

DEVELOPMENT OF PHYSICAL PROTECTION MEASURE PERFORMANCE DATA FOR RADIOACTIVE MATERIAL FACILITIES

M.K. Snell, D.R. Ek

IAEA Conference on the Security of Radioactive
material: The Way Forward for Prevention and Detection
Vienna, Austria
December 3-7, 2018

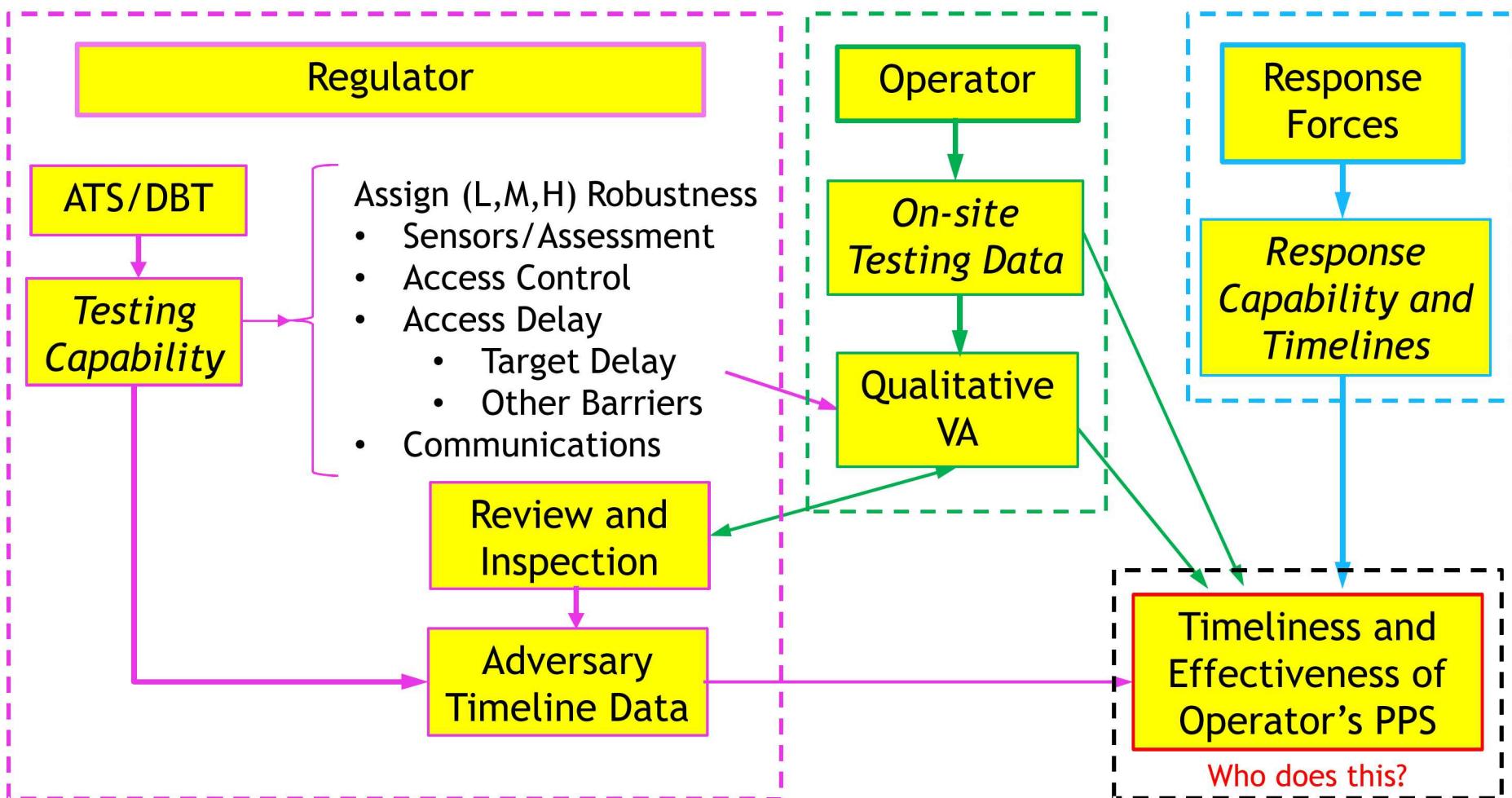
PRESENTED BY

Mark Snell, Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2 Outline

- Performance data required for compliance-, performance- and combined regulatory approaches
- Process for collecting and using performance data
- Creating qualitative robustness factors based on testing
- Testing methods to collect detection, delay, access control and communications performance data
- Probability models for evaluating facility detection
- Communications and response considerations evaluated/analyzed during facility vulnerability assessment (VA) process
- Regulator activities based on operator's VA results
- Determining timeliness and effectiveness by incorporating response data
- Summary

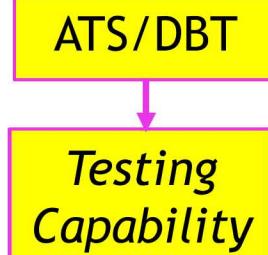

Performance Data Required for Compliance-, Performance- and Combined Regulatory Approaches

- Performance data is needed to validate requirements even for compliance-based regulatory approaches
- A Design Basis Threat (DBT)-based regulatory approach requires the full range of tests shown below
- Example of a “Non-DBT Performance”-based approach would be associated with use of an Alternate Threat Statement (ATS)
 - Delay testing would be performed away from the operator’s facility
 - Typically results from these tests would not be known by the operator

Type of Testing	Compliance	Non-DBT Performance	DBT Performance
Maintenance (e.g., "30 out of 30 tests")	X	X	X
Training Proficiency (including procedures)	X	X	X
Auditing Records	X	X	X
Evaluation of Physical Protection Equipment	X	X	X
Limited Scope Performance Tests (for training, times)		X	X
Access Delay Measure Testing		X	X
Adversarial Performance Testing			X
Force-on-Force Exercises			X

4 Process for Collecting and Using Performance Data

Diagram shows how radioactive material facilities can be evaluated for effectiveness combining performance data from the regulator, operator and response force organizations



Creating Qualitative Robustness Factors Based on Testing

- Regulator assigns Low, Medium and High Robustness, based on their graded approach, the ATS/DBT and the results of testing
- Operator performs a qualitative VA without knowing the basis of those assignments

Regulator

Category of Detection	Type of Detection	High	Medium	Low
Electronic Detection	Door Position	Balanced Magnetic Switch (BMS)	Frame-mounted (covert) magnetic switch	Plunger Contact switch
	Volume/room	Dual Tec with OR'd outputs	Passive Infrared	Magnetic Switch
		Video Motion	Microwave	Audible Sensor
			Dual Tec with AND'd outputs	

Assign
Detection
Robustness

Assign
Delay
Robustness

Category of Delay	High	Medium	Low
Surfaces	Reinforce Concrete	Sheet metal	Plaster
	Filled Block with rebar	Plywood	Coated
Windows	Steel plate (>1/4" thick)	Hollow brick (1-2 layers)	Chipped
	More than 3 layers of brick		Welded
Doors	1-inch diameter thick grating/ expanded metal/ welded rebar surface		
	Ballistic Resistant/ Forced Entry rated glass	Laminated glass	Stained
Locks	Exterior & Interior Heavy Metal Grating over Windows	Tempered glass	Wired
	GSA Class IV & V Vault	Solid wooden doors with hinge pins and quality locks	Filmed
Source	UL 608 vault doors or other burglary rated doors	Hollow steel doors with steel frames with hinge pins and quality locks	Any
	Shrouded "Hockey Puck" Locks	Multiple Deadbolt	win
	Shrouded Padlocks		allo
	Electromagnetic Locks		unk
	Industrial Irradiators	Brain Tumour Irradiators	Radiation
		Blood Irradiator	

6 Testing Methods to Collect Detection, Delay, Access Control and Communications Performance Data

10

- Suggest using a dedicated test facility
- Otherwise, get data from a national testing facility supporting physical protection for other targets needing high security
 - Government buildings, military facilities and airports
 - Industrial targets/transport: jewelry/art, drug and money-handling
- Collect data informally, e.g., collect delay and task times performed by:
 - Construction/machine shop and building demolition companies
 - Military and police units
- Small, relatively simple, tests:
 - Running, driving, lifting and crawling
 - Simulating placing explosives
- In limited cases, facility tests to collect times and set robustness factors
 - Example: To see if a mis-aimed sensor can be defeated (Medium → Low)

Regulator Testing Capability

Possible On-site Testing by Operator **Perform Only if It can be Done safely**

Probability Models For Evaluating Facility Detection

- Complete Detection Model (T = Adversary Tactic)

$$P_D(T) = P_{(\text{Sensing})}(T) * P_{(\text{Alarm Communication})} * P_{(\text{Assessment at } j \mid \text{Alarm Communication})}$$

- $P_{(\text{Sensing})}(T) = P_S(T \mid MA_s) * P(MA_s)$

Where MA_s = condition that the sensor is:

- Maintained and operated using proper training and procedures AND
- Available and functioning properly at the time of the adversary intrusion/malicious act
- $P_{(\text{Alarm Communication} \mid MA\text{-ACD})} * P_{(\text{Assessment at } j \mid \text{Alarm Communication, MA-ACD})} P(MA_{ACD})$

Operator

Where MA_{ACD} = is conditioned on the same information about AC&D system

$P(MA_s)$, $P(MA_{ACD})$ derived based on quality programs for the sensor/AC&D system

- $P_S(T \mid MA_s)$ come from the regulator testing facilities

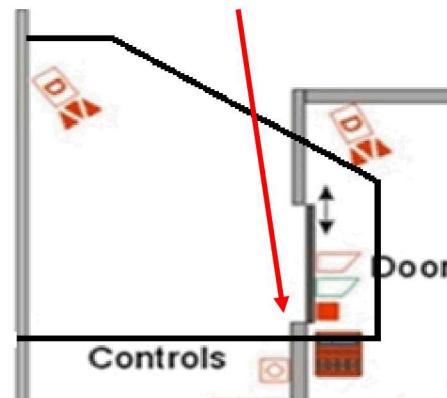
Regulator

- $P_{(\text{Assessment at } j \mid \text{Alarm Communication, MA-ACD})}$, Time to Assess derived based on on-site tests

One Way to Test Whether $P_s(T|MA_s)$ is Indeed the Robustness Factor You Assigned It

Sequential Test

Assumptions about robustness *before* tests


Passes	Failures						
	0	1	2	3	4	5	6
0	M	L			L		
1	H				L		
2						L	
3				M	M		
4	H	H		M			
5			H				
6							

Conclusions about robustness *after* tests

Example: try to move slowly along wall to reach door handle

In this case Low $\approx .3$,
Medium $\approx .5$ and High $\approx .7$

Note: Don't use confidence intervals to estimate probabilities since the lower bound can be much lower than the true probability

Communications and Response Considerations Evaluated/Analyzed during Facility VA Process

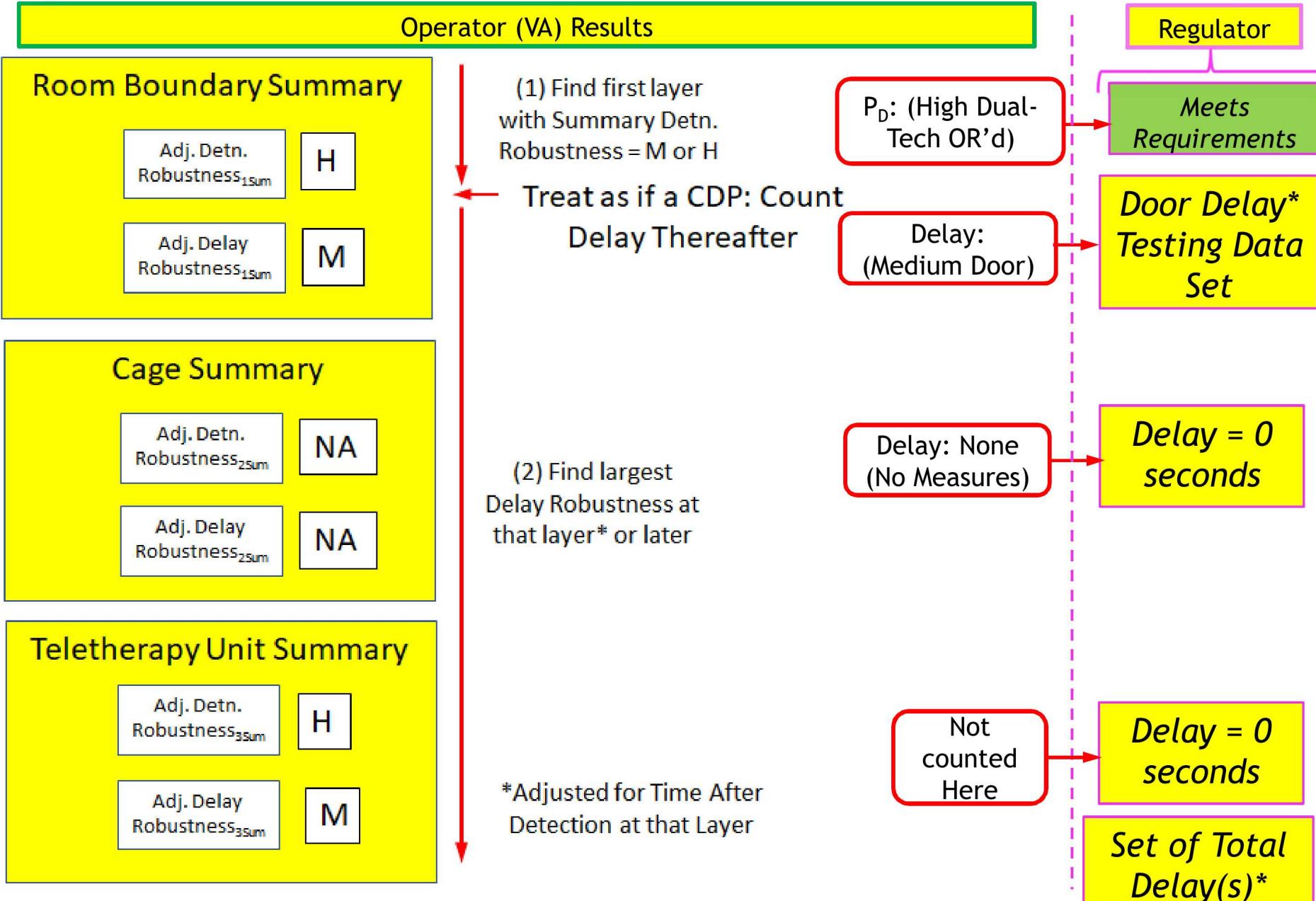
● Communications

Operator

- Alarm communications: sensor to alarm station
- Communications from alarm station with on-site forces
- Communications from alarm station with off-site forces (involves off-site dispatch)
- Times associated with these processes

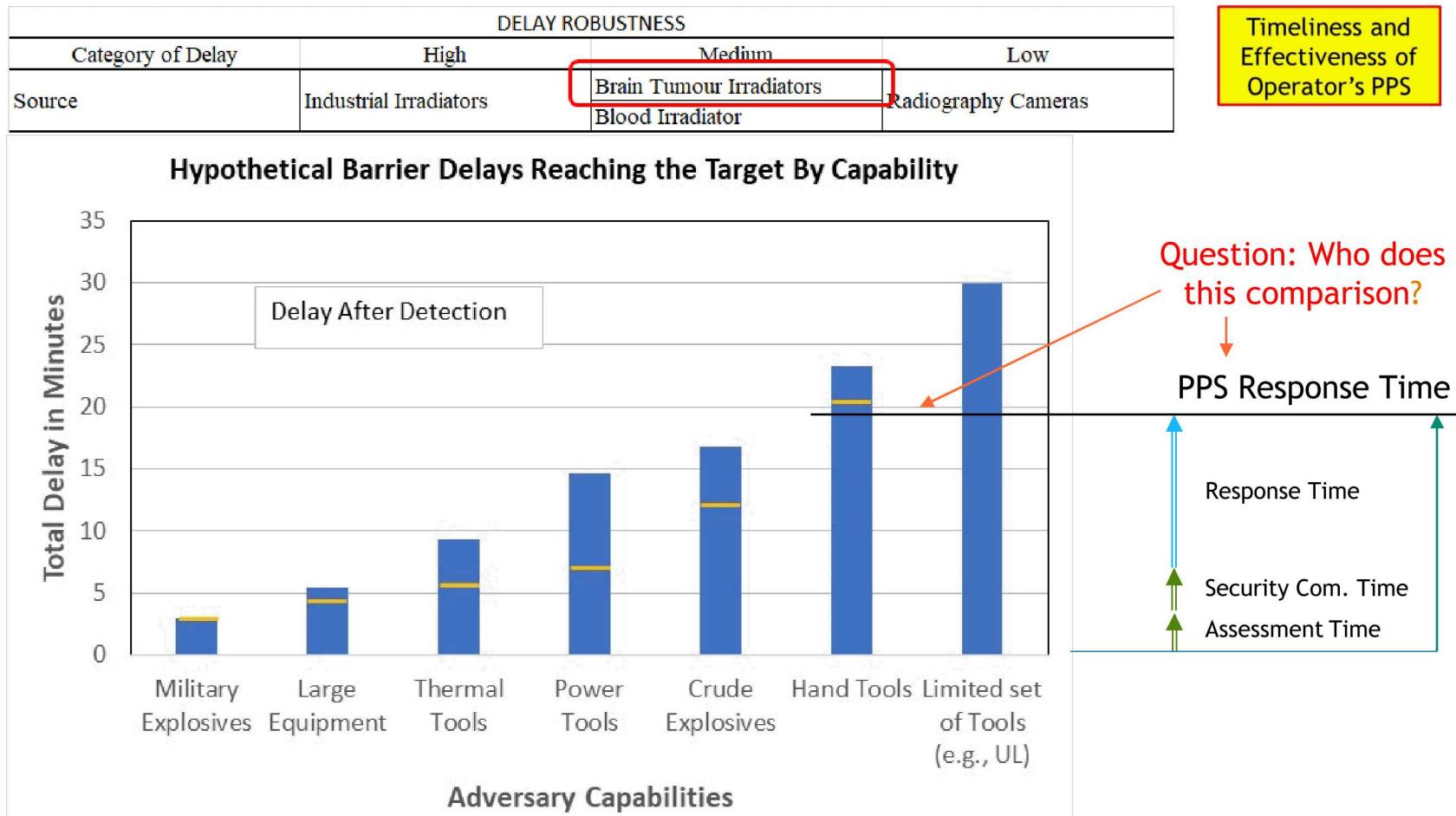
● Response (from off-site)

- Interaction with the site in VA: plans developed, target folders developed and scenarios performed using Table-top Exercises


Operator

Regulator

Response Forces


- Note: Effectiveness of off-site response force typically defined by regulator and response force organization: e.g., hypothetically, 6 responders with X equipment and capabilities should be sufficient to neutralize the adversary

Regulator Activities Based on Operator's VA Results

Determining Timeliness and Effectiveness of Operator's Physical Protection System by Incorporating Response Data

Hypothetically, a policy on graded protection might indicate that a timely response against an adversary with hand tools is adequate for a Brain Tumour Irradiator

A hypothetical graded protection policy might also indicate that the 6 police who arrive within this PPS Response Time provide an adequate P_N

Summary and Closing Thoughts about the Approach

- Combines regulator, facility and response organization testing data
- May be appropriate to support Qualitative VA performed by facility as part of a combined regulatory approach using an ATS
- Similar approach might be created when facility operator works with an on-site response
- Issue: Who combines regulator and facility analysis with response organization data to see whether the entire system is effective?