This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Advances in nonlinear model reduction: swoaois s
least-squares Petrov-Galerkin projection and
machine-learning error models
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High-fidelity simulation

+Indispensable across science and engineering

- High fidelity: extreme-scale nonlinear dynamical system models

Turbulent reacting flows Antarctic ice sheet modeling Magnetohydrodynamics
courtesy J. Chen, Sandia courtesy R. Tuminaro, Sandia courtesy J. Shadid, Sandia

Many-query problems

® uncertainty propagation e multi-objective optimization

® Bayesian inference ® stochastic optimization

Advances in nonlinear model reduction Kevin Carlberg



High-fidelity simulation: captive carry




High-fidelity simulation: captive carry

+Validated and predictive: matches wind-tunnel experiments to within 5%
- Extreme-scale: 100 million cells, 200,000 time steps
- High simulation costs: 6 weeks, 5000 cores

Many-query problems

e explore flight e quantify effects of ® robust design of
envelope uncertainties on store load store and cavity
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Approach: exploit simulation data

ODE: — =f(x;t,u), x(0,u) =xo(pt), t€][0, Thnal, p €D

Idea: exploit simulation data collected at a few points

1. Training: Solve ODE for p € Diraining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce cost of ODE solve for it € Dquery \ Drraining
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Model reduction criteria

1. Accuracy: achieves less than 1% error

2. Low cost: achieves at least 100x computational savings

3. Structure preservation: preserves important physical properties
4. Reliability: guaranteed satisfaction of any error tolerance (fail safe)

5. Certification: quantifies ROM-induced epistemic uncertainty
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Model reduction: previous state of the art

Nonlinear dynamical systems: ineffective

* Proper orthogonal decomposition (POD)—Galerkin sirovich, 19871

- Inaccurate, unreliable: often unstable

- Not certified: error bounds grow exponentially in time

- Expensive: projection insufficient for speedup

- Structure not preserved: dynamical-system properties ignored
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

> accuracy: LSPG projection [c, Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
» Jow cost: sample mesh [c, rarhat, cortial, Amsallem, 2013]

» Jow cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

’ StrUCture preservaﬁon [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
» reliability: adaptivity (c, 201s]

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

d accuracy. LSPG prOJECﬁon [C., Bou-Mosleh, Farhat, 2011%*; C., Barone, Antil, 2017]

Collaborators:
» Matthew Barone (Sandia) » Charbel Farhat (Stanford University)
» Harbir Antil (GMU) » Julien Cortial (Stanford University)
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Training simulations: state tensor

ax
ODE: — =f(x;t,
- = fxit p)
1. Training: Solve ODE for g € Dirining and collect simulation data
IS unery \ Dtraining
number of
time steps T

+—>
A

number of
state variables N

<
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Training simulations: state tensor

dx
DE: — =f(x;t¢,
O - = fxit p)
1. Training: Solve ODE for g € Dypining and collect simulation data

[UAS unery \ Dtraining
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Tensor decomposition

dx
. — = f(x:t,
ODE - (x; t, @)

1. Training: Solve ODE for g € Diyaining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce the cost of solving ODE for p¢ € Dquery \ Dtraining

Compute dominant left singular vectors of mode-1 unfolding

|
c
M
<
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Tensor decomposition

ODE: — =f(x;t, u)

1. Training: Solve ODE for g € Diyaining and collect simulation data
2. Machine learning: |dentify structure in data
3. Reduction: Reduce the cost of solving ODE for p¢ € Dquery \ Dtraining

Compute dominant left singular vectors of mode-1 unfolding

X)) =

® columns are principal components of the spatial simulation data

How to integrate these data with the computational model?

Advances in nonlinear model reduction Kevin Carlberg

10




Previous state of the art: POD-Galerkin

d o
ODE: d—::f(x;t,u) D .

| e B [ ] J
| 8 @ e N A N ~ o~ P Wl e L~ o~ 7 Nl oy o oy
N § \ A /L2 ] Ly ) @ 5?( ( aY { ) Ay, ( ‘D & g | N N NN ) g |
e ) YA it | ) X I M Ly e | | | O | [ | \ | N Vg | - ] ‘ L )
' | ¥V O’ | o i b \_ &A1 | A o' e | ] S W & -’ i &1 I A4 © \ = 4 Wl A & WA
s = ' | J — S | W e’ e | ] o W & - 8 i = | 1 &I W i 1 A4 & WA
® i P o)
S i Eogh. eed _—_ s S Ry | A
{ J — ‘:} | — [ =)
] u s J &A1 \-i««: S ‘ WA A

3. Reduct'lon Reduce the cost of solvmg ODE for it € Dquery \ Diraining

1. Reduce the number of unknowns 2. Reduce the number of equations

)”(t)—fbx(t f(Px;t, 1) — ¢§

ax

Galerkin ODE: — = @' f(®%;t, u) |D AT

dt o ... ...O
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Captive carry

* Unsteady Navier—Stokes »*Re=6.3x10® » M..=0.6

Spatial discretization

» 2nd-order finite volume

* DES turbulence model

» 1.2 x 10° degrees of freedom

Advances in nonlinear model reduction

Temporal discretization

» 2nd-order BDF

» Verified time step At =15 x 1073
» 8.3 x 10° time instances

Kevin Carlberg



High-tidelity model solution
vorticity field

Kevin Carlberg



Principal components
x(t) ~ ® x(t)
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Galerkin performance

2.8 . R
— high-fidelity:
i dim 1.2x106
& —— Galerkin: dim 204
g_ 21 .; ------- Galerkin: dim 368
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- Galerkin projection fails regardless of basis dimension
Can we construct a better projection?
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Galerkin: time-continuous optimality

ODE Galerkin ODE

dx dX
Cb——d)d)T f(Px; t)

f(x; t)
| 1 1

+ Time-continuous Galerkin solution: optimal in the minimum-residual sense:

dX
) X(x t) = argmin ||r(v,x; t)||>
dt vErange(®)
r(v,x;t) :=v — f(x; t)
OAE Galerkin OAE

r"(x")=0, n=1,..., T

k k
r'"(x) := apx — AtBof(x; t") + Z ozjx”_j — At Z 5jf(xn_j; tn_j)
j=1 j=1

- Time-discrete Galerkin solution: not generally optimal in any sense
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Residual minimization and time discretization

~

[C., Bou-Mosleh, Farhat, 2011]
®x" = argmin ||Ar'(v)|. & W (M e (@%") =0

vErnER{®) -‘

W (") = AT Aol — Atflo o (PX"; )

Least-squares Petrov—Galerkin (LSPG) projection
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~ ) (" :
ODE | Galerkin ODE
dx residual || 4% _
— = f(x; t) |minimization ¢E(Xv t) = argmlr(:) [r(v,x; t)]]2
L dt y k vErange(®) J
time time
discretization discretization
~ , - ,,
( 1spcore ) ... [ oaF " Galerkin OAE
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Discrete-time error bound

If the following conditions hold:

1. f(-; t) is Lipschitz continuous with Lipschitz constant «

2. The time step At is small enough such that 0 < h := |ag| — |Bo|kAL,
3. A backward differentiation formula (BDF) time integrator is used,

4. LSPG employs A =1, then

k
A 1 N ]' — - —E
Ix" — ®xgl2 < - fIrg(®xc)ll2+ > laell|x"" — o5
1 S
A : A —/ sn—~¢
"~ O%Lspgllz < | min [{spo(@9)2+ S o [x" 1 @kl

/=1

+ LSPG sequentially minimizes the error bound
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L SPG performance

2.8 . C
— high-fidelity:
i dim 1.2x106
& —— Galerkin: dim 204
g_ 21 .; ------- Galerkin: dim 368
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+ LSPG is far more accurate than Galerkin
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

> accuracy: LSPG projection (c., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
» low cost: Sample me5h [C., Farhat, Cortial, Amsallem, 2013%*]

» low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

' StrUCtUI’e preservat‘ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
» reliability: adaptivity [c., 2015]

> certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Wall-time problem

2.8r
— high-fidelity:
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» High-fidelity simulation: 1 hour, 48 cores Why does this occur?
» Fastest LSPG simulation: 1.3 hours, 48 cores Can we fix it?
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COSt redUCthﬂ by gappy PCA [Everson and Sirovich, 1995]

minimize (b V)2

I

Can we select A to make this less expensive?

1. Training: collect residual tensor R’* while solving ODE for it € Diraining

2. Machine learning: compute residual PCA®, and sampling matrix P

3. Reduction: compute regression approximation r” ~ " = ® (P®, )" Pr”
— — O,

_rn

* Pr”

~Nn

r

value

miniAmize r”
\Y}

Advances in nonlinear model reduction Kevin Carlberg



COSt redUCthﬂ by gappy PCA [Everson and Sirovich, 1995]

minimize r"((d V)|

i

Can we select A to make this less expensive?

1. Training: collect residual tensor R’* while solving ODE for it € Diraining

2. Machine learning: compute residual PCA®, and sampling matrix P

3. Reduction: compute regression approximation r” ~ " = ® (P®, )" Pr”
- — P,

_rn

* Pr”

~Nn

r

value

minimize|| (P®,)"P r"(

v

V)ll2 + Only a few elements

()
Il:l][l (I ) of r" must be computed
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Sa m p‘e m eSh [C., Farhat, Cortial, Amsallem, 2013]

minimize||(P®,)"Pr"(®V)||-
G N

sample
mesh

+ HPC on a laptop
vorticity field pressure field

LSPG ROM with
A= (P®,)"P
32 min, 2 cores

high-fidelity
5 hours, 48 cores

+229x savings in core—hours
+< 1% error in time-averaged drag
Implemented in three computational-mechanics codes at Sandia
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Ah med bOdy [Ahmed, Ramm, Faitin, 1984]
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» Unsteady Navier—Stokes »*Re=4.3x 106 *» M..=0.175

Spatial discretization Temporal discretization

» 2nd-order finite volume » 2nd-order BDF

» DES turbulence model » Time step At =8 x 10™°s
» 1.7 x 10" degrees of freedom » 1.3 x 10° time instances
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Ah med bOdy resu |tS [C., Farhat, Cortial, Amsallem, 2013]

sample
mesh + HPC on a laptop
LSPG ROM with A = (P®,)"P high-fidelity model
4 hours, 4 cores 13 hours, 512 cores

pressure
field

+438x savings in core—hours
+Largest nonlinear dynamical system on which ROM has ever had success
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

> accuracy: LSPG projection (c., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
' /OW cost: Samp|e mESh [C., Farhat, Cortial, Amsallem, 2013]

» Jow cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

g StrUCture pl’eserval'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
> reliability: adaptivity [c, 2015

> certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

> accuracy: LSPG projection (c., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
' /OW cost: Samp|e me5h [C., Farhat, Cortial, Amsallem, 2013]

» low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

» structure preservai'ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]
» reliability: adaptivity [c., 2015]

> certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

> accuracy: LSPG projection (c., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
' /OW cost: Samp|e me5h [C., Farhat, Cortial, Amsallem, 2013]

» low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

’ StrUCture preserval‘ion [C., Tuminaro, Boggs, 2015; Peng and C., 2017, C., Choi, Sargsyan, 2017]
> reliability: adaptivity (c, 2015]

> certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Our research

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2018]

Collaborators:
» Martin Drohmann (formerly Sandia) * Matthias Morzfeld (U of Arizona)
» Wayne Uy (Cornell University) » Brian Freno (Sandia)

» Fei Lu (Johns Hopkins University)
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Surrogate modeling in UQ

iInputs p — [ high-fidelity modelj — outputs quyry

* high-fidelity-model (HFM) noise model: q,,... = 9uru(pt) + €
* measurement noise ¢ has probability distribution 7_(-)

* HFM likelihood: THFM (qmeas | p’) — 7T&'(qmeas — qHFM(IJ’))

inputs p — ( surrogate model ] — outputs qq,,.,

* surrogate noise model: q,,..c = 4., () + €

' Surrogate |Ik€|lh00d 7-‘-Surl’(qmeas ‘ u’) — 7-‘-E(qmeas o qsurr(“’))
- inconsistent with HFM noise model

Advances in nonlinear model reduction Kevin Carlberg



Surrogate modeling in UQ
Aurm () = Aeurr(p) + 0 (1)

* HFM noise model: q,.... = quep(pe) + €
= Asure(pt) +0(p) + €
* HFM likelihood: 7THFM(qmeas | “’) — 7T&‘(qmeas — qHFM(H’))
— 7-‘-E(qmeas o qsurr(“’) o 5(“’))

+ equivalent to HFM formulation
+ not practical: the (deterministic) error () is generally unknown

How can we account for the error 6(u) in a manner that is
consistent and practical?

Advances in nonlinear model reduction Kevin Carlberg



Surrogate modeling in UQ
Auem () = Aeyre (1) + 0(12)

Approach: statistical model () for the error that models its uncertainty

rem (1) = Ague(p) + 0(p)
N——— N—_—— N——

stochastic deterministic stochastic

» statistical HFM noise model: Quess = Guem(pt) + €

= Qg (1) + 0(p) + €

* stochastic HFM likelihood: Tz (Ameas | ) = 7o 5 (Ameas — Dsurr (1) )

+ consistent with HFM noise model
+ practical if the statistical error model & is computable

Desired properties in statistical error model (1)
1. cheaply computable: similar cost to evaluating the surrogate
2. low variance: introduces little epistemic uncertainty
3. generalizable: correctly models the error

How can we construct a statistical error model for reduced-order models?
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Approximate-solution surrogate models
High-fidelity model

» governing equations: r(x(u); ) =0

» quantity of interest: gurm(p) == q(x(p))

Approximate-solution surrogate model
» approximate solution: x(u) ~ x(u)

» quantity of interest: qgsu.(pt) := q(x(p))

Types of approximate solutions
» Reduced-order model:
Wir(dx;pu)=0 =%
» Low-fidelity model.
rr(xer ) =0, X = p(xLr)
» Inexact solution: compute x'*), k =1,..., K such that
[r(x" ) =0]a <&, x=x0

What methods exist for quantifying the error 6(1t) ‘= qurv () — Gsure(10)?
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1) Error indicators: residual norm
» HFM governing equations: r(x(w); i) =0 (1)

» Approximate solution: X(p) ~ x(p) (2)

» Substitute (2) into the residual of (1) and take the norm:
[r(%; p)]f2

» Applications: termination criterion, greedy methods, trust regions
[Bui-Thanh et al., 2008; Hine and Kunkel, 2012; Wu and Hetmaniuk, 2015; Zahr, 2016]

+ Informative: zero for high-fidelity model
- Deterministic: not a statistical error model
- Low quality: relationship to error depends on conditioning
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1) Error indicators: dual-weighted residual
» Approximate HFM quantity of interest to first order

-y 0q, . N N
a(x) = q(x) + 5 () (x — %) + O(lx — %/ (1)
» Approximate HFM residual to first order

0 = rlx) = £(3) + 5 (:)(x — %) + O(Ix — %)

» Solve for the error Iy
X — X = — &( )] 'r(X) + O(||Ix — %|°) (2)

- Substitute (2) in (1): | ax) — () = yTr(%) + O(x — %IP)
)Ty =~ 93T

> Applications: adaptive mesh refinement
[Babuska and Miller, 1984; Becker and Rannacher, 1996; Rannacher, 1999; Venditti and Darmofal, 2000; Fidkowski, 2007]

+ Accurate: second-order-accurate approximation
- Deterministic: not a statistical error model
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2) Rigorous a posteriori error bound

If the following conditions hold:
1. r(-; p) is inf-sup stable, i.e., for all u € D, there exists a(u) > 0 s.t.

Ir(z1; ) — r(z2; ) l|l2 > o(p)||z1 — 222, V21,22 € RY

2. q(-) is Lipschitz continuous, i.e., there exits 5 > 0 such that
9(z1) — q(22)| < Bljz1 — 22

then the quantity-of-interest error can be bounded as

>, Vz1,Zr € RN

) — a()] < 2 (5 )

> Applications: reduced-order models
[Rathinam and Petzold, 2003; Grepl and Patera, 2005; Antoulas, 2005; Hinze and Volkwein, 2005; C. et al., 2017]

+ Certification: guaranteed bound

- Lack sharpness: orders-of-magnitude overestimation

- Difficult to implement: require bounds for inf—sup/Lipschitz constants
- Deterministic: not a statistical error model
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3) Model-discrepancy approach
O(p) ~ N (p(p); o* ()

—i
o
T

1 GHFM
® Jsurr

° 0= AHFM — (surr

(6)]
T

quantity of interest

1
(6)]

> Applications: parameter ft

» Model calibration [kennedy, 0’Hagan, 2001; Higdon et al., 2003; Higdon et al., 2004]
> I\/Iultiﬁdelity optimization [Gano et al., 2005; Huang et al., 2006; March, Willcox, 2012; Ng, Eldred, 2012]
+ General: applicable to any surrogate model
+ Statistical: interpretable as a statistical error model
+ Epistemic uncertainty quantified: through variance
- Poorly informative inputs: parameters i weakly related to the error
- Poor scalability: difficult in high-dimensional parameter spaces
- Thus, can introduce large epistemic uncertainty: large variance

Advances in nonlinear model reduction Kevin Carlberg



Objective

Goal: combine the strengths of

1. error indicators,

2.rigorous a posteriori error bounds, and
3. the model-discrepancy approach

A posteriori: use residual-based quantities computed by the surrogate
» strength of #1 and #2

+ Informative inputs: quantities are strongly related to the error

+ Thus, can lead to lower epistemic uncertainty: lower variance

Error modeling: statistical model for the error

> strength of #3

+ Statistical: interpretable as a statistical error model
+ Epistemic uncertainty quantified: through variance

Advances in nonlinear model reduction Kevin Carlberg



Main idea

* Observation: residual-based quantities are informative of the error
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Residual r/error bound

» So, these are informative features: can predict the error with low variance

Idea: Apply machine learning regression to generate a mapping from
residual-based quantities to a random variable for the error

+ Can produce lower-variance models than the model-discrepancy approach

Machine-learning error models
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Machine-learning error models: formulation

o(pm) = f(p(p)) +e(p(p))

deterministic stochastic

features: p(u) € RY»

regression function: f(p) = E[0 | p]

noise: €(p)

Note: model-discrepancy approach uses p =

v v v v

~ ~

o(p) = f(p(p)) +e(p(p))

deterministic stochastic

regression-function model: f(~ f)
noise model: é(= ¢)

v

v

» Desired properties in error model §
1. cheaply computable: features p(p) are inexpensive to compute
2. low variance: noise model €(p) has low variance
3. generalizable: empirical distributions of ¢ and ¢ ‘close’ on test data
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Training and machine learning

Training: Solve high-fidelity and multiple surrogates for t € Diraining
2. Machine learning: Construct regression model

3. Reduction: pr edict surrogate-mo ydel error for [V unery \ Dtrammg
D -
0 = AHFM — surr P
g —

high-fidelity surrogate
model models
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Training and machine learning

1. Training: Solve high-fidelity and multiple surrogates for t € Diraining
2. I\/Iachme /earn/ng Construct regression model

3. Reduction: predict surrogate-model error for pt € Dqyery \ Dtraining
D -
0 = AHFM — surr P
i 1

high-fidelity surrogate
model models
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Training and machine learning

—

. Training: Solve high-fidelity and multiple surrogates for tt € D:raining
2. Machine learning: Construct regression model
3. Reduction: predict surrogate-model error for tt € Dquery \ Drraining

D o
0 = AHFM — surr P
] -

high-fidelity surrogate
model models

Advances in nonlinear model reduction Kevin Carlberg 41



Training and machine learning

1. Training: Solve high-fidelity and multiple surrogates for t € Diraining
2. Machine learning: Construct regression model

| error Tﬁj@w 13 = unery \ Dtraining
D -
0 = AHFM — Gsurr P

[

'ﬁ;},ﬁ.”’@; .ﬁr‘g'i‘_-ﬁm\@ 3 = J P = ~ g5 B =~ - oy ol o~ —~ Jij
3. Reduction: predict surrogate-mode

high-fidelity surrogate
model models
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Training and machine learning

—

. Training: Solve high-fidelity and multiple surrogates for tt € Drraining
2. Machine learning: Construct regression model
3. Reduction: predict surrogate-model error for pt € Dqyery \ Dtraining

D" e

0 = AHFM — Gsurr

high-fidelity surrogate
model models
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Training and machine learning

1. Training: Solve high-fidelity and multiple surrogates for p €
2. Machine /earnmg Construct regressmn model

1’

~ ) I o | @ L |

‘",lu‘ | af:"" Y PN T 1 7T /" I ¢ "al o aVe BVa ?«,4 1 1V EVANCCTY™N T/ a2 aVaVe Fal F an ' , N

SO0. NEUJULCLIOT] ) [ \n surrocate-modael errot or

s . FANCOC AU COCLCIVUVN e Nt S A | N SN B W = CA U\ i WAL | \ W q u e ry t ra I n I n g
t @ M e A - -

D" e

0 = AHFM — surr P

high-fidelity surrogate
model models

*» randomly divide data into (1) training data and (2) testing data
» construct regression-function model f via cross validation on training data
» construct noise model € from sample variance on test data
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Reduction

W’

Training: Solve high-fidelity and reduced-order mode

ra/

1. s for p € Dtraining
2. Machine learning: Construct regression model

3. Reduction: predict surrogate-model error for & € Dguery \ Dtraining

. ®
inputs p — [ surrogate model j — outputs Gsurr D . ® o e Yoo,
!
features p
}
~ regression model \_> machine learning
(k) = f(p()) e(p(p))|  error model ¢
- =
GHFM () = Gsure(pe) + O(2)
N—— N—— N——
. stochastic deterministic stochasticj
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Error-model construction
o(p) = flp(p)) + &(p(w))

Feature engineering: select features p to trade off:
1. Number of features
= Large number: costly, low variance, high-capacity regression
=» Small number: cheap, high variance, low-capacity regression
2. Quality of features
=» High quality: expensive, low variance
= Low quality: cheap, high variance

Regression model: construct regression model f to trade off:
= High capacity: low variance, more data to generalize
=» Low capacity: high variance, less data to generalize

Method 1: Dual-weighted residual and Gaussian process regression
[Drohmann, C., 2015; C., Uy, Lu, Morzfeld, 2018]

Method 2: Large number of features and high-dimensional regression
[Trehan, C., Durlofsky, 2017; Freno, C., 2018]

Kevin Carlberg
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Error-model construction
o(p) = flp(p)) + &(p(w))

Feature engineering: select features p to trade off:
1. Number of features
= Large number: costly, low variance, high-capacity regression
=» Small number: cheap, high variance, low-capacity regression
2. Quality of features
=» High quality: expensive, low variance
= Low quality: cheap, high variance

Regression model: construct regression model f to trade off:
= High capacity: low variance, more data to generalize
=» Low capacity: high variance, less data to generalize

Method 1: Dual-weighted residual and Gaussian process regression
[Drohmann, C., 2015; C., Uy, Lu, Morzfeld, 2018]

Method 2: Large number of features and high-dimensional regression
[Trehan, C., Durlofsky, 2017; Freno, C., 2018]

Kevin Carlberg
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Feature: dual-weighted residual iprohmann, c., 2015

a(x) — a(%) = y¥(x) + O(x — %)
)Ty =~ 29 (57

» Want to avoid HFM-scale solves, so approximate dual as
y =y = ®yy

and construct a ROM for the dual

or )
(DyTax( )Tq)yy —

» One feature: g(x) — g(%) ~ '@, "r(%)
* can control feature quality via dimension of ®,

y 8x (X)

» Regression model: Gaussian process [rasmussen, williams, 2006]
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Application: Bayesian inference

Ac(x;p)u(x; ) =0 in Q x(n)=0o0nTp
Ve(p)x(p) - n=0on [y, Ve(p)x(p)-n=1on Iy,

v

Inputs 1 € [0.1, 10]° define diffusivity in ¢ in subdomains

Outputs q are 24 measured temperatures

ROM constructed via RB-Greedy (patera and Rozza, 2006]

Torior (1) : Gaussian with variance 0.1

e ~N(0,1x1073)

Posterior sampling: 1 x 10> samples w/ implicit sampling (et at, 2013]

v

v

v

v

v
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Machine learning error models
0i(1) ~ N (Bpi(p), e + az|pi()|*)

2 __ 015
<M I <X
o8 8
quality = * g
h|gh | 0} = G | 0
variance “x =
cheap & | =
el rank(®,) = 1 C 50 rank(®o,) =1
02 0 02 04 _ | ‘ | | |
,01 0.1 0 /024 0.1 0.2
. /\2.5 i 6?0.15‘
h[gh <X i S I
- —
quality — I
=
low l o
variance = 3
costly E S|
g rank(®) = 22 O:O.15 rank(®o4) =7
| 0 | 1 2

0 004 008 012
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Wall-time performance

10° F
104;‘

10° |

simulation time

ROM+ ROM+
igh-var low-var

» ROM:
+cheapest
- inconsistent formulation
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Wall-time performance

10° F

104;‘

simulation time

10° |

10°
HFM ROM

ROM+ ROM+
igh-var low-var

» ROM:
+cheapest
- inconsistent formulation

» ROM + error models:
+cheaper than HFM
- more expensive than ROM
+consistent formulation
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Posteriors: ROM

SUI’I’

post(u’ ‘ qmeas)

3 2.4

v 2:2 Q . ' | true
‘ g " e | | == prior
0 18

0 5 10 p 1 i 2 ! 1 i :

64 66 68 7 7.2
HF|\/|

18 10 == T host (l"’ ‘ qmeas)
n 1.1
o 1.05 5 surr
O"E 1 | | — post(“’ ‘ qmeas)
0.95 0 A
3. 62 64 6.6 6.8 0 5 10 15
N—" 5.8
= 56
T 8 5.4
< 5.2

6.2 6.4 6.6 6.8 095 1 1.056 1.11.15

4

3.8

3.6
6.2 6.4 6.6 68 095 1 1.056 1.11.15 52 54 56 68

+ HFM posterior: close to true parameters
- ROM posterior: far from prior and true parameters
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Posteriors: ROM + high-variance error model

Tpost (K | Omeas)

8.5 o d & - frue
N _
75 . | | == prior

HFM( | )
18 10 == Thost \H| Ameas
8 1.1
0] 1.05 5 HFM( ‘ )
C"E 1 — post M qmeas
0.95 0 A
1 6.2 6.4 6.6 6.8 0 5 10 15 9 95 10
N ] . 3
= , | _ 2
L 8 :
IkQ. ; . 1
O
6.2 64 6.6 6.8 095 1 105 1.1 1.15
6.2 64 6.6 6.8 095 1 105 1.1 1.15 52 54 56 58

+ ROM + high-variance error model posterior: close to prior
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Posteriors: ROM + low-variance error model

HFM( | )
post I"’ qmeas
5.8
- tryue
5.6
54 .
52 == prior
0 5 10 6.2 6.4 6.6 6.8 6.2 6.4 6.6 6.8 6.2 6.4 6.6 6.8 HFM
115 —_ post (H ‘ qmeas)
~~ :
8 1.1
(IE) 1.05 HFI\/I (“ ’ q
1 — ost meas
o 0.95 p
1 6.2 6.4 66 6.8
N— ¢
= + ,
LL
o)
Iko. :
6.2 6.4 66 6.8 095 1 1.05 1.1 1.15 4 6 8 10 52 54 56 58
4
4
2
3.8
3.6 0
6.2 6.4 66 6.8 095 1 1.05 1.1 1.15 52 54 56 5.8 0 2 4 6

+ ROM + low-variance error model posterior: close to HFM posterior
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Error-model construction
o(p) = flp(p)) + &(p(w))

Feature engineering: select features p to trade off:
1. Number of features
= Large number: costly, low variance, high-capacity regression
=» Small number: cheap, high variance, low-capacity regression
2. Quality of features
=» High quality: expensive, low variance
= Low quality: cheap, high variance

Regression model: construct regression model f to trade off:
= High capacity: low variance, more data to generalize
=» Low capacity: high variance, less data to generalize

Method 1: Dual-weighted residual and Gaussian process regression
[Drohmann, C., 2015; C., Uy, Lu, Morzfeld, 2018]

Method 2: Large number of features and high-dimensional regression
[Trehan, C., Durlofsky, 2017; Freno, C., 2018]

Kevin Carlberg
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Feature engineering (freno, ., 2018]

Idea: Use traditional error quantification as inspiration for features
1. Error indicators:

» residual norm: ||[r(X; @)||2
 dual-weighted residual: g(x) — q(X) =y r(x) + O(||x — |*)
2. Rigorous a posteriori error bound: |g(x) — g(¥)| < aHr(fi; m)|)

3. Model discrepancy: o(u) ~ N (u(p); o%(w))

Proposed features: * residual samples Pr(®x; i)

» parameters K + moderate number, cheap
* low quality, cheap - low quality
» used by model discrepancy » residual PCA #:= @ r(®%; 1)

» residual norm |[[r(®X; w)||2 + moderate number, high-quality
- small number, low quality, costly - costly

» residual r(®X; p) * gappy PCA t, := (P®,) Pr(®x; )

- large number, low quality, costly + moderate number, high-quality
+ cheap

Advances in nonlinear model reduction Kevin Carlberg



Ity assessment project
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Application: Predictive capability assessment project

y-displacement at A radial displacement at B
0g10(1 — Rz) log (1 — Rz)

v OLS: Linear
o
-8 OLS: Quadratic
‘o
Q SVR: Linear
E SVR: RBF
C
Q RF
vy
v
Q k-NN
g
T ANN
g
XTS5 8gg8g =+ 2558888
= = I L 7 % S 8 & = £ L W0 7 5 S S
i = = = = L0 i = = = = LU
< — 00 . - < o0 R _
L 15 T E @ T 1 &5 L«
— = = i = — = = § =
features features
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Application: Predictive capability assessment project

y-displacement at A radial displacement at B
2 2
og1o(1 — R%) log1o(1 — R%)
v OLS: Linear
S
Q o1s: Quadratic
L
‘9
Q SVR: Linear
&
SVR: RBF
-
9 RF
(V)
vy
QL k-NN
|
8 ANN
& !
- 2 22 g8 §gg & 2= 858§ 8§ TV
- - L Ly s = 3 - - L Ly s = 3
i - = =& L& i = - & & L1
g & = = Z = Ry S —
s o3 A h F @ . 3 A hF @
R R = - i 2 4 i
features features

- parameters (model-discrepancy approach): large variance
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Application: Predictive capability assessment project

regression methods

y-displacement at A

2
Oglo(l - R )
OLS: Linear
OLS: Quadratic
SVR: Linear
SVR: RBF
RF
k-NN
ANN
%‘ Nl o 9o o o o @«
Loy o= = =
5 - = == I I
- T4 = = T
y X 5 A
= = ¥ X T 0y
— 3' -
features

radial displacement at B

2
log,5(1 — R*)

S 2 g g g g = \&

I I — — (=) o 3

= oy I I i o
e = oy I I
— — ~— Nt ey ey
o <;_|bo I - N ~—
= — & @ g =
s 2 L, 5 &~ 7
2 = i =
features

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance
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Application: Predictive capability assessment project

regression methods

y-displacement at A

2
Oglo(l - R )
OLS: Linear
OLS: Quadratic
SVR: Linear
SVR: RBF
RF
k-NN
ANN
%’ D o o o 9o o |w
2 = 797 =2 =2 8 8 5
= L L 9 0 = =\
T - =2 = = = =
<5 Ty ) — —_
Q.-‘.\ 3: S:l <?-L Q;: <$.|b0
= = ¥ X T 0y
= k- ~
features

radial displacement at B

2
log1o(1 — R?)
—2
-3
I4
—5
= = 3 S T 2 5 o|%w|+=
- T 2 2o o 9o 9 | o
- = L L o7 o7 = =13
£ 2= ==L LA
Q—|<i$<s..bo'?"_b‘o
§ 2 L. gy A~ 7
— =2 = 5 =
features

- parameters (model-discrepancy approach): large variance
- small number of low-quality features: large variance
» PCA of the residual: lowest variance overall but costly
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Application: Predictive capability assessment project

y-displacement at A radial displacement at B
ogio(1 — R?) ~ log1o(1 — R?)

v OLS: Linear
e
g OLS: Quadratic
-
Q SVR: Linear D
E SVR: RBF
3 3
-g RF
v
Q k-NN 4
-
T ANN
- —5
2 Z|lg 2 g g g8l £22|lss g8 g g|® ®
— ol I I — — S S 3 = Bl I I — i — < 5
S S | I i ™ — S > | | ard o —
g2l = & & 4 4 gl = & & L 4
B R e T I - Tt
oy A e Ty A 9
2 = 5 £ 00 oy =2 = 5 2 G g
\_ = \_ =
features features

- parameters (model-discrepancy approach): large variance

- small number of low-quality features: large variance

» PCA of the residual: lowest variance overall but costly

+gappy PCA of the residual: nearly as low variance, but much cheaper
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Application: Predictive capability assessment project

y-displacement at A radial displacement at B
2 2
Oglo(l — R°) |0g10(1 — R%)
0

OLS: Linear
% I
Q oLs: Quadratic —1
<
L )
QEJ SVR: Linear o
-~ (SVR: RBF
Q RF —3
vy
W
QL
g
@)]
QL
g

k-NN —4
« )
-5
= & 2 2 5 5 5 T = 1 = =@ I 5 S 5 5 T = 1
~ . — — (@) () () o . o ] e — — () (e} - -] e
— Bl I I — — S S 3 = Bl I I — i — < X
S~ s o= L T s = —~ > o= T ==
g = = &8 & 4 & g = = & & L 4
= . Q:" i "= T 60 = . & i R
¥y 2 L oy & % § 2 T oy A~ %
- 2 = 5§ = - =z = 5 =
features features

- parameters (model-discrepancy approach): large variance

- small number of low-quality features: large variance

» PCA of the residual: lowest variance overall but costly

+gappy PCA of the residual: nearly as low variance, but much cheaper
+neural networks and SVR: RBF yield lowest-variance models
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Application: Predictive capability assessment project

4 .
9 | 4 — Exact
il [r(®X; p)2
= 0 ‘ SVR: RBF
N, 2__
S| P _ r2=0.94712
< A
- o v
Sy < _ ANN
3 / r2=0.96851
E :
g —6 ™ I 1 £g) (ny=10)
€3 o e ANN
-8r : r2=0.99944
_10 ] ] 1 | | |
~10 -8 —6 —4 —2 0 2 4

Predicted error, d,, [x107]
» Traditional features p and |[r(®x; p)||>:
- high noise variance
- expensive for |[r(®X; i)||2 : compute entire residual

* Proposed features [p; Fgl:
+|low noise variance
+extremely cheap: only compute 10 elements of the residual
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Summary

Accurate, low-cost, structure-preserving,
reliable, certified nonlinear model reduction

> accuracy: LSPG projection [c, Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
» Jow cost: sample mesh [c, rarhat, cortial, Amsallem, 2013]

» Jow cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

’ StrUCture preservaﬁon [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C. and Choi, 2017]
» reliability: adaptivity (c, 201s]

» certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Questions?

LSPG reduced-order model:

» C, Barone, and Antil. “Galerkin v. least-squares Petrov—Galerkin projection in
nonlinear model reduction,” Journal of Computational Physics, Vol. 330, p. 693—-
734 (2017).

» C, Farhat, Cortial, and Amsallem. “The GNAT method for nonlinear model
reduction: Effective implementation and application to computational fluid
dynamics and turbulent flows,” Journal of Computational Physics, Vol. 242, p. 623—
647 (2013).

» C, Bou-Mosleh, and Farhat. “Efficient non-linear model reduction via a least-
squares Petrov—Galerkin projection and compressive tensor approximations,”

International Journal for Numerical Methods in Engineering, Vol. 86, No. 2, p. 155—
181 (2011).

Machine-learning error models:

» Freno, C. “Machine-learning error models for approximate solutions to
parameterized systems of nonlinear equations,” arXiv e-Print, 1808.02097 (2018).

» Trehan, C, and Durlofsky. “Error modeling for surrogates of dynamical systems using
machine learning,” International Journal for Numerical Methods in Engineering, Vol.
112, No. 12, p. 1801-1827 (2017).

» Drohmann and C. “The ROMES method for statistical modeling of reduced-order-
model error,” SIAM/ASA Journal on Uncertainty Quantification, Vol. 3, No. 1, p.116—
145 (2015).
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