
Advances in nonlinear model reduction:
least-squares Petrov-Galerkin projection and
machine-learning error models
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digh-fidelity simulation

Indispensable across science and engineering

High fidelity: extreme-scale nonlinear dynamical system models

Turbulent reacting flows
courtesy J. Chen, Sandia

Antarctic ice sheet modeling
courtesy R. Tuminaro, Sandia

computational barrier

Magnetohydrodynamics
courtesy J. Shadid, Sandia

Many-query problems
* uncertainty propagation * multi-objective optimization

* Bayesian inference *stochastic optimization
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High-fidelity simulation: captive carry
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digh-fidelity simulation: captive carry

_Npressure

2.000e+04 11
1 875e+04
1 750e+04
1 625e+04
1.500e+04

GradRho

2 500e-01
1 875e-01
1 250e-01
6 250e-02
0 000e.00

Validated and predictive: matches wind-tunnel experiments to within 5%

Extreme-scale: 100 million cells, 200,000 time steps

High simulation costs: 6 weeks, 5000 cores

* explore flight

envelope

computational barrier

Many-query problems
* quantify effects of
uncertainties on store load

* robust design of

store and cavity
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Approach: exploit simulation data
dx

dt
ODE: f(x; t, p,), x(0 , pt) = Xo(p,), t e [0, Tfinal] y

Many-query problem: solve ODE for p, E Dquery

p, E D

Idea: exploit simulation data collected at a few points

1. Training: Solve ODE for tt E Dtraining and collect simulation data
2. Machine learning: ldenfify structure in data

3. Reduction: Reduce cost of ODE solve for tt E pq \ Duery \ - training
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Model reduction criteria

1. Accuracy: achieves less than 1% error

2. Low cost: achieves at least 100x computational savings

3. Structure preservation: preserves important physical properties

4. Reliability: guaranteed satisfaction of any error tolerance (fail safe)

5. Certification: quantifies ROM-induced epistemic uncertainty
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Model reduction: previous state of the art
Linear time-invariant systems: mature [Antoulas, 2005]
Balanced truncation [Moore, 1981; Willcox and Peraire, 2002; Rowley, 2005]
Transfer-function interpolafion [Bai, 2002; Freund, 2003; Gallivan et al, 2004; Baur et al., 2001]

+ Accurate, reliable, certified: sharp a priori error bounds
+ Inexpensive: pre-assemble operators
+ Structure preservation: guaranteed stability

Elliptic/parabolic PDEs: mature [Prud'Homme et al., 2001; Barrault et al., 2004; Rozza et al., 2008]
► Reduced-basis method
+ Accurate, reliable, certified: sharp a priori error bounds, convergence
+ Inexpensive: pre-assemble operators
+ Structure preservation: preserve operator properties
Nonlinear dynamical systems: 'neffective
Proper orthogonal decomposition (POD)—Galerkin [Sirovich, 1987]

- Inaccurate, unreliable: often unstable
- Not certified: error bounds grow exponentially in time
- Expensive: projection insufficient for speedup
- Structure na preserved: dynamical-system properfies ignored
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Our research

Accurate, low-cost, structure-preserving,

reliable, certified nonlinear model reduction

' accuracy: LSPG projecfion [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

' structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]

' reliability: adapfivity [C., 2015]

' certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Our research

Accurate, low-cost, structure-preserving,

reliable, certified nonlinear model reduction

accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011*; C., Barone, Antil, 2017]
low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]

low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

► structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]

reliability: adaptivity [C., 2015]

certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]

Collaborators:

' Matthew Barone (Sandia)

' Harbir Antil (GMU)

' Charbel Farhat (Stanford University)

' Julien Cortial (Stanford University)
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Training simulations: state tensor
dx

ODE: 
dt 
= f(x; t, p)

1. Training: Solve ODE for pt E Dtraining and collect simulation data
2. Machine learning: Identify structure in data
3. Reduction: Reduce the cost of solving ODE for tt E Dq \ Duery \ - training

A PreSs
ure (Pa)

411..111.....W
1 05e+05 .,

8 92e+04

number of
time steps T
.—.

D
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Training simulations: state tensor
dx

ODE: 
dt 
= f(x; t, p)

1. Training: Solve ODE for pt E Dtraining and collect simulation data
2. Machine learning: Identify structure in data
3. Reduction: Reduce the cost of solving ODE for tt E Dq \ Duery \ - training

A PreSs
ure (Pa)

411..111.....W
1 05e+05 .,

8 92e+04 111 .

D
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Tensor decomposition
dx 

ODE: 
dt 

f(x; t, p)

1. Training: Solve ODF for tt E Dtraining and collect simulation data
2. Machine learning: ldenfify structure in data
3. heaucuone rieauce tha cost of soiving uut for tt E Dquery \ Dtraining

Compute dominant left singular vectors of mode-1 unfolding

x X(1)

..

U I V 
T
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Tensor decomposition
dx 

ODE: 
dt 

f(x; t, p)

1. Training: Solve ODF for tt E Dtraining and collect simulation data
2. Machine learning: ldenfify structure in data
3. heaucuone rieauce tha cost of soiving uut for A E Dquery \ Dtraining

Compute dominant left singular vectors of mode-1 unfolding

x

F
X(1) 0 U I V 

T

4:1:0 columns are principal components of the spatial simulation data

How to integrate these data with the computational model?
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Previous state of the art: POD-Galerkin
dx

ODE: 
dt 
= f(x; t, tt)

1. Training: Solve ODE for pi E Dtraining and collect simulation data
2. Machine learning: ldenfify structure in data
3. Reduction: Reduce the cost of solving ODE for pi E Dq \ Duery \ - training

D
•

•

1

1. Reduce the number of unknowns

x(t) rr 5i(t) — 10 )1(t)

H 

I

2. Reduce the number of equations

07-(fopii; t7 tt) 0 A \

dt )

Galerkin ODE: 
chl

dt
41) • f(OR, t, tt)

i)
0

• • 
D

• • .
•• • 
• • •• O•• • •
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Captive carry

V„

• • • • ... ............................
••• Ma LOS Kdo lg. Medi lb OM

••••••• 'a no rd ra CIRCO CO
.b• ••• .../ lb... no .7. •CO•

4.4 •• •••••••••• ..o.rdonook.7. deS •Gb
,,••••••••••••••••••••11........o.wars

no...no..+r. wt..

t:/2%%-4%.Z.Zr4ZSre:CYCYC.....

* . .

Unsteady Navier Stokes ► Re = 6.3 x 106 M.= 0.6

Spatial discretization

2nd-order finite volume

DES turbulence model
1.2 x 106 degrees of freedom

Temporal discretization

2nd-order BDF

Verified time step At = 1.5 x 10-3
► 8.3 x 103 time instances
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High-fidelity model solution
vorticity field

pressure field
In

50

25

0 `-'

23

20

17 —
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Principal components
x(orr:,) (1) X(t)
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Galerkin performance

2.8 -

1.6

fa,
•
•
•

probe

0 2 4 6

time

8 10 12

high-fidelity:
dim 1.2x106

Galerkin: dim 204

Galerkin: dim 368

Galerkin: dim 564

- Galerkin projection fails regardless of basis dimension

Can we construct a better projection?
Advances in nonlinear model reduction evin Carlberg



Galerkin: time-continuous optimality
ODE Galerkin ODE

dx 

dt d
f(x, t) sto 

A

t 
(I) 1 7- f(10X, t)

g I 1 1
+ Time-continuous Galerkin solution: optimal in the minimum-residual sense:

di
1 — (x, t) = argmin r( , x; Oh

Erange(10)

r( , x; t) : f(x; t)
OAE

rn(xn) = 0, n= 1, ... , T

Galerkin OAE

roT rn( n) 0, n 1, ... , T

k k

rn(x) := ego( AtAf(x, tn) + 'Xn—j
>_: 

CVJ At >_:M(xn—j, tn—i)

j=1-j=1

Time-discrete Galerkin solution: not generally optimal in any sense

Advances in nonlinear model reduction Kevin Carlbe



Residual minimization and time discretization

[ LSPG OLE
n argmin 1 Arn(

Erange(0)

n= 1, ... , T

) 1]

[C., Bou-Mosleh, Farhat, 2011]

[ ODE
dx

dt 
= f(x, t)

residual
minimization

,[cif
(x, t) = argmin 0-( , x; Oh

Erange( )

Galerkin ODE

d,

time time
discretization discretization

residual
minimization

argmin
Erange( )

Arn()

[ OLE
rn(xn) = 0
n 1, ... , T r Galerkin OLE

IsTrn(e) n) o
n 1, ... , T

2 Wnrn) Trn (0 n ) 0

1
qj n ( n ) . AT A 

( 
- a 0

i Ati 30
Of
( n , t))

OX

Least-squares Petrov Galerkin (LSPG) projection
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Discrete-time error bound

Theorem [C., Barone, Antil, 2017]

If the following conditions hold:
1. f(.; t) is Lipschitz continuous with Lipschitz constant k
2. The time step At is small enough such that 0 < h := laol 0o KAt,

3. A backward differentiation formula (BDF) time integrator is used,
4. LSPG employs A= I , then

lxn (1)RrGi 2 < 1 rGn(41:0)0

11 Xn eiRnLSPG 2 < moin

k

2 ]- 
h 1 111x

n—f

f=1 k

rIr7SPG(e`")112+ h
f=1

05in —fi
G 2

a 1 11xn-f 
050—e H

LSPG 112

+ LSPG sequentially minimizes the error bound

Advances in nonlinear model reduction Kevin Carlberg 18



LSPG performance

2.8

1.6 
0 2

probe

4 6

time

1

8 10 12

+ LSPG is far more accurate than Galerkin

-

high-fidelity:
dim 1.2x106

Galerkin: dim 204

Galerkin: dim 368

Galerkin: dim 564

LSPG: dim 204

LSPG: dim 368

- - LSPG: dim 564
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Our research

Accurate, low-cost, structure-preserving,

reliable, certified nonlinear model reduction

accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013*]
low cost: !educe iernpurdi wilipiemiy
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]

reliability: adaptivity [C., 2015]

certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Wall-time problem

2.8

1.6 
0

probe

high-fidelity:
dim 1.2x106
Galerkin: dim 204

Galerkin: dim 368

Galerkin: dim 564

LSPG: dim 204

LSPG: dim 368

- - LSPG: dim 564

2 4 6
time

► High-fidelity simulation: 1. hour, 48 cores
► Fastest LSPG simulation: 1.3 hours, 48 cores

8 10 12

Why does this occur?

Can we fix it?
Advances in nonlinear model reduction Kevin Carlberg



Cost reduction by gappy P'A [Everson and Sirovich, 1995]
minimize A rn( )

ME
2

Can we select A to make this less expensive?

1. Training: collect residual tensor Rijk while solving ODE for tt E Dtraining
2. Machine learning: compute residual PCA,r and sampling matrix P
3. Reduction: compute regression approximation rn

index
minimize (4) )112

(•Mii ) 2

rr in = . (PQr)+Prn

Or

nr

. Prn
in
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Cost reduction by gappy P'A [Everson and Sirovich, 1995]
minimize A rn( )

ME
2

Can we select A to make this less expensive?

1. Training: collect residual tensor Rijk while solving ODE for tt E Dtraining
2. Machine learning: compute residual PCA,r and sampling matrix P
3. Reduction: compute regression approximation rn

minimize

rr in = . (PQr)+Prn

Or

nr

. Prn
in

index
( 341)r)-1- rn ( 41) )112 + Only a few element.)

LIIIII  )A 2 

of rn must be computed
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Sample mesh [C., Farhat, Cortial, Amsallem, 2013]

sample
mesh

minimize

LSPG ROM with
A = ittor)±

32 min, 2 cores

high-fidelity

5 hours, 48 cores

( (D

r)+
 

rn(00)1 2

+ HPC on a laptop

vorticity field

• dicity_lom

50 0
37 5

25 0
12 5

0 0

•

pressure field

pressure rom

2 6 LI
2 3
2 0
1 7
1 4

pressure _tom

2 6 [111
2 3
2 0
1 7
1 4

+ 229x savings in core—hours

+ < 1% error in time-averaged drag

Implemented in three computational-mechanics codes at Sandia
Advances in nonlinear model reduction Kevin Carlberg



Ahmed body [Ahmed, Ramm, Faitin, 1984]
389

Jz
• Y . 

163.5 •

C•1

50

Unsteady Navier Stokes ► Re = 4.3 x 106 M.= 0.175

Spatial discretization

2nd-order finite volume

DES turbulence model
► 1.7 x 107 degrees of freedom

Temporal discretization

2nd-order BDF

Time step At = 8 x 10-5s

► 1.3 x 103 time instances
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Ahmed body resu lts [C., Farhat, Cortial, Amsallem, 2013]

sample
mesh

LSPG ROM with A = ( 0r)±

4 hours, 4 cores

pressure

field

+ HPC on a laptop

high-fidelity model

13 hours, 51z cores

+ 438x savings in core—hours
+ Largest nonlinear dynamical system on which ROM has ever had success

Advances in nonlinear model reduction Kevin Carlberg



Our research

Accurate, low-cost, structure-preserving,

reliable, certified nonlinear model reduction

accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

structure preservanon [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]

reliability: adaptivity [C., 2015]

certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]

reliability: adaptivity [C., 2015]
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Our research

Accurate, low-cost, structure-preserving,

reliable, certified nonlinear model reduction

accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C., Choi, Sargsyan, 2017]

reliability: adapfivity [C., 2015]

certification -. machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Our research

►

Accurate, low-cost, structure-preserving,

reliable, certified nonlinear model reduction

accuracy: LSPG projection [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
► low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

► structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C. and Choi, 2017]

► relinhility: adaptivity [C., 2015]

► certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2018]

Collaborators:

' Martin Drohmann (formerly Sandia) ' Matthias Morzfeld (U of Arizona)

' Wayne Uy (Cornell University)

' Fei Lu (Johns Hopkins University)

' Brian Freno (Sandia)
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Surrogate modeling in UQ.

inputs itt —* [ high-fidelity model 
J 

outputs qHFIvi

' high-fidelity-model (HFM) noise model: a-imeas qHFM(P)+ E
' measurement noise E has probability distribution 7E(.)
' HFM likelihood: 7FHFM(cimeas Pi) — 7TE(Cimeas

[inputs p surrogate model

qHFNA(P))

outputs qsurr

' surrogate noise model: a-.meas asurr(tt) + E
' surrogate likelihood: 7rsurr(qmeas 1 P) — 7TE(Cimeas Cisurr(P))

- inconsistent with HFM noise model

Advances in nonlinear model reduction Kevin Carlberg 30



Surrogate modeling in UQ
CIHFM (11) Cisurr(P) + (ji)

HFM noise model: q meas = qHFM(//) + E

asurr(P) ± (A) + E
HFM likelihood: 7FIFM (Cimeas ti) — 77e(Cimeas qHFM (A))

7re(qmeas Cisurr(P) — (P))

+ equivalent to HFM formulation

+ not practical: the (deterministic) error (p) is generally unknown

How can we account for the error (A) in a manner that is
consistent and practical?

Advances in nonlinear model reduction Kevin Carlberg 31



Surrogate modeling in UQ
a HFM (P) clsurr (II) + (II)

Approach: statistical model (p) for the error that models its uncertainty

EIHFM (P) = clsurr(P) + 66(p)...„.... ......,../ .....„../
stochastic deterministic stochastic

' statistical HFM noise model: a•meas EIFIFM (11) + E

asurr(A) + (i(ti) + E

' stochastic HFM likelihood:7HFm(cimeas 1 /1) 77E+ (qmeas clsurr(t-t))

+ consistent with HFM noise model

+ practical if the statistical error model is computable

Desired properties in statistical error model (p)

1. cheaply computable: similar cost to evaluating the surrogate

2. low variance: introduces little epistemic uncertainty

3. generalizable: correctly models the error

How can we construct a statistical error model for reduced-order models?

Advances in nonlinear model reduction Kevin Carlberg



Approximate-solution surrogate models
High-fidelity model

governing equafions: r(x(p); p) - 0

quantity of interest: qHFM(p,) :- q(x(p))

Approximate-solution surrogate model

► approximate solution: (p) rr:, x(p)

quantity of interest: qsurr(p) := q(5i(p))

Types of approximate solutions

► Reduced-order model:
WT r(OX, tt) = 0, 41:0X

► Low-fidelity model:
rLF(xLF, p) = 0, X= p(XLF)

► Inexact solution: compute x(k) k= 1, ... 7 K such that

11r(x(K), p) 0 2 < Cy X
(K)

What methods exist for quantifying the error ((tt) : CiFIFM (Pi) qsurr(p)?

Advances in nonlinear model reduction Kevin Carlberg



1) Error indicators: residual norm
HFM governing equations: r(x(p), tt) = 0

► Approximate solution: (P) rr" x(P)

► Substitute (2) into the residual of (1) and take the norm:

)2

Applications: termination criterion, greedy methods, trust regions
[Bui-Thanh et al., 2008; Hine and Kunkel, 2012; Wu and Hetmaniuk, 2015; Zahr, 2016]

+ Injormative: zero for high-fidelity model
- Deterministic: not a statistical error model
- Low quality: relationship to error depends on conditioning

Advances in nonlinear model reduction Kevin Carlberg 34



1) Frror indicu tors: dual-weighted residual
Approximate HFM quantity of interest to first order

0 q
q(X) = q (X) + ax( )(x - X) + 0( Ix X 12) (1)

Approximate HFM residual to first order
Or

r(x) 
, 

R) + 0( Ix R 12)ax

Or
[(50]-1-r(ii) + 0(1 x RI

2
)

' Solve for the error
x X

' Substitute (2) in (1): q(x) q(ii) JiTr( ) + 0(11x Re)

Or (R) Ty 3q (co T
MO I MO I

' Applications: adaptive mesh refinement

(2)

[Babuska and Miller, 1984; Becker and Rannacher, 1996; Rannacher, 1999; Venditti and Darmofal, 2000; Fidkowski, 2007]

+ Accurate.: second-order-accurate approximation

- Deterministic: not a statistical error model

Advances in nonlinear model reduction Kevin Carlberg



2) Rie IPe11 1 posteriori errnr bound
Proposition

If the following conditions hold:
1. r(.; pi) is inf—sup stable, i.e., for all tt c D, there exists a(p,) > 0 s.t.

r(zi; tt) - r(z2; /1) 2 > ce(tt) z1 — Z2 2, VZ1, Z2 C ---el

2. q(.) is Lipschitz continuous, i.e., there exits 13 > 0 such that

q(z1) — q(z2) < /3 1z1 — z2112, Vz1, z2 E -0

then the quantity-of-interest error can be bounded as

q( < 11r( , it)1a 2

' Applications: reduced-order models
[Rathinam and Petzold, 2003; Grepl and Patera, 2005; Antoulas, 2005; Hinze and Volkwein, 2005; C. et al., 2017]

+ Certification: guaranteed bound
- Lack sharpness: orders-of-magnitude overestimation
- Difficult to implemeni: require bounds for inf—sup/Lipschitz constants
- Deterministic: not a statistical error model

Advances in nonlinear model reduction Kevin Carlberg



3) Model-discrepancy approach
(p) roAr(//,(tt);(72(ti))

•
•

• •

.
. - .

4404:144: 1:010.00.0000- •

I • //

•

•• ....•
••• ' •

I • •‘/ N‘ N /

• N /

• ,.._ ‘

/
/
I

Applications:

IVlodel calibration [Kennedy, O'Hagan, 2001; Higdon et al., 2003; Higdon et al., 2004]
IVI u Itifidel ity optimization [Gano et al., 2005; Huang et al., 2006; March, Willcox, 2012; Ng, Eldred, 2012]

+ General: applicable to any surrogate model
+ Statistical: interpretable as a statistical error model
+ Epistemic uncertainty quantified: through variance
- Poorly informative inputs: parameters p, weakly related to the error
- Poor scalability: difficult in high-dimensional parameter spaces
- Thus, can introduce large epistemic uncertainty: large variance

• qHFM

• qsurr

qHFM qsurr

parameter pi
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n hi ective
Goal: combine the strengths of

1. error indicators,
2. rigorous a posteriori error bounds, and

3. the model-discrepancy approach

A posteriori: use residual-based quantities computed by the surrogate
strength of #1 and #2

+ Informative inputs: quantities are strongly related to the error
+ Thus, can lead to lower epistemic uncertainty: lower variance

Error modeling: statistical model for the error
strength of #3

+ Statistical: interpretable as a statistical error model
+ Epistemic uncertainty quantified: through variance
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Main idea
Observation: residual-based quantities are informafive of the error

=

10-

1 I I I I II 1 I I 1

• • ..

(r; 1116u111)

(Art ; 1116u111)

to-4
Residual r/error bound

' So, these are informative features: can predict the error with low variance

Idea: Apply machine learning regression to generate a mapping from

residual-based quantities to a random variable for the error

Can produce lower-variance models than the model-discrepancy approach

Machine-learning error models

Advances in nonlinear model reduction Kevin Carlberg



Machine-learning error models: formulation

(ii) = f (P(P)) + e(p(tt))
deterministic stochastic

' features: p(p) E -"eP
' regression function: f (p) = E[ 1 p]
' noise: c(p)

Note: model-discrepancy approach uses P= tt

(P) f (P(P)) + --(to(P))
deterministic stochastic

' regression-function model: f(r-r-d-d f)
' noise model: qrr €)

' Desired properties in error model ,8

1. cheaply computable: features p(p) are inexpensive to compute

2. low variance: noise model --(p) has low variance

3. generalizable: empirical distributions of and '',( 'close' on test data
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Training and machine learning
1. Training: Solve high-fidelity and multiple surrogates for A E Dtraining
2. mactilfle learning: Construct rugrussiuri model

3. Reduction: predict surrogate-model error for tt E Dq \ Duery \ — training

6

high-fidelity
model

surrogate
models

qHFM qsurr
.

M

D

P
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Training and machine learning
1. Training: Solve high-fidelity and multiple surrogates for µ E Dtraining
2. mactilfle learning: Construct rugrussiuri model

3. Reduction: predict surrogate-model error for tt E Dq uery — training

high-fidelity
model

surrogate
models

qHFM qsurr

1

D
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Training and machine learning
1. Training: Solve high-fidelity and multiple surrogates for µ E Dtraining
2. mactilfle learning: Construct rugrussiuri model

3. Reduction: predict surrogate-model error for tt E Dq uery — training

high-fidelity
model

surrogate
models

qHFM qsurr

1
1

D .
.
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Training and machine learning
1. Training: Solve high-fidelity and multiple surrogates for pi E Dtraining
2. Machine learning: Construct regression model

3. Reduction: predict surrogate-model error for ii, E Dci \ Duery \ - training

high-fidelity
model

surrogate
models

6 qH FM qsurr

1
I

M

D .
.

P

randomly divide data into (1) training data and (2) testing data

construct regression-function model f via cross validation on training data
construct noise model E from sample variance on test data
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Reduction
1. Training: Solve high-fidelity and reduced-order models for tt E Dtraining
Machine learning: Construct regression model

3. Reduction: predict surrogate-model error for tt E pc, \ Duery \ - training

[inputs pi surrogate model outputs a,surr

vl
features p

Iv

regression model

(P) = f (p(P)) + (i0(11)) j

•
D••

m • • •
• •
•

•
•

machine learning—.
error model iS

c
41-IFM (p)....,... asurr(P) + i5(p)....„... ....r
stochastic deterministic stochastic
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Error-model construction
(it) = f (P(P)) + (i0(/-1))

Feature engineering: select features p to trade off:

1. Number of features

Large number: costly, low variance, high-capacity regression

Small number: cheap, high variance, low-capacity regression

2. Quality of features

High quality: expensive, low variance

Low quality: cheap, high variance

Regression model: construct regression model f to trade off:

E' High capacity: low variance, more data to generalize

. Low capacity: high variance, less data to generalize

Method ' : Dual-weighted residual and Gaussian process regression
[Drohmann, C., 2015; C., Uy, Lu, Morzfeld, 2018]

Method 7: Large number of features and high-dimensional regression
[Trehan, C., Durlofsky, 2017; Freno, C., 2018]
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Error-model construction
(t1)= f (P(P)) + (io(/-1))

Feature engineering: select features p to trade off:

1. Number of features

Large number: costly, low variance, high-capacity regression

Small number: cheap, high variance, low-capacity regression

2. Quality of features

High quality: expensive, low variance

Low quality: cheap, high variance

Regression model: construct regression model f to trade off:

E' High capacity: low variance, more data to generalize

1 Low capacity: high variance, less data to generalize

Method 1 : Dual-weighted residual and Gaussian process regression
[Drohmann, C., 2015; C., Uy, Lu, Morzfeld, 2018]

Method 1: Large number of features and high-dimensional regression
[Trehan, C., Durlofsky, 2017; Freno, C., 2018]
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Feature: dual weighted residual [Drohmann, C., 2015]

q(x) q(X) = y TO) + O(

aq
( )

TOr 
( ) 

T
OX OX

► Want to avoid HFM-scale solves, so approxirnate dual as
rr: 41) y 9

1
and construct a ROM for the dual

Or 7- 0q - T
4:sy 7- )TØY9 (1:1Y C()()

One feature: q(x) q(R) rr S
T
°Y I.r( )

► can control feature quality via dimension of Øy

► Regression model: Gaussian process [Rasmussen, Williams, 2006]
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Application: Bayesian inference

rN0

FN1

Ac(x, ,a)u(x, p) — 0 in Q x(p) = 0 on rD
V c(p)x(p) • n = 0 on rivo V c(p)x(p) • n = 1 on I- N1

' Inputs IA E [0.1, 10]9 define diffusivity in c in subdomains

' Outputs q are 24 measured temperatures

' ROM constructed via RB-Greedy [Patera and Rozza, 2006]

7r (") : Gaussian with variance 0.1- prior kr--) 

► E N Ar(07 1 x 10-3)

' Posterior sampling: 1 x 105 samples w/ implicit sampling [Tu et al., 2013]
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Machine learning error models
(5i(tt) AVP/(1-01 al + a21/9/(1-01c")

2.5

low
quality
high o

variance

cheap 61

high
quality
low

variance
costly

—2.5 -
—0.2 0 0.2

pl

2.5<x

;0 <
0 0 0

o
+

° •8 9-tP o++69 0 0% + 1:1-+

+ ++
• + +0 a, +

42+

0

—2.5

rank(01) — 1

rank(01) — 22

0.4

0 2

tTN

0.15

o

—0.15

0
0

0

O.-MY -0 17-: .64

„Do+ 0
"u8 o ++ + oo

o mo
et000+ 0 +

rank(024) = 1

—0.1

<><
0.15

—0.15

0 pn
24 

0.1

4,100P'-

rank(024) —

0.2

0 0.04 0.08

P24
0.12

Advances in nonlinear model reduction Kevin Carlberg



Wall-time performance
106 

at
io

n 
ti
me
 

•

10

10

102
HFM

► ROM:
+ cheapest
- inconsistent formulation

1

LROM

It
0
0

ROM+ ROM+
igh-var low-var
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Wall-time performance
106 

at
io

n 
ti
me
 

•

10

1 0

102

► ROM:
+cheapest
- inconsistent formulation

► ROM + error models:
+cheaper than HFM
- more expensive than ROM
+consistent formulation
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Posteriors: ROM
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+ HFM posterior: close to true parameters
- ROM posterior: far from prior and true parameters

true

prior
HFM i„
7post WA' meas/

7r
surr
postk/' qmeas)
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Posteriors: ROM + high-variance error model

71R1
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Posteriors: ROM + low variance error model
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Error-model construction
(it) = f (P(P)) + (i0(/-1))

Feature engineering: select features p to trade off:

1. Number of features

Large number: costly, low variance, high-capacity regression

Small number: cheap, high variance, low-capacity regression

2. Quality of features

High quality: expensive, low variance

Low quality: cheap, high variance

Regression model: construct regression model f to trade off:

E' High capacity: low variance, more data to generalize

. Low capacity: high variance, less data to generalize

Method ' : Dual-weighted residual and Gaussian process regression
[Drohmann, C., 2015; C., Uy, Lu, Morzfeld, 2018]

Method : Large number of features and high-dimensional regression
[Trehan, C., Durlofsky, 2017; Freno, C., 2018]
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Feature engineering [Freno, C., 2018]
Idea: Use traditional error quantification as inspiration for features

1. Error indicators:

residual norm: 11r( ;1-)1 2

' dual-weighted residual: q(x) q(R) = Tr(R) + 0(111; )RI 
2\

2. Rigorous a posteriori error bound: q(x)l — q( ) < Ir(5i; 11)a
3. Model discrepancy: 3(p,) r•J Ar(p,(//), a2(//))

Proposed features:
' parameters Pi
' low qualitv, cheap
' used by model discrepancy

2

' residual samples Pr(OX, p)
+ moderate number, cheap
- low quality
' residual PCA 1- := OrTr(OX, p,)

' residual norm 1 r($05i, tt) 2 + moderate number, high-quality
- small number, low quality, costly - costly
' residual r(01:0X, p,) ' gappy PCA ig : (Plor)+Pr(105i, ii,)

- large number, low quality, costly + moderate number, high-quality
+ cheap
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Application: Predictive capability assessment project
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► high-fidelity model dimension: 2.8 x 105
► reduced-order model dimensions: 1, , 5

► inputs j_t: elastic modulus, Poisson ratio, applied pressure
► quantities of interest: y-displacement at ok, radial displacement at
► training data: 150 training examples, 150 testing examples
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Application: Predictive capability assessment project
y-displacement at radial displacement at B
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Application: Predictive capability assessment project
y-displacement at radial displacement at B
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+ neural networks and SVR: RBF yield lowest-variance models
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Application: Predictive capability assessment project
4

2

0
x

—2

—4

A_D
ca)̀ —6

—8

—10
—10 8 —6 —4 —2 0

Predicted error, Su, [x10-3]

Traditional features tt and Ilr( tt)1 2 6.

2 4

Exact

11r(s:Dik; tt)112
SVR: RBF
7.2=0.94712

A N
7-2=0.96851

[11; (1ir=10)
• ANN

7.2=0.99949

- high noise variance
- expensive for 111-(405i, tt)112 : compute entire residual

Proposed features [tt,
+ low noise variance
+ extremely cheap: only compute 10 elements of the residual
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Summary

Accurate, low-cost, structure-preserving,

reliable, certified nonlinear model reduction

' accuracy: LSPG projecfion [C., Bou-Mosleh, Farhat, 2011; C., Barone, Antil, 2017]
low cost: sample mesh [C., Farhat, Cortial, Amsallem, 2013]
low cost: reduce temporal complexity
[C., Ray, van Bloemen Waanders, 2015; C., Brencher, Haasdonk, Barth, 2017; Choi and C., 2017]

' structure preservation [C., Tuminaro, Boggs, 2015; Peng and C., 2017; C. and Choi, 2017]

' reliability: adapfivity [C., 2015]

' certification: machine learning error models
[Drohmann and C., 2015; Trehan, C., Durlofsky, 2017; Freno and C., 2017]
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Questions?
LSPG reduced-order model:
► C, Barone, and Antil. "Galerkin v. least-squares Petrov Galerkin projection in
nonlinear model reduction," Journal of Computational Physics, Vol. 330, p. 693-
734 (2017).

► C, Farhat, Cortial, and Amsallem. "The GNAT method for nonlinear model
reduction: Effective implementation and application to computational fluid
dynamics and turbulent flows," Journal of Computational Physics, Vol. 242, p. 623-
647 (2013).

► C, Bou-Mosleh, and Farhat. "Efficient non-linear model reduction via a least-
squares Petrov—Galerkin projection and compressive tensor approximations,"
International Journal for Numerical Methods in Engineering, Vol. 86, No. 2, p. 155-
181 (2011).

Machine-learning error models:
► Freno, C. "Machine-learning error models for approximate solutions to
parameterized systems of nonlinear equations," arXiv e-Print, 1808.02097 (2018).

► Trehan, C, and Durlofsky. "Error modeling for surrogates of dynamical systems using
machine learning," International Journal for Numerical Methods in Engineering, Vol.
112, No. 12, p. 1801-1827 (2017).

► Drohmann and C. "The ROMES method for statistical modeling of reduced-order-
model error," SIAM/ASA Journal on Uncertainty Quantification, Vol. 3, No. 1, p.116-
145 (2015).
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