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3 Opportunity:Wide Bandgap Power Devices
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Thermal design from "growth up"
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4 1 Do we know enough to design from "growth up"?
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5 I Approach: Make, Measure, Model

Material: MOCVD GaN/AIGaN
Variables: Doping, Alloying, Thickness

Tool: Time Domain Thermoreflectance
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I6 Measure:An Unsuspected Insensitivit
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7 1 Phonon-Gas Model: Probing the Pain Points
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8 I Bottom Line: Implications on Device Design
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91 Visualize:Why do size effects dominate?
W
a
v
e
n
u
m
b
e
r
 (
c
m
 

L
A
 M
o
d
a
l
 T
h
e
r
m
a
l
 C
on

du
ct

iv
it

y 
750

600

450

300

150

0

Bulk

264 W/mK_

1500 3000 4500

Wavevector (ium-1)

6000

100 nrr-TH

1 1 1 
1500 3000 4500

Wavevector (um-1)

750

600

450

a) 300

••••••••

150

10 um

206 W/mK_

0  
1500 3000 4500

750

600

450

a) 300

150

0

Wavevector (ium-1)

6000

1 um

128 W/mK-

6000 1500 3000 4500

Wavevector (ium-1)

6000



10 I Measure: AIGaN...lmpurities vs. Size Effects
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11 Model: Propagons, Diffusons, Locons &Virtual Crystals

Propagons: Phonon-ish
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12 I AIGaN: Crystal Qualities in Alloy...Size Effects too
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13 Visualize: Dominance of Acoustic Modes
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14 I Visualize: Dominance of Acoustic Modes
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15 I Generalize: Size Effects in Alloys
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16 Take Home Message

Emerging technologies provide opening to
perform thermal design from "growth up."
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