

Semiconductor Hyperbolic Metamaterials at the Quantum Limit

Inès Montaño, Salvatore Campione, John F. Klem, Thomas E. Beechem, Omri Wolf, Michael B. Sinclair & Ting S. Luk

Hyperbolic metamaterials (HMs) [1] are a special class of metamaterials made of metallo dielectric multilayers that play a key role in the field of nanophotonics because of the extreme anisotropy that can be created artificially. Recently, it has been discovered that because highly-doped semiconductors can behave like metals at certain frequencies, a new class of hyperbolic metamaterials (called semiconductor hyperbolic metamaterials, SHMs) can be fabricated by using epitaxial growth of alternating layers of sub-wavelength undoped (barriers) and highly-doped (well) layers of semiconductor material [2]. SHMs offer unprecedented control of carrier concentration, layer thicknesses, and interface smoothness when compared to conventional metal/dielectric counterparts, and also feature higher carrier mobilities.

In this work, we study SHMs at the quantum limit experimentally using spectroscopic ellipsometry [3] as well as theoretically using a new microscopic theory [4]. The theory is a combination of microscopic density matrix approach for the material response and Green's function approach for the propagating electric field. Our approach predicts absorptivity of the full multilayer system and for the first time allows the prediction of in-plane and out-of-plane dielectric functions for every individual layer constructing the SHM as well as effective dielectric functions that can be used to describe a homogenized SHM.

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Some of the simulations presented in this work were performed on Sandia National Laboratories' Sky Bridge computing cluster. Some of the simulations were performed on Northern Arizona University's Monsoon computing cluster, funded by Arizona's Technology and Research Initiative Fund.

- [1] A. Poddubny, et al, *Nature Photonics* 7, 948 (2013)
- [2] Hoffman, A. J. et al., *Nat. Mater.* 6, 946–950 (2007)
- [3] Campione, S. et al., *Scientific Reports* 1–9 (2016).
- [4] Montano. et al., accepted in *Scientific Reports* (2018)