This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2018-13437C

Bytes are Bytes, Right?

Files, objects, and key/values in HPC

Matthew L. Curry, Ph.D.
Center for Computation Research
Sandia National Laboratories

CHPC National Meeting 2018

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



2 1 POSIX File I/0O is Awesome*

awesome [aw-suh m], ad).

2. Informal -- extremely good; excellent.

Available for every operating system, with excellent language support across the

board.

Hasy-to-use, orthogonal foundational interface

Operating system support gives rich features

> OS-managed victim cache




POSIX File I/O is Awesome*

awesome [aw-suh m], ad).

1. extremely impressive or daunting; inspiring great admiration,
apprehension, or fear.

2. Informal -- extremely good; excellent.

The POSIX file abstraction was present in the first version of UNIX (released in
1971), and remains largely unchanged at its core

> Extensions abound, and are unevenly supported

Low level interface: Flat address space within a file — Demands:
o File formats
o Serialization

° Care — Durability is a whole other talk.

And yet, underspecified.




4 | Parallel File Systems are Awesome*

Tough to map semantics to performance
> Applications often get less than half of expected performance

° Analytic workloads get even less performance

POSIX was designed for serial processing

Files are physically associated with shared resources
> Weather is important, but no forecasting

> Good strategy requires knowledge of machine




Alternative I/O Facilities Gives Powerful Tools

Buffering allows your storage to
weather storms more easily

Transactional semantics gives you an
easy way to reason about failures

o Hardware or software failure

Using compute nodes to provide or
proxy storage can give extremely
good performancel!

Trade performance of uncommon
operations for common ones

Time (s)

1000.00

100.00

10.00 -

1.00

0.10

=== Sirocco
QMA ISR
LN PRSI NS
v S S &E

Number of Processing Elements

https://github.com/matthewcurty/sirocco-release




Objects

Examples: S3, Swift (from OpenStack), Sirocco

> Easy to move into cloud providers

Generally immutable, but appendable

Not files, but can be file-like
° Can be quite large

o Allows iteration

> Not often divorced from underlying storage

Typical use: “Documents”
° Images, videos, HTML

Extremely cacheable




71 Keys and Values

Can be simpler than objects at every level
> Atomic set and get

... but it can be tempting to layer extra sugar on top
o Searches/queties

... or leave out very obvious features
° Iteration

Can often be used in memory only!
> Many flavors of persistence in advanced packages

Highly granular, small chunks of data

o Rule of thumb: 1MB maximum

Often embeddable into application

Examples: memcached, couchbase, leveldb




s | Databases

Shared reading and writing

Writes are hard, reads are easy

> Only if doing semi-complex queries in a predictable way

Access 1s almost as trivial as POSIX
> ODBC

Originally designed for KV-style accesses for known datatypes, but BLOBs (Binary
Large Objects) are also available

° But these can be object/file URIs instead

Parallel solutions suitable for HPC are rare




9

Useful KV Patterns

Use as a burst tier

° Lustre hates n-to-n and n-to-1. Use middle
layer to reshape to n-to-m, and do it out-

of-band

Use as intermediate format

o Reform KV contents as HDEF, bulk-load
DB, etc.

Use as a query accelerator
o Use memcached as intended

° Use hashes (with chaining) if query IDs

are too long

Use as scratch space

> Expected interactions between nodes that
have unclear participants or timetables




10

Useful KV Patterns

Use as a burst buffer

° Lustre hates n-to-n and n-to-1. Use middle
layer to reshape to n-to-m, and do it out-

of-band

°> Note that some systems require

predictable keys

Use as intermediate format

> Manual export from KV as HDE, bulk-
load DB, etc.

Use as a query accelerator
° Use memcached as intended

> Use hashes (with chaining) if query IDs

are too long

Use as scratch space

> Expected interactions between nodes that
have unclear participants or timetables




11

Useful KV Patterns

Use as a burst buffer

° Lustre hates n-to-n and n-to-1. Use middle
layer to reshape to n-to-m, and do it out-

of-band

°> Note that some systems require

predictable keys

Use as intermediate format

> Manual export from KV as HDE, bulk-
load DB, etc.

Use as a query accelerator
° Use memcached as intended

> Use hashes (with chaining) if query IDs

are too long

Use as scratch space

> Expected interactions between nodes that
have unclear participants or timetables




12

Conclusion

A wide variety of 1/O

paradigms are available

FEach has its own typical set
of limitations
o Some are not inherent to the

paradigm, but are
conventional

Batteries not included

> Many packages aren’t
designed for our environment

Currently no easy way to
ensure paradigm
independence
> Upcoming I/O APIs are
designing toward this
possibility

Dependencies are

challenging. Use Spack.

Files Objects KV DB
Appendable No Yes Yes No
Partial Overwrite Yes No No Maybe
Immutable No No Yes No
Transactional No Yes Yes Yes
Memory buffering No No Yes No
Value size Large Large Small Small
Elastic No Yes Yes No
lteratable Yes Yes No Yes
Versioning No Yes No No
Embeddable No No Yes Yes




131 Thanks

mlcurry(@sandia.gov

http://www.cs.sandia.gov/cr-mlcurry




