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‘ Typical Thermal Management

zen Approach ™ Throw cold at the device

Images: Disney, HiFlux, Parker Hannifin, Advanced Thermal Solutions



3\ Opportunity: Wide Bandgap Power Devices

' Ihermal design from “growth up”
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Image: Dickerson et al. IEEE Trans. Elec. Dev. (63) 419. 2016.

ARPA-E Report. 2018.




+| Do we know enough to design from “growth up”?

malz Understand what effects matter when in GaN and AlGaN




; ‘ Approach: Make, Measure, Model

Material: MOCVD GaN/AlGaN
Variables: Doping, Alloying, Thickness

E Tool: Time Domain Thermoreflectance
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1 Approach:
| Phonon Gas Model
DFT/Lattice Dynamics
| Allen-Feldman Theory
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Measure: An Unsuspected Insensitivit)
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7‘ Phonon-Gas Model: Probing the Pain Points
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8‘ Bottom Line: Implications on Device Design
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9‘ Visualize:Why do size effects dominate!
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o | Measure: AlGaN...Impurities vs. Size Effects
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Data: Liu and Balandin. JAP (85) 5230. 2004. Daly et al. JAP (92) 3820. 2002. Saltonstall et al. In preparation.



n | Model: Propagons, Diffusons, Locons & Virtual Crystals
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between propagons & diffusons determined via modal analysis.

Animations: Seyf et al. npj Computational Materials. (3) 49. 2017. Approach: Braun et al. PRB (93) 140201. 2016.




2 | AlGaN: Crystal Qualities in Alloy...Size Effects too
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Size effects persist even more in alloy

Saltonstall et al. In preparation.
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Visualize: Dominance of Acoustic Modes
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14‘ Visualize: Dominance of Acoustic Modes
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s | Generalize: Size Effects in Alloys
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« | Take Home Message
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