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3 Porous and Cellular Materials

Porous and cellular materials are desirable for a range of
technical applications:

• Catalysis
• Insulation
• Chemical Separations and Detection
• Drug Delivery
• Energy Storage

Nanoporous materials for drug delivery
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4 Porous and Cellular Materials

In Nature, cellular materials enable diverse functions in both
plants and animals, scaling across multiple length scales.
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Self-Assembling Peptides Offer Potential for
5 Diverse Molecular Morphology

A complex balance of interactions drives spontaneous self-assembly
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Hamley, I.W. Soft Matter 2011, 7, 4122; Zhao, X.; et al. Chem. Soc. Rev. 2010, 39, 3480.



Computational Inspiration for Peptide
6 Synthesis

Self-Consistent Field Theory predicts how the relationships between
molecular interaction asymmetry and molecular structural asymmetry can
affect self assembly.
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Asymmetric
monolayers are
desirable for the
formation of
sheets, which can
be key aspects of
a porous
structure.

Phase diagram as a function of interaction asymmetry zAC and molecular
asymmetry fA. Markers correspond to symmetric bilayer (stars), symmetric
monolayer (circles), and asymmetric monolayer (diamonds).



7 Our Basic Peptide Structure
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8 Self-Assembly of E08-11e7-G1n6

• Peptide dissolved in HFIP at
100mg/mL

• HFIP solution is rapidly
diluted 100X into deionized
water.

• Precipitated assemblies
lyophilized and examined by
SEM.

Peptide self-assembles to
form large, micro-foam
spheres and porous tubular
structures.

Strong H-Bonding, moderate size, moderate hydrophobicity.



9 Self-Assembly of E08-Phe7-GIn6

• Peptide dissolved in HFIP at
100mg/mL

• HFIP solution is rapidly
diluted 100X into deionized
water.

• Precipitated assemblies
lyophilized and examined by
SEM.

Strong H-Bonding, large size, strong hydrophobicity.



10 Self-Assembly of E08-Va17-Gln6

• Peptide dissolved in HFIP at
100mg/mL

• HFIP solution is rapidly
diluted 100X into deionized
water.

• Precipitated assemblies
lyophilized and examined by
SEM.

Moderate H-Bonding, smaller size, modest hydrophobicity.



Spectroscopic Characterization of Triblock
11 Assemblies
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12 r A Proposed Mechanism for Structure Formation

These structurally diverse, assembled structures are believed to be formed
through a collaboration of molecular self-assembly, double micelle formation, and

osmotic pressure.

1) Rapid mixing of the HFIP/peptide forms a
stabilized double emulsion.
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2) HFIP begins to diffuse out of the peptide layer, driving molecular assembly.

• Rapid, strong assembly of the Ile-variant leads to entrapment of smaller HFIP-
emulsions within the peptide layer that eventually manifest as porosity.

• Strong assembly, slowed by the steric bulk of the Phe-variant allows for rearrange at
the molecular level, allowing entrapped HFIP to escape, reducing secondary porosity.

• With relatively weaker, slower self-assembly in the Val-variant, there is little
entrapment of the HFIP within the polymer layer, but significant HFIP entrapment
within the larger micelle. Rapid escape of the HFIP from the outermost layer of the
peptide layer forms a "skin" on the peptide layer.

3) Osmotic pressure from HFIP trapped within the micelle leads to deformation of
weaker structures or perforation/breakage of more robust micelles.



13 Take Away Messages

✓ Guided by SCFT modeling, systematically-varied ABC triblock peptides
were prepared.

✓ By varying the size, hydrogen bonding affinity, and hydrophobicity of the
B-block in these triblock molecules, distinctive self-assembled
morphologies were obtained during aqueous dilution of HFIP-peptide
solutions.

✓ Structures demonstrated unusual, hierarchical porosity with nanopores
forming in the walls of microscale micelles.

✓ The mechanisms behind the formation of these unique structures is
believed to involve a collaboration of molecular self-assembly, double
micelle formation, and osmotic pressure.

Applications of the diverse functionality imparted by peptide chemistry to
create multi-component molecular building blocks holds promise in using

self-assembly to create new hierarchical cellular materials.
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