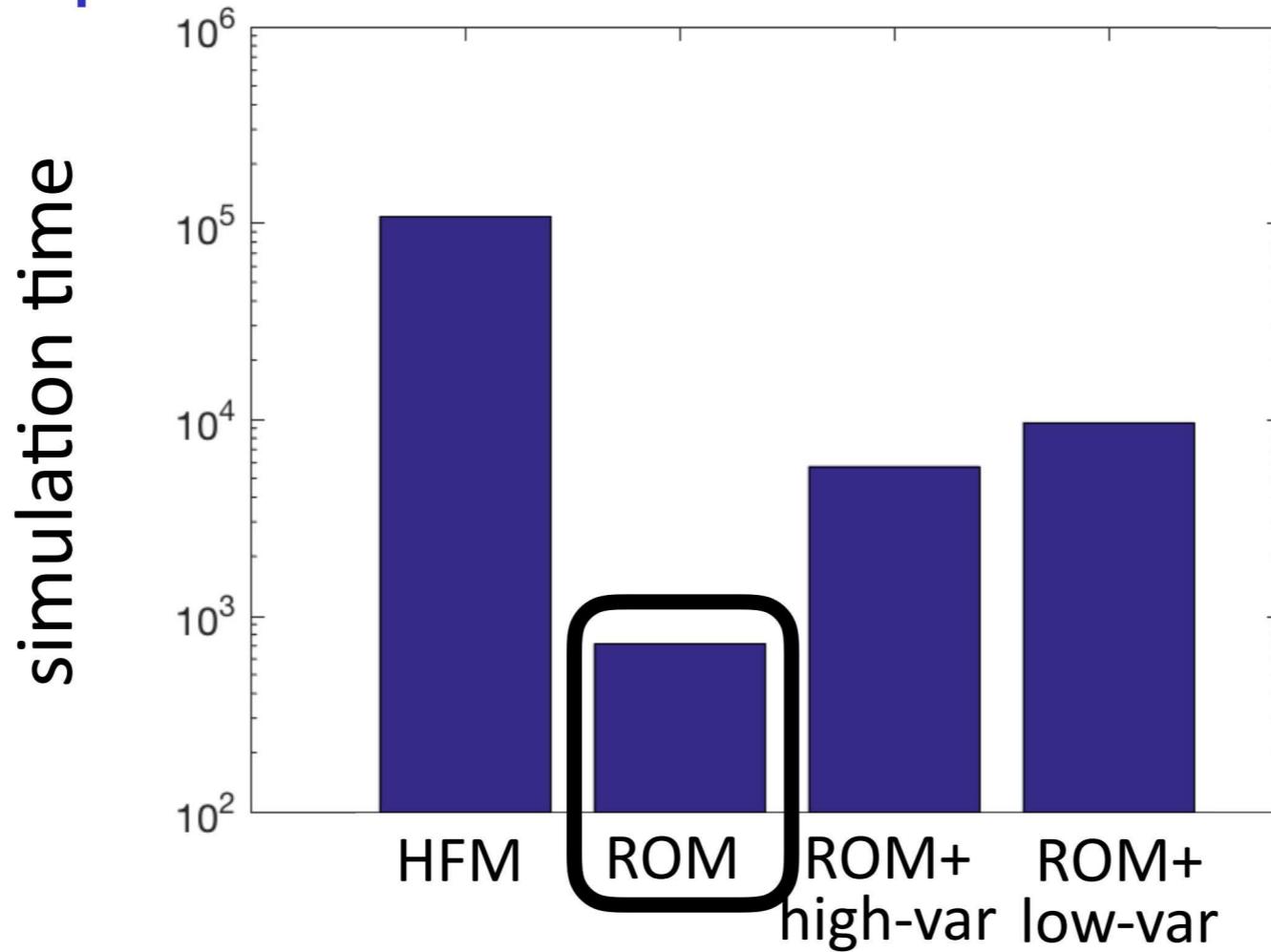
low
quality
high
variance
cheap



high
quality
low
variance
costly

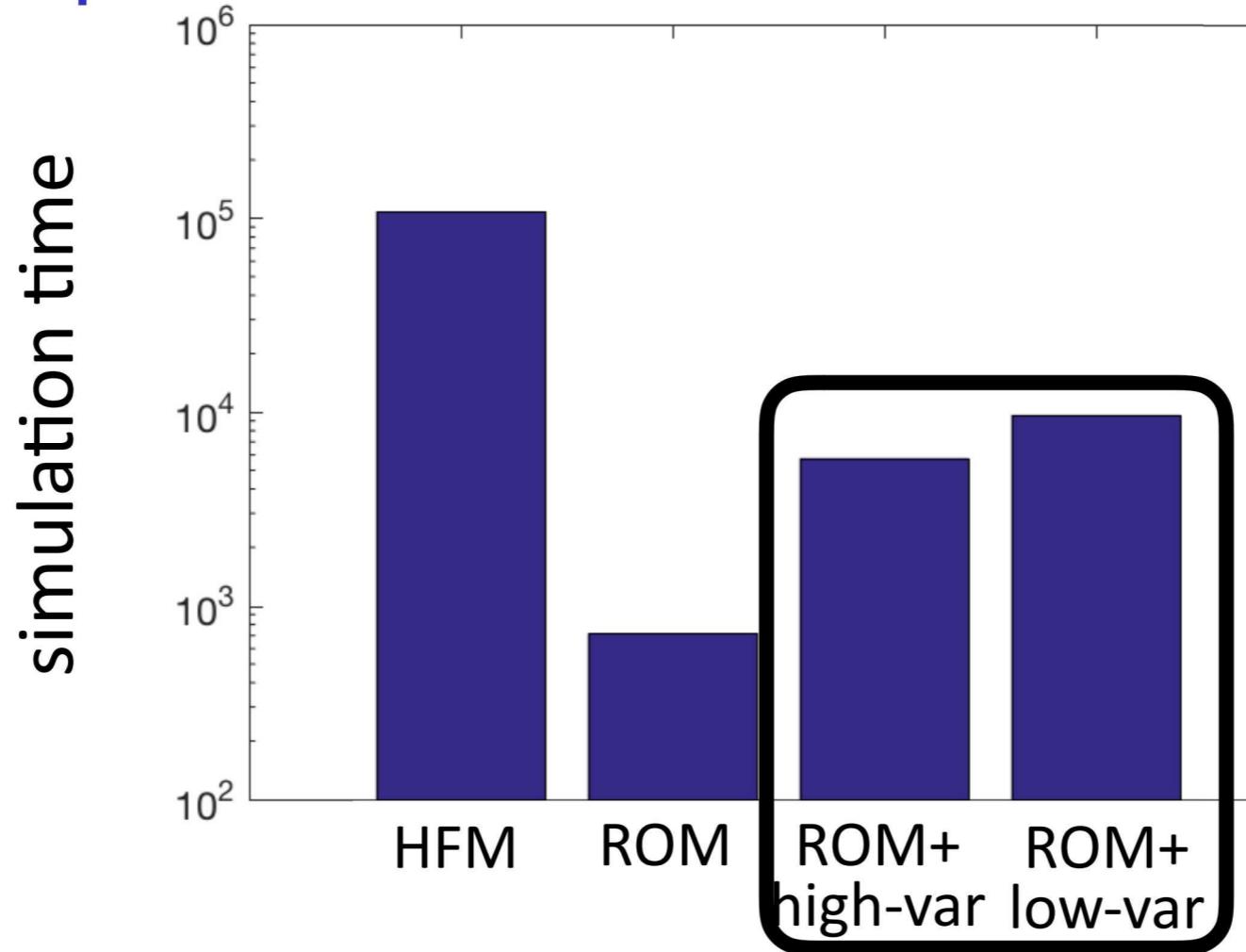


Wall-time performance



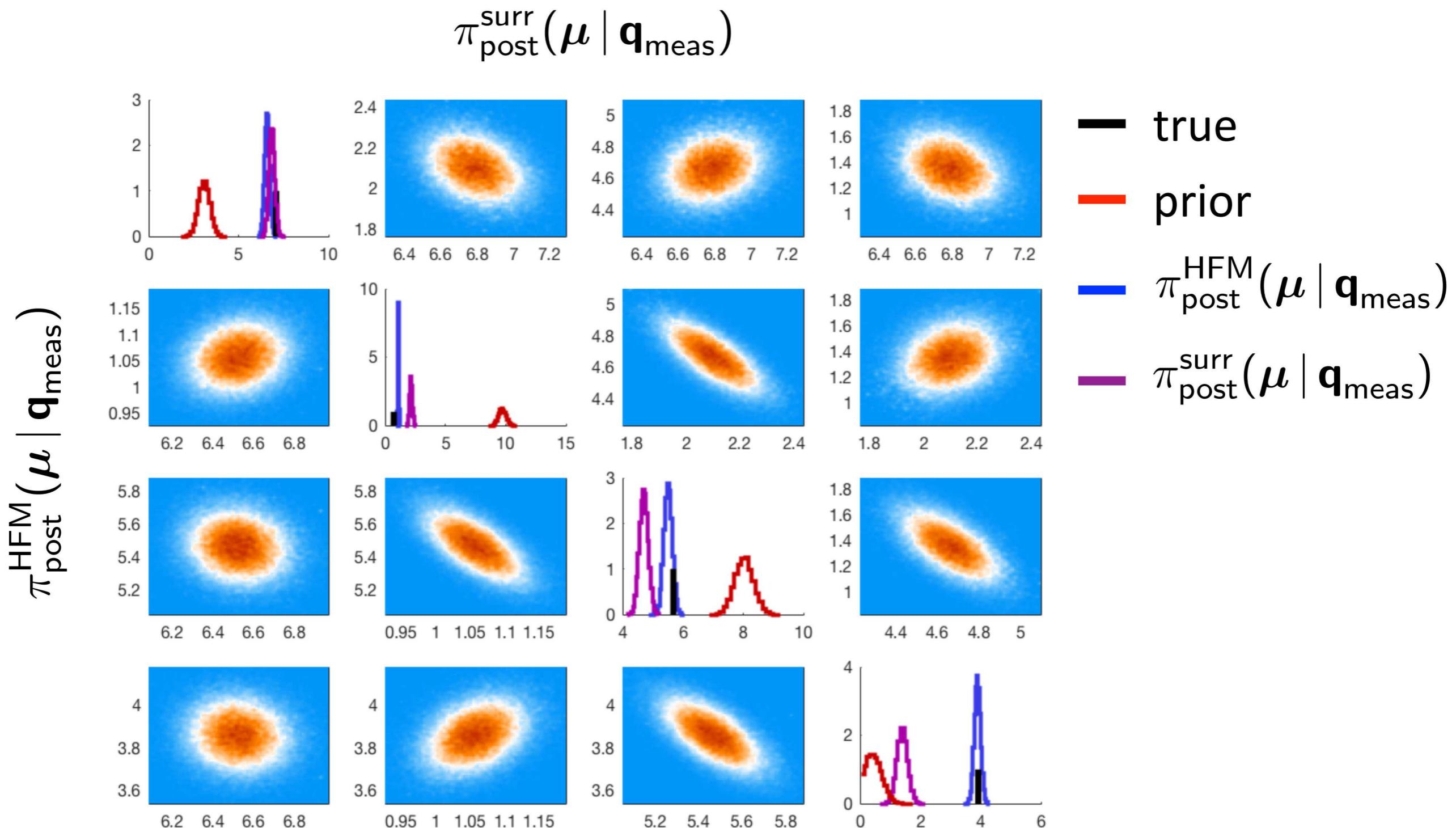
- ROM:
 - + cheapest
 - inconsistent formulation

Wall-time performance



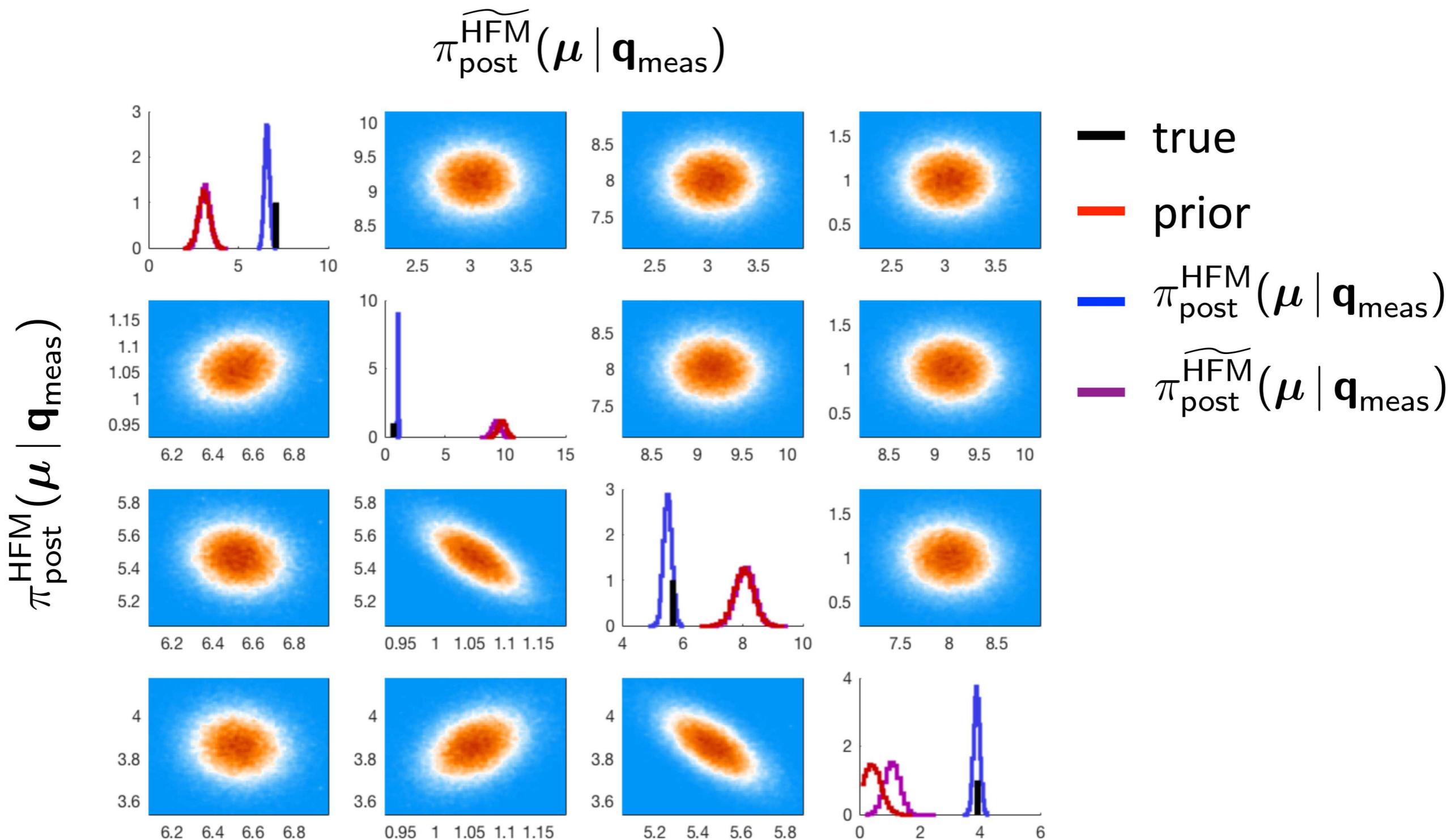
- ROM:
 - + cheapest
 - inconsistent formulation
- ROM + error models:
 - + cheaper than HFM
 - more expensive than ROM
 - + consistent formulation

Posteriors: ROM



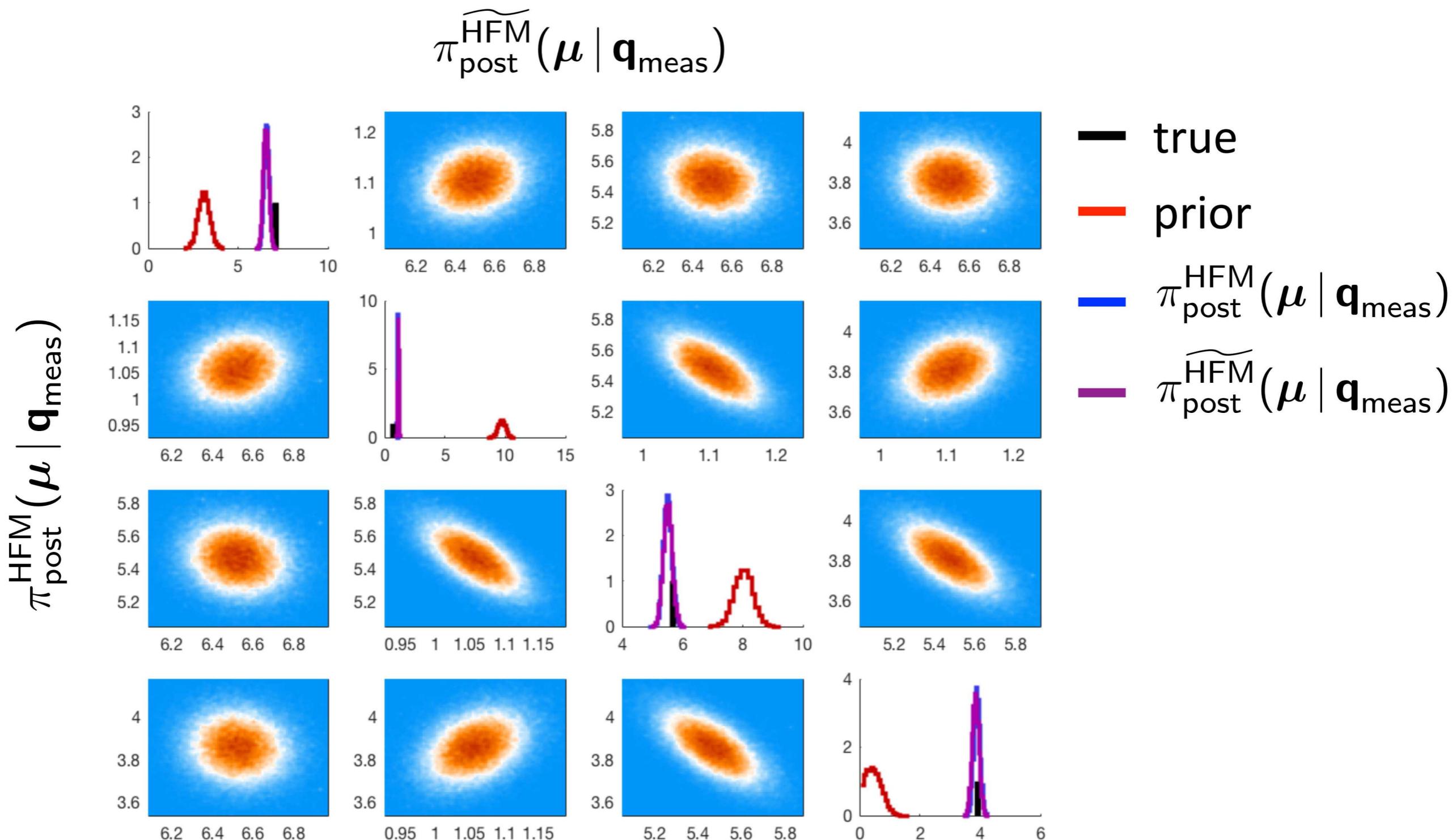
- + HFM posterior: close to **true parameters**
- ROM posterior: far from **prior** and **true parameters**

Posteriors: ROM + high-variance error model



+ ROM + high-variance error model posterior: close to prior

Posteriors: ROM + low-variance error model



+ ROM + low-variance error model posterior: close to HFM posterior

Error-model construction

$$\tilde{\delta}(\mu) = \tilde{f}(\rho(\mu)) + \tilde{\epsilon}(\rho(\mu))$$

Feature engineering: select $\text{features } \rho$ to trade off:

1. Number of features

- *Large number:* **costly**, **low variance**, **high-capacity regression**
- *Small number:* **cheap**, **high variance**, **low-capacity regression**

2. Quality of features

- *High quality:* **expensive**, **low variance**
- *Low quality:* **cheap**, **high variance**

Regression model: construct regression model \tilde{f} to trade off:

- *High capacity:* **low variance**, **more data to generalize**
- *Low capacity:* **high variance**, **less data to generalize**

Method 1: Dual-weighted residual and Gaussian process regression

[Drohmann, C., 2015; C., Uy, Lu, Morzfeld, 2018]

Method 2: Large number of features and high-dimensional regression

[Trehan, C., Durlofsky, 2017; Freno, C., 2018]

Feature engineering [Freno, C., 2018]

Idea: Use traditional error quantification as inspiration for features

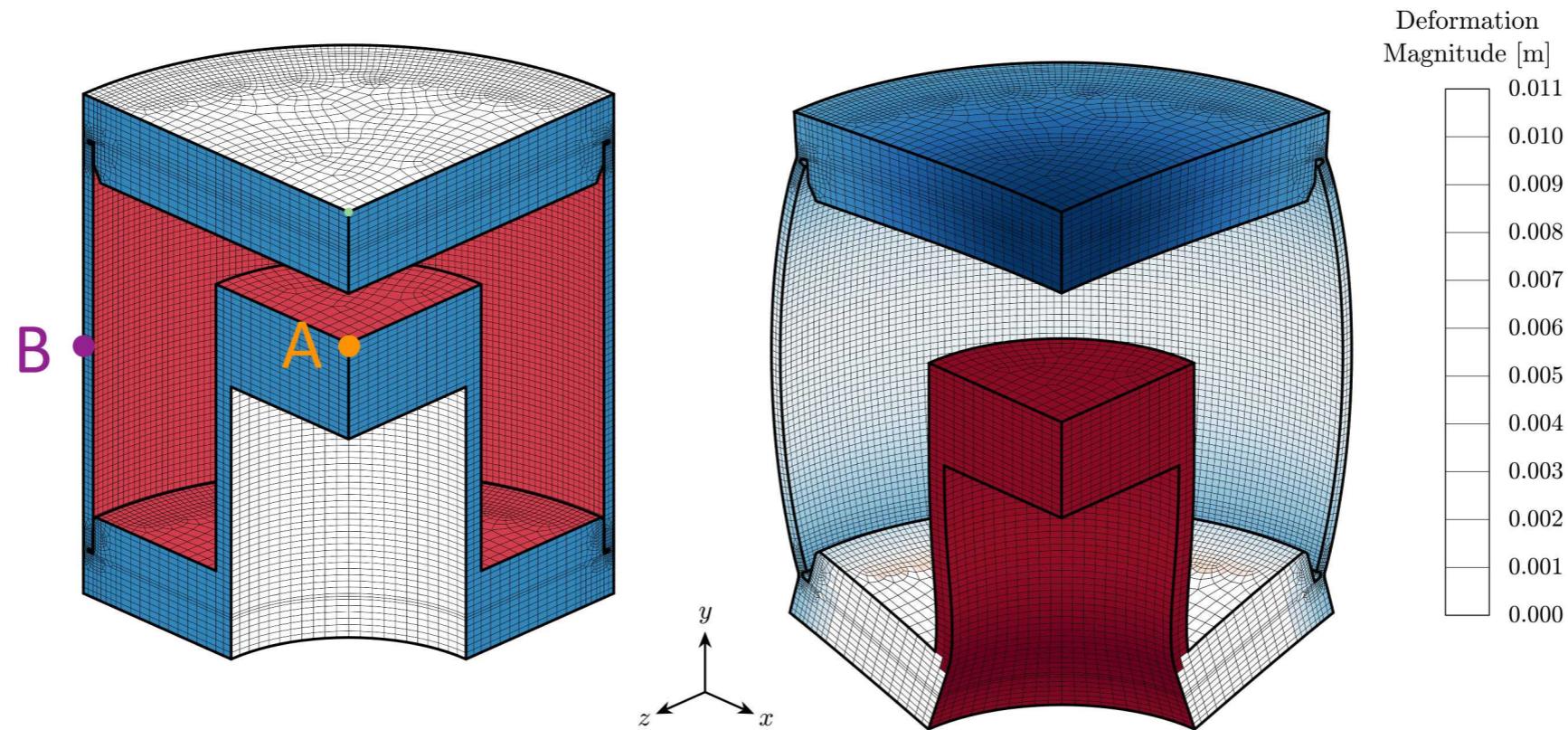
1. Error indicators:

- › residual norm: $\|\mathbf{r}(\tilde{\mathbf{x}}; \mu)\|_2$
 - › dual-weighted residual: $q(\mathbf{x}) - q(\tilde{\mathbf{x}}) = \mathbf{y}^T \mathbf{r}(\tilde{\mathbf{x}}) + O(\|\mathbf{x} - \tilde{\mathbf{x}}\|^2)$
2. **Rigorous *a posteriori* error bound:** $|q(\mathbf{x}) - q(\tilde{\mathbf{x}})| \leq \frac{\beta}{\alpha} \|\mathbf{r}(\tilde{\mathbf{x}}; \mu)\|_2$
3. **Model discrepancy:** $\tilde{\delta}(\mu) \sim \mathcal{N}(\mu(\mu); \sigma^2(\mu))$

Proposed features:

- › parameters μ
 - › **low quality, cheap**
 - › used by model discrepancy
- › residual norm $\|\mathbf{r}(\Phi\hat{\mathbf{x}}; \mu)\|_2$
 - **small number, low quality, costly**
- › residual $\mathbf{r}(\Phi\hat{\mathbf{x}}; \mu)$
 - **large number, low quality, costly**
- › residual samples $\Pr(\Phi\hat{\mathbf{x}}; \mu)$
 - + **moderate number, cheap**
 - **low quality**
- › residual PCA $\hat{\mathbf{r}} := \Phi_r^T \mathbf{r}(\Phi\hat{\mathbf{x}}; \mu)$
 - + **moderate number, high-quality**
 - **costly**
- › gappy PCA $\hat{\mathbf{r}}_g := (\mathbf{P}\Phi_r)^+ \Pr(\Phi\hat{\mathbf{x}}; \mu)$
 - + **moderate number, high-quality**
 - + **cheap**

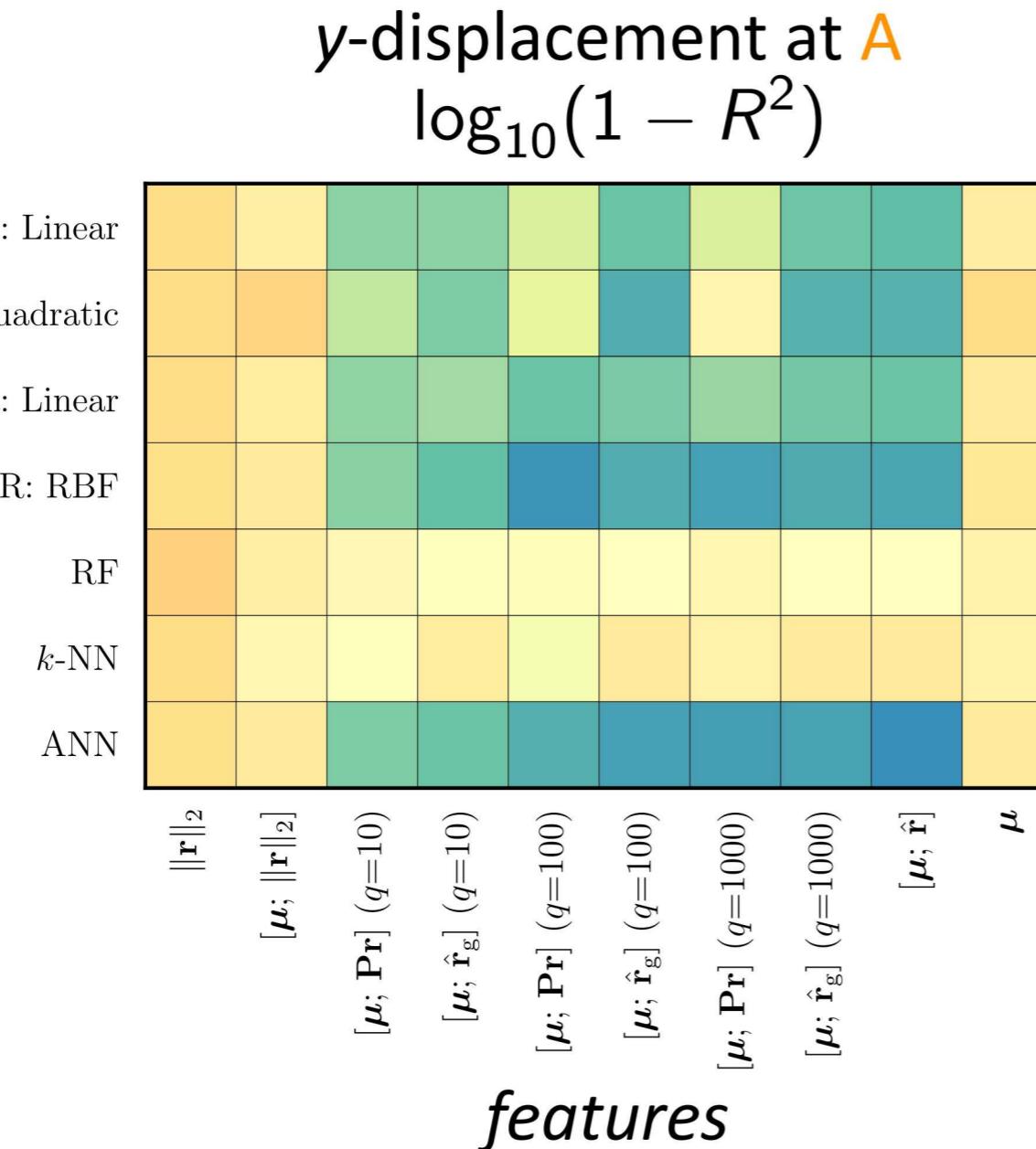
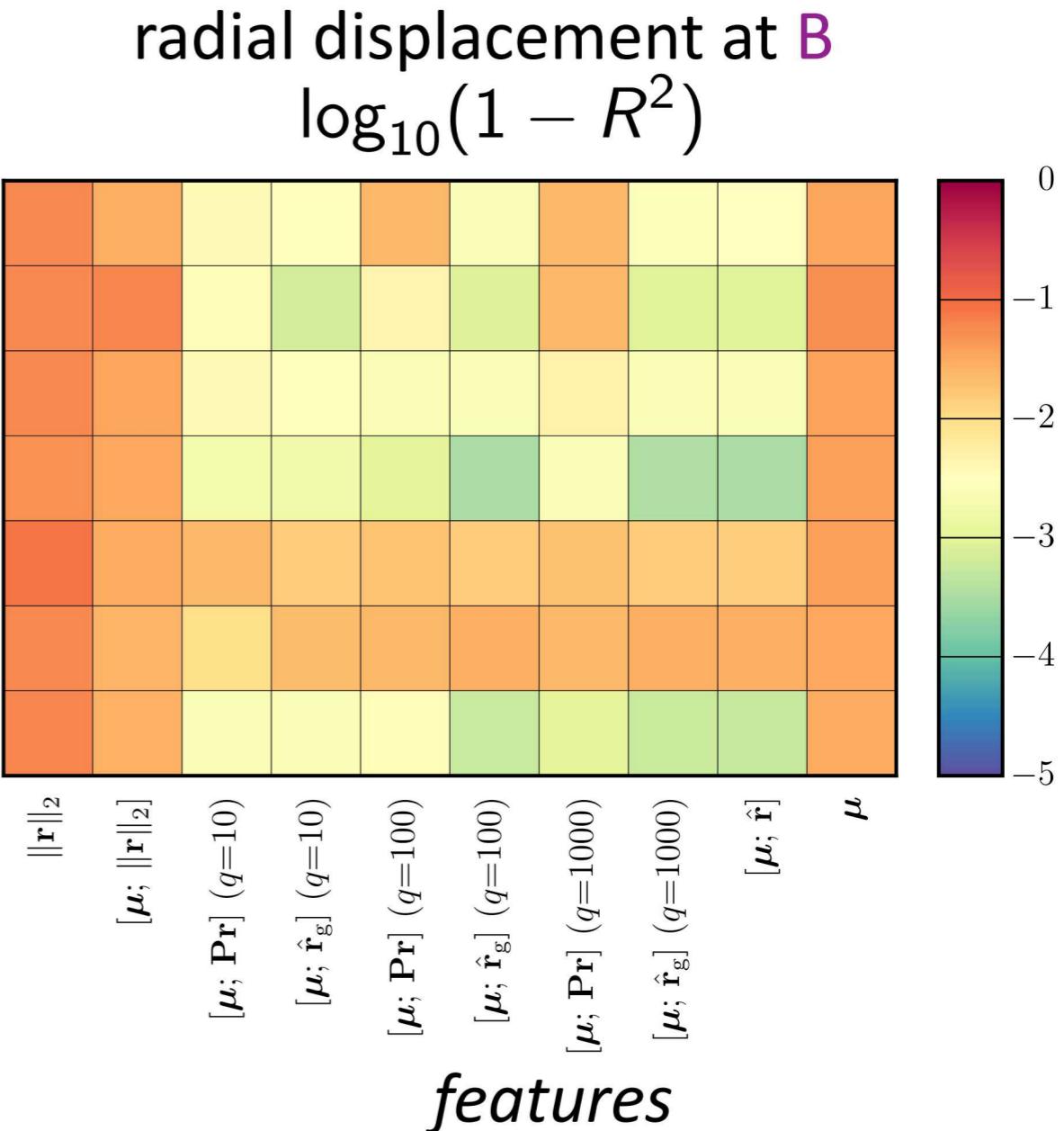
Application: Predictive capability assessment project



- *high-fidelity model dimension: 2.8×10^5*
- *reduced-order model dimensions: 1, ..., 5*
- *inputs μ :* elastic modulus, Poisson ratio, applied pressure
- *quantities of interest:* y-displacement at A, radial displacement at B
- *training data:* 150 training examples, 150 testing examples

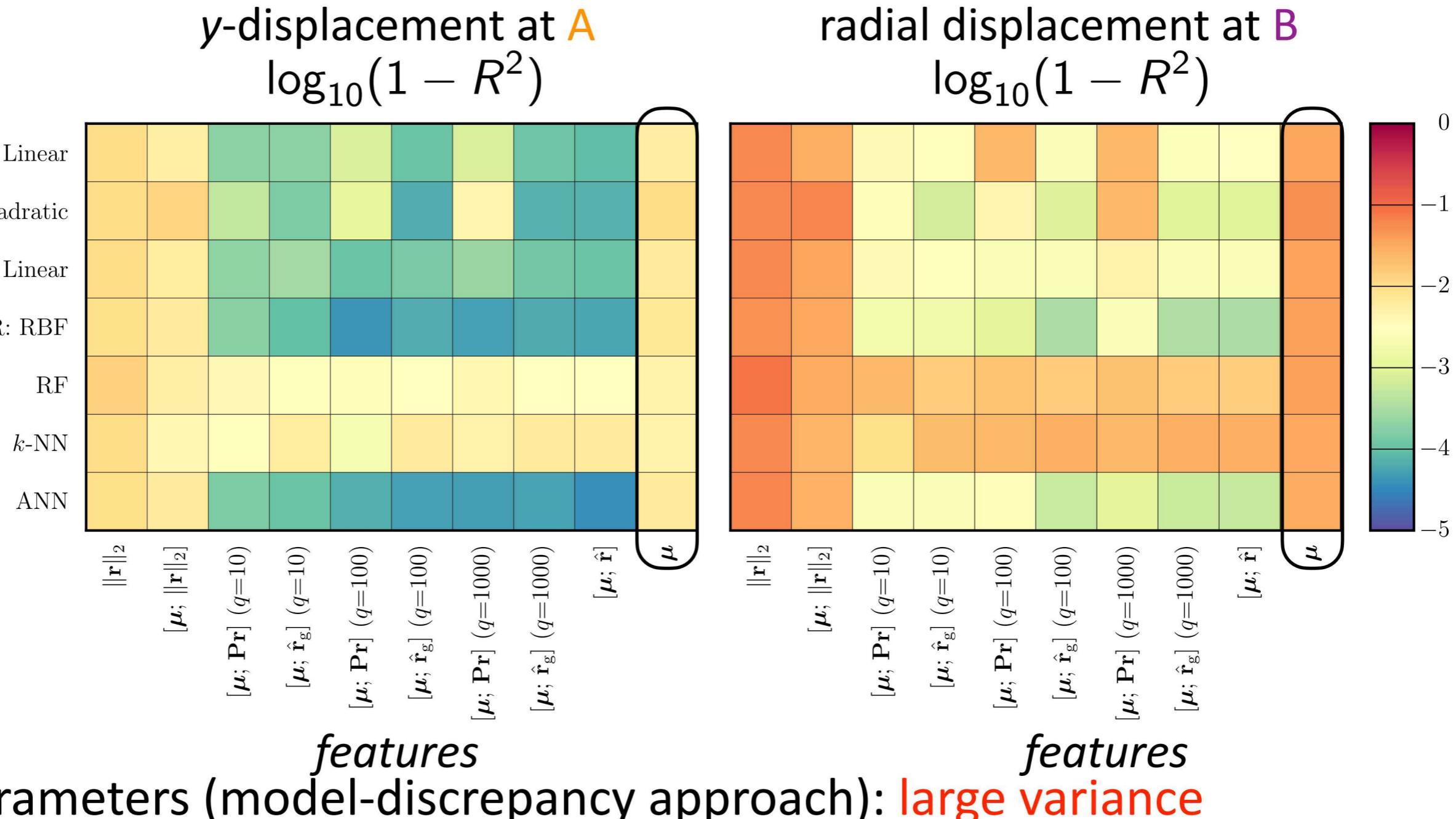
Application: Predictive capability assessment project

regression methods



Application: Predictive capability assessment project

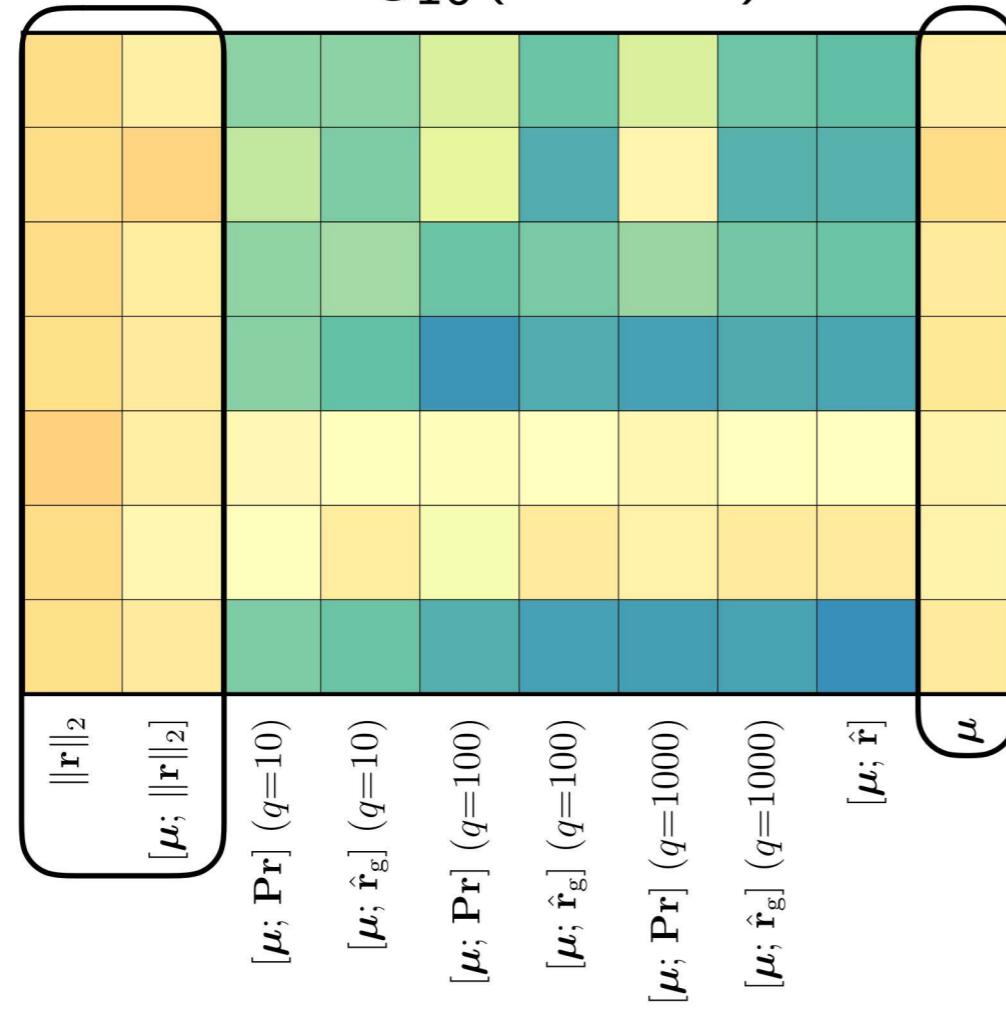
regression methods



Application: Predictive capability assessment project

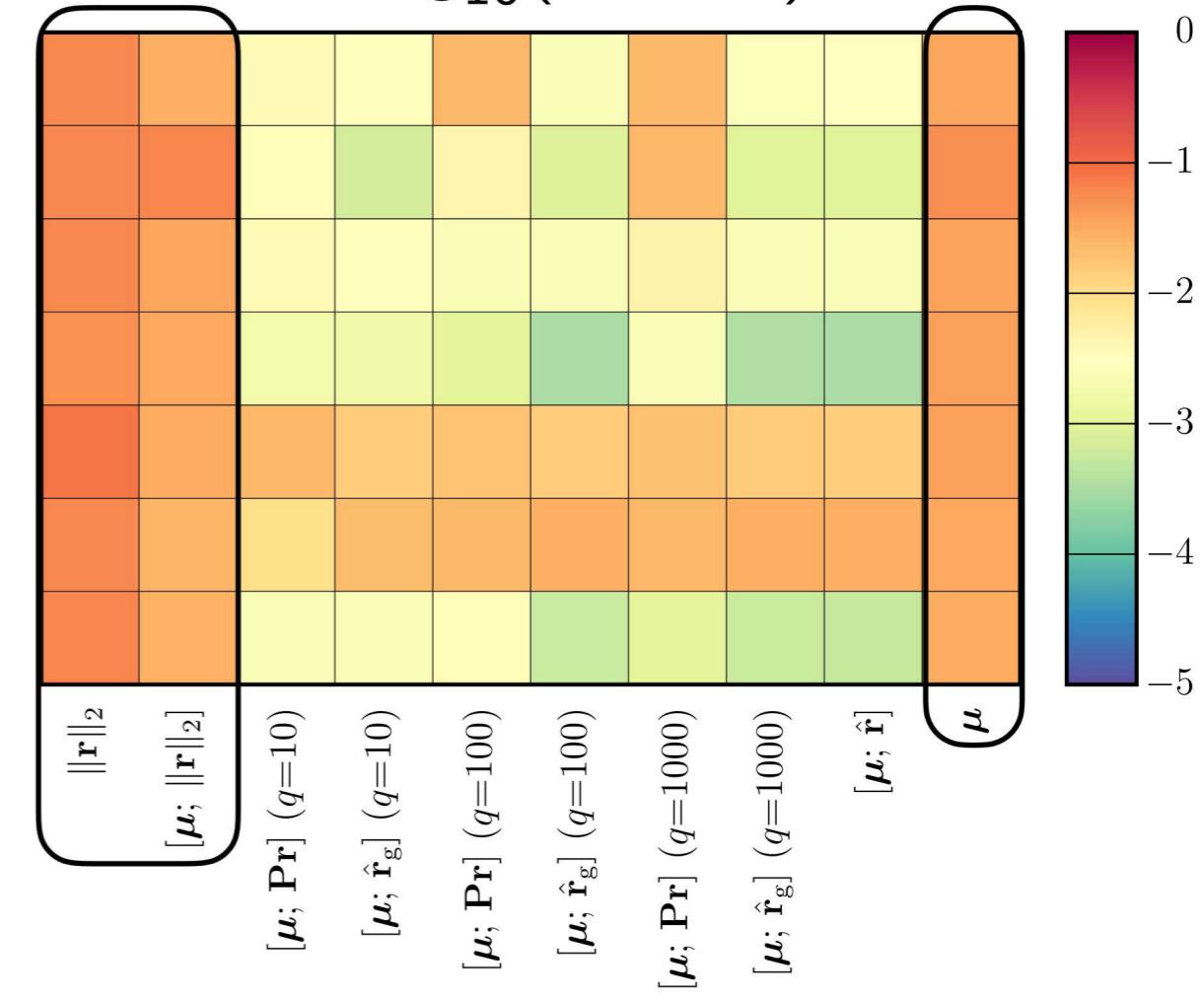
regression methods

y-displacement at A
 $\log_{10}(1 - R^2)$



features

radial displacement at B
 $\log_{10}(1 - R^2)$

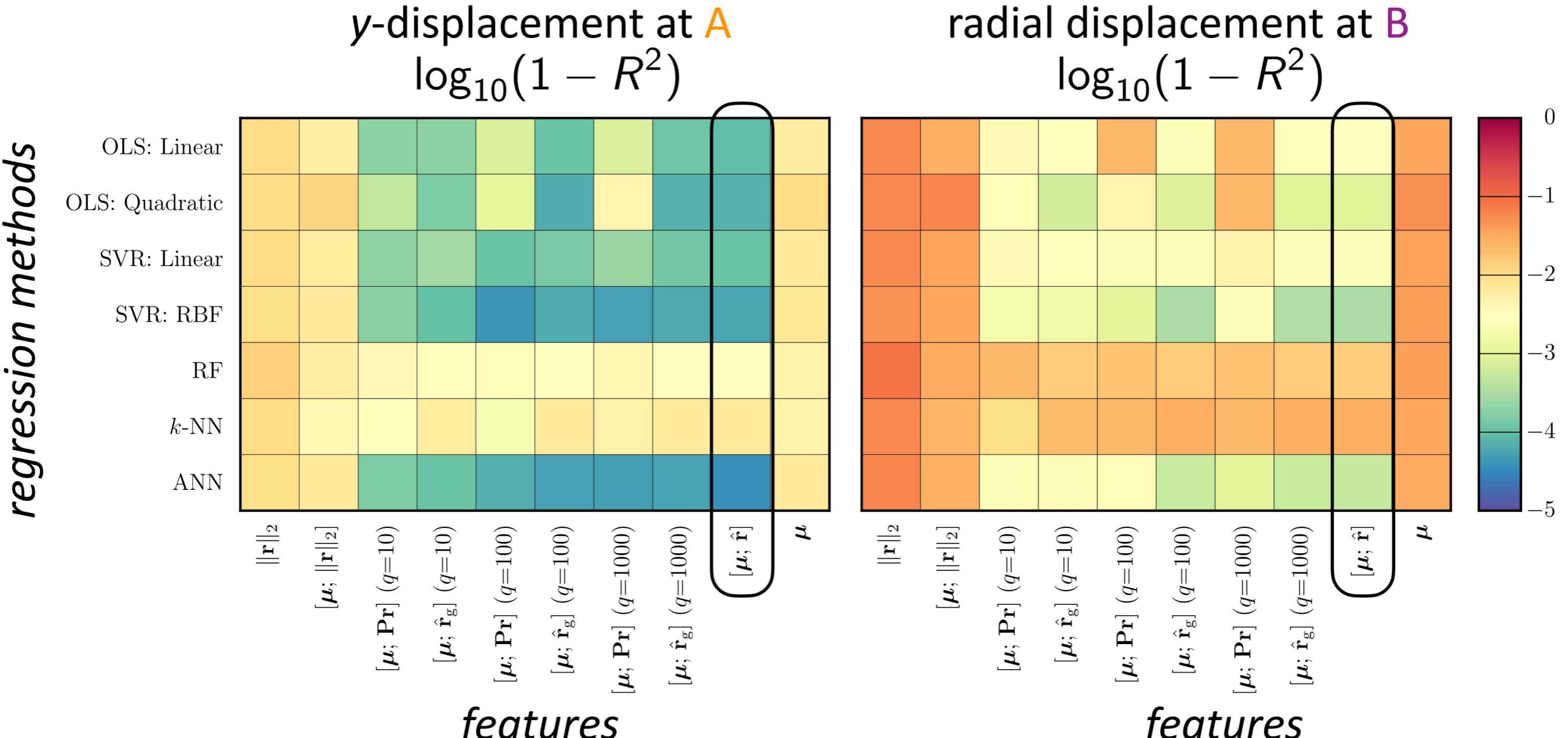


features

- parameters (model-discrepancy approach): **large variance**
- small number of low-quality features: **large variance**

Application: Predictive capability assessment project

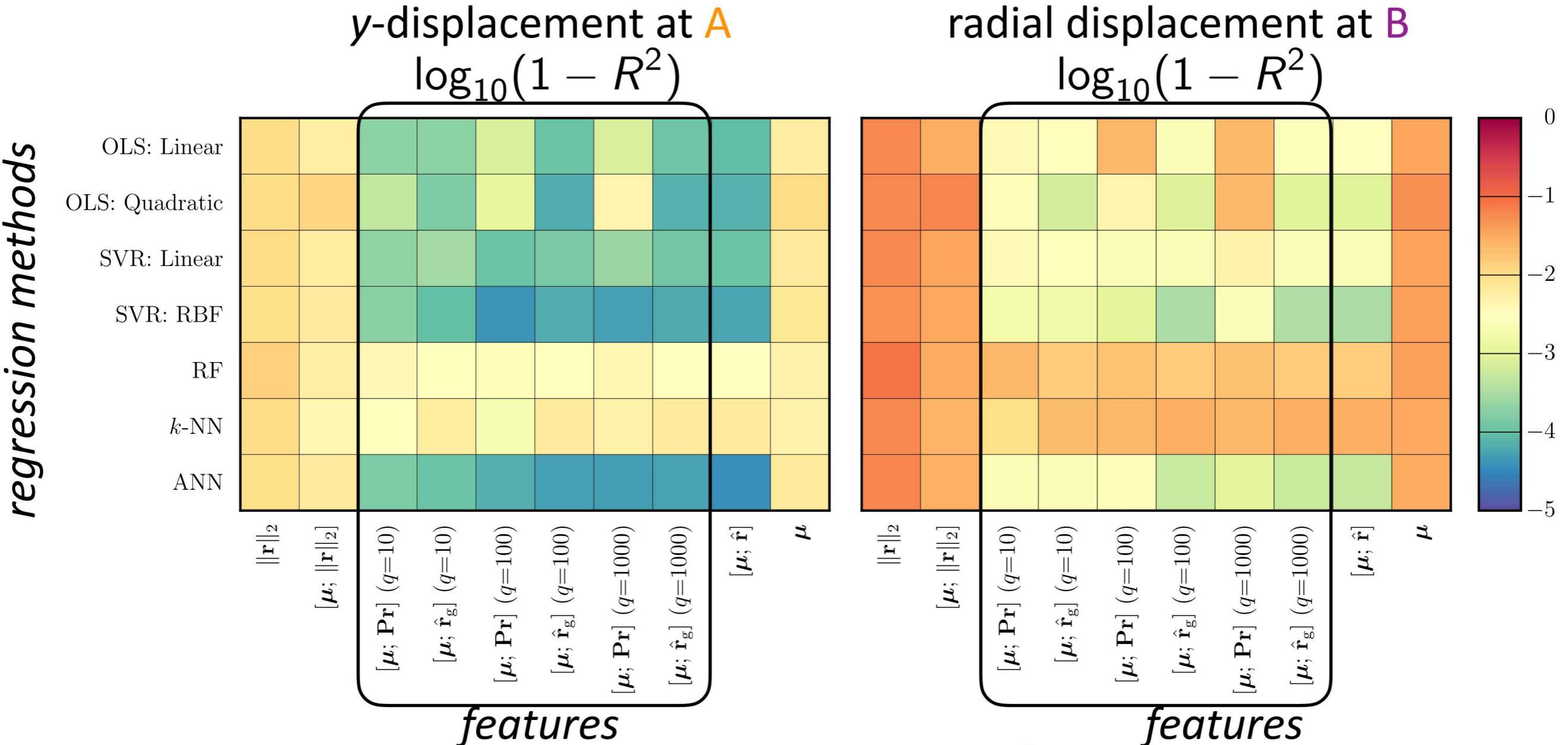
regression methods



- parameters (model-discrepancy approach): **large variance**
- small number of low-quality features: **large variance**
- PCA of the residual: **lowest variance** overall but **costly**

Application: Predictive capability assessment project

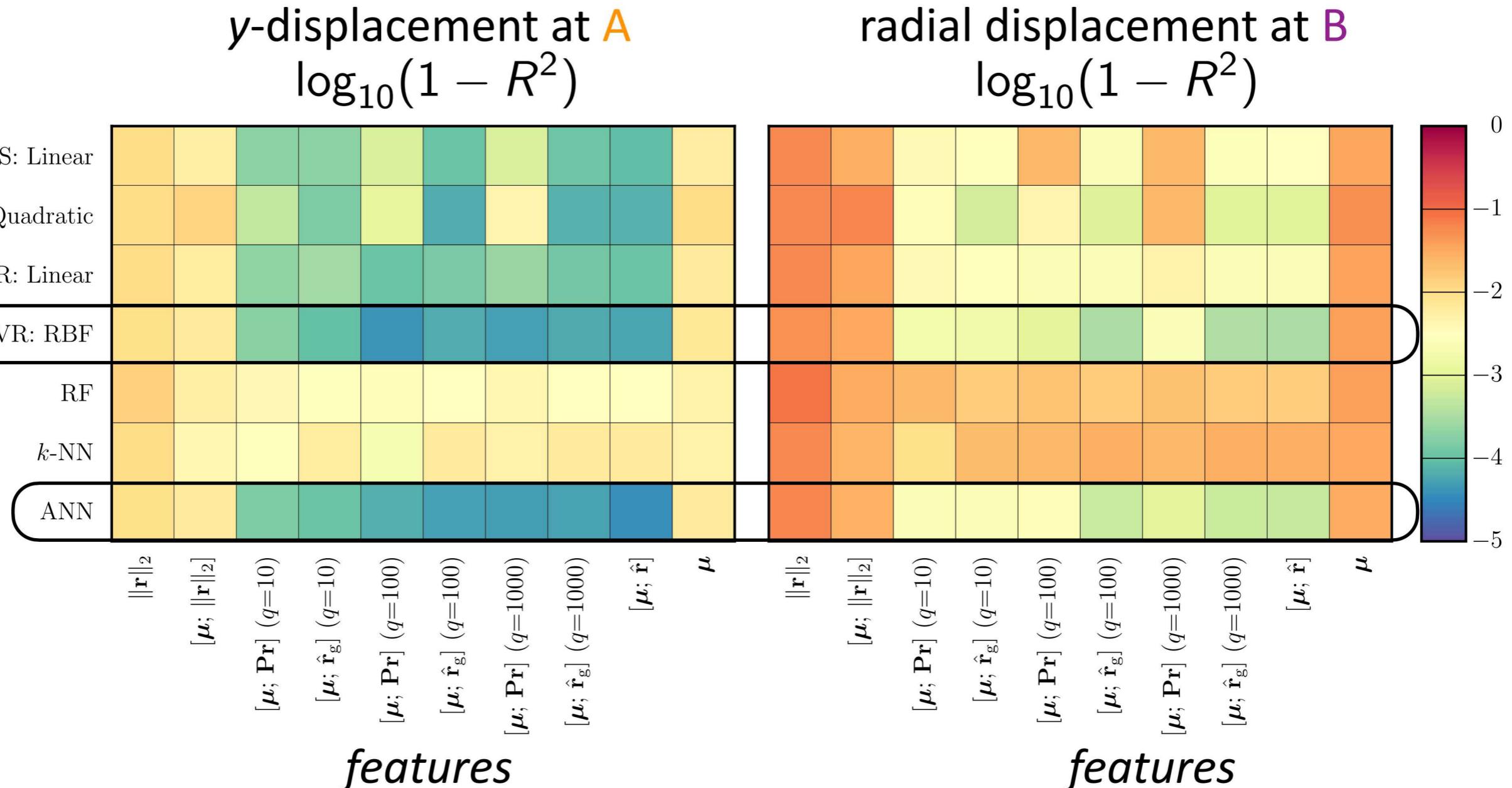
regression methods



- parameters (model-discrepancy approach): **large variance**
- small number of low-quality features: **large variance**
- PCA of the residual: **lowest variance** overall but **costly**
- + gappy PCA of the residual: nearly as **low variance**, but much **cheaper**

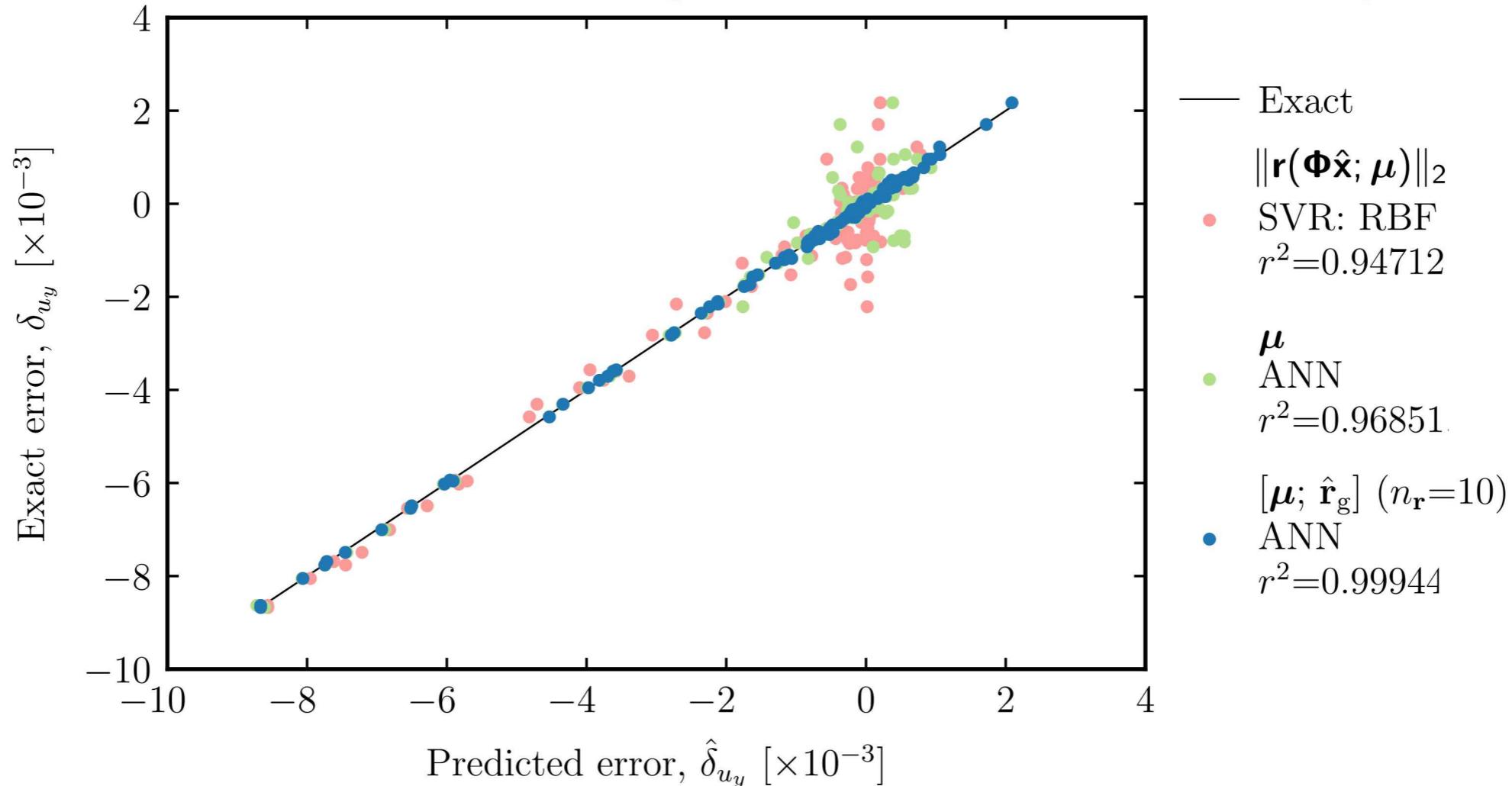
Application: Predictive capability assessment project

regression methods



- parameters (model-discrepancy approach): **large variance**
- small number of low-quality features: **large variance**
- PCA of the residual: **lowest variance** overall but **costly**
- + gappy PCA of the residual: nearly as **low variance**, but much **cheaper**
- + neural networks and SVR: RBF yield **lowest-variance** models

Application: Predictive capability assessment project



- Traditional features μ and $\|r(\Phi\hat{x}; \mu)\|_2$:
 - **high noise variance**
 - **expensive** for $\|r(\Phi\hat{x}; \mu)\|_2$: compute entire residual
- Proposed features $[\mu; \hat{r}_g]$:
 - + **low noise variance**
 - + **extremely cheap**: only compute 10 elements of the residual

Summary

Accurate, low-cost, structure-preserving, reliable, certified nonlinear model reduction

- ***accuracy***: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
- ***low cost***: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
- ***low cost***: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]
- ***structure preservation*** [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C. and Choi, 2017]
- ***reliability***: adaptivity [C., 2015]
- ***certification***: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

Questions?

LSPG reduced-order model:

- › C, Barone, and Antil. “Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction,” *Journal of Computational Physics*, Vol. 330, p. 693–734 (2017).
- › C, Farhat, Cortial, and Amsallem. “The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows,” *Journal of Computational Physics*, Vol. 242, p. 623–647 (2013).
- › C, Bou-Mosleh, and Farhat. “Efficient non-linear model reduction via a least-squares Petrov–Galerkin projection and compressive tensor approximations,” *International Journal for Numerical Methods in Engineering*, Vol. 86, No. 2, p. 155–181 (2011).

Machine-learning error models:

- › Freno, C. “Machine-learning error models for approximate solutions to parameterized systems of nonlinear equations,” *arXiv e-Print*, 1808.02097 (2018).
- › Trehan, C, and Durlofsky. “Error modeling for surrogates of dynamical systems using machine learning,” *International Journal for Numerical Methods in Engineering*, Vol. 112, No. 12, p. 1801–1827 (2017).
- › Drohmann and C. “The ROMES method for statistical modeling of reduced-order-model error,” *SIAM/ASA Journal on Uncertainty Quantification*, Vol. 3, No. 1, p.116–145 (2015).