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a Ion insertion for energy storage and computing 
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Electrochemical ion insertion controls materials chemistry 

e-

Li reservoir

Electrolyte

Li+ Metal

Substrate

1

C6 < > LiC6
IFePO4 < > LiFePO4

TiO2 <=> LiTiO2

1) Using electronic controls, we alter the material composition of the Li host,
conducting solid-state chemistry using current and voltage

2) The ions balance the electron charge, so a large amount of electrons can be
moved without an electrostatic voltage

1

Y. Li, W. Chueh. Ann. Rev. Mater. Res. 48, 137 (2018)



G:o Ion insertion in a Li-ion battery 

e-

Graphite Electrolyte LiFePO4

LiC6 Li+ + e- + C6 Li+ + e- + FePO4 —> LiFePO4

Net Reaction: LiC6 + FePO4 —> C.6 + LiFePO4
kJ

Discharge: inserting Li into LixFePO4
Charge: removing Li from LixFePO4

AG = —320 
mol

AG
V = — 

nFe
= 3.4V
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Phase separation in LixFePO4
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N._  Y. Li  et al. Nature Mater. 13, 1149-56 (2014) 

Consequences of phase separation

Mechanica( strain
Yu et al. Nano Lett. (2015)
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Visualizing battery (dis)charge using in situ X-ray microscopy 

Tracking lithium insertion within individual battery particle building blocks

X-ray

-50 nm spatial resolution
-30 s temporal resolution

Zone plate

Photodiode

LiFePO4

SiNx

Electrolyte
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J. Lim*, Y. Li*, et al. Science, 353, 566-571 (2016)
*equal contribution authors Capacity (nA h) 7



Tracking lithium insertion within particles in situ

100-nm thick single crystalline particles

X=1 X=0
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J. Lim*, Y. Li*, et al. Science, 353, 566-571 (2016)
*equal contribution authors



Tracking lithium insertion within particles in situ

100-nm thick single crystalline particles

X=1 X=0

(010)

500 nm

One dimensional lithium conductor

Discharging

1 min (interpolated) 500 nm

Equilibrium Et slow rates 30 min lithiation



How do we prevent phase separation? 

Solid solution Phase separation

30 min lithiation Open-circuit

Lithium must diffuse along the non-conducting directions for phase separation

Electrolyte diffusion
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Phase separation without electrolyte 
Solid solution Li0.5FePO4 prepared under

30 min discharge
LFP Solid solution FP
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Fluid molecules enhance phase separation rate.

31.0

LixFePO4
x=1 • x=0

100 h in Ar
84% solid solution

100 h in air
32% solid solution

Y. Li, et al. Nature Mater., 17, 915 (2018)
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Molecular dynamics shows solvent-assisted surface diffusion 

EC to surface EC lifting Li+

igrating Li+

a -A

Li+ moved to
another site

Y. Li, et al. Nature Mater., 17, 915 (2018) Collaboration: Hungru Chen Et Saiful Islam, Univ of Bath



Phase separation with electrolyte 

•

•
•

•

•

•

•

•

•
•
•

•

•

•

•

•

•

•

•

•

FePO4

LiFePO4

•
•
•

•

•

•

•••

Surface diffusion:
Intra-particle phase separation

Locally lowest-energy configuration

No electrolyte exposure
Mosaic: 0.19+/- 0.14

Solid solution

Y. Li, et al. Nature Mater., 17, 915 (2018)

Electrolyte diffusion:
Inter-particle phase separation

Relax 110

Globally lowest-energy configuration

8 hr electrolyte
Mosaic: 0.29 +/- 0.16

Phase separation

500 hr electrolyte
Mosaic: 0.62 +/- 0.20

Mosaic
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Surface diffusion controls phase separation 

Li+

Diffusion is faster than lithitaion Diffusion is slower than lithiation
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Y. Li, et al. Nature Mater., 17, 915 (2018)
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Phase boundary:
2-4% lattice mismatch

>1 GPa stress
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Solid solution allows us to access intermediate compositions 

Skew

Inaccessible

0.0 0.2 0.4 0.6

X in LixFePO4
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Li concentration

Current density
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J. Lim*, Y. Li*, et al. Science, 353, 566-571 (2016)
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Phase separation in LixFePO4

LiFePO4 undergoes phase separation thermodynamically, but the phase
separation is suppressed upon fast charge and discharge

fl

30 min lithiation 7 hour lithiation

Surface diffusion and fluid molecules facilitate phase separation

EC to surface EC lifting Li+
Li' moved to
another site

b
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Artificial neural networks and deep learning 

Computers are fast and efficient at
task-specific programming

dx

dt 
= X2

x=1;
dt = 0.01;
for i = 1:1000 {

dxdt = x.A2;
xnew = dt*dxdt;
x = xnew; }

end

Computers struggle when there are
no clear instructions for the task

Which one of these images is a cat?

Image recognition
Autonomous driving

Natural language processing

Artificial neural networks: use training examples and error backpropagation to find the
matrix weights that correctly maps the input x onto the desired output y

"11,1

Ym LW m ,1

• • •

• • •

w1,n

Wm,ni

Artificial neural networks are power intensive

input layer
hidden layer 1 hiddcn layer 2 hiddcn layer 3

Andrew Ng, Coursera n, m > 1000
Nawrocki et al. IEEE Elec. Dev. 2016
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Implementing a neural network 

r
Yi wi,1
: —

Ym Wm,1

• • •

• • •

Von Neumann Digital
Separate logic and memory structures

SRAM to store the Arithmetic logic unit
weights for multiplication

Data BUS

 (E x1
Uses established CMOS technology
Data bus results in latency and power

input layer
hidden layer 1 hidden layer 2 hidden layer 3

In-memory Analog
Use non-volatile memory

v1
fQ

_o
V ,

o

v3

4-
I, 12 13

1 1 = y1vv11 V2W21 V3W31
Simultaneous logic and memory
3 orders of magnitude less power

Challenge: find an appropriate non-
volatile memory whose conductance

can be tuned in a linear and
predictable manner

M. Marinella, IEEE Circuits and Systems, 8, 86-101, 2018
Zidan, Strachan, & Lu, Nat. Elec. 1, 22, 2018 19



co Retention time of transistor-based memory 
Transistors store information by moving charge between the gate and the channel

Tretention = Cgate ROFF

Contr4 Gate

OAde

Floating Gate
+ + + +

Oxide

Channel

A

Cgate = EpEr — ;--- 10-6 F cm-2 = 10-16 F (A = 100 nm2)
tox

Option 1: transistor switch: ROFF - 1015 Q

Tretention< 1 s (Dynamic RAM)
S. Ambrogio, G. Burr, et al. Nature, 558, 60 (2018)

Option 2: floating gate oxide switch, ROFF — co

Tretention > 10 yr (Flash memory)
10V, high power, limited endurance (105)

Improving retention by increasing Cgate? C = ,÷:l'Ixf

Electrochemical double-layer transistors
Electrons stored at the interface

Cgate — 10-4 F cm-2

t"ox, < 1 nm

Gate+ + +

Electrolyte+ +

Channel

lon insertion transistors
Electrons (and ions) are stored in the bulk of the

material (pseudo-capacitor)
Electron/ion neutral ambipolar pair enables AQ

without electrostatic charging

Cgate — 10-1 F cm-2 (100-nm film)

Electrolyte

P. Gkoupidenis, G. Malliaras, Adv Mater, 27, 7176 (2015) E. Fuller, Adv Mater. 29, 1604310 (2017)
Y. van de Burgt, Nat. Mater., 16, 414 (2017) 20



Lithium insertion into Liji02  (anatase) 
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lon insertion transistor using LixTiO2  (anatase) 

➢ Analog, non-volatile states
➢ Linear and symmetric programming

➢ 150-mV write pulses
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lon insertion transistor using LixTiO2  (anatase) 
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Linear programming and high accuracy
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Memristors: stores information
at filaments

Wang et al. Nat Mater. 2017
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an accurate neural network
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ra Low-voltage, Si-free electrochemical memory 

e-

Pt

0
+

Solid Electrolyte Li+

13ELIMMEMEIIIN
=MENEM=

CO

Diffusive memristor (Ag in
Si0x): high ON/OFF ratio

Ion insertion transistor: high
charge density via bulk storage

Both: Low switching voltages

Wang et al. Nat. Mater.  2017

Non-volatile memory that switches at just 6 times the thermal voltage
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Switching speed and endurance 
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Ion insertion transistors for neuromorphic computing 

Analog neuromorphic computing provides lower energy and
more parallelism compared to digital computing.

v,

v2

v,

the brain -10 Hz

100 billion neurons
100 trillion synapses

Electrochemical ion insertion can be used to create highly
linear, low voltage non-volatile analog transistors
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Evolution of Computing Machinery
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Energy and computing

r 2000: Why is my
computer so slow?

n

2018: Why is my
phone's battery dead?

► 1.

Autonomous Chevy Bolt (Electric)
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Non-volatile memory at the thermal limit

•

What is the minimum switching voltage for non-volatile memory?

Vw=0.15 V

0

Electrolyte Li+

Diffusive memristor

OFF: Ag clusters
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)6',2121

ON: Ag Filament

Pt

Pt
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Voltage (V)

Diffusive memristor has an extremely sharp
ON/OFF ratio at just 150mV threshold

Collaboration: Joshua Yang, U-Mass
Wang et al. Nat Mater. 2017



Non-volatile memory at the thermal limit

Electrolyte Li'
oQ

4

Diffusive memristor: high
ON/OFF ratio

Ion insertion transistor: high
charge density via bulk storage

Both: Low switching voltages

Non-volatile memory that switches at just 6 times the thermal voltage
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How is non-volatility attained at low switching voltages
High ON/OFF ratios with low

Field-effect transistor

AE < e AVgate

onr-

Ebarrier
Source Drain

Ebarrier)
n exp

kBT

The gate voltage lowers the
energy barrier

Diffusive memristor

OFF (Ag clusters) ON (Ag filament)

Pt

Ag:Si02

Pt

Pt

Ag:Si02

Pt

Ebarrier— nAg (11Ag filament — itlAg,clusters)

Voltage modifies AiliAg

AEbarrier > eAV

Transistor gain cannot exceed 60 
Switching slope - 2 mV/decade, allowing for

mV/decade due to the Boltzmann 
-150 mV switching thresholds

electron energy distribution
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Materials technologies for energy and climate challenges

Energy generation

Solar

Energy storage

Wind Batteries

HYDROGEN OXYGEN

Chemical fuels

Negative carbon emission

Energy efficiency
r

Solhtate Low-energy
LED Lighting computing _} Mining Recycling

Resource management



Phase separation with electrolyte 
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FePO4

LiFePO4

•
•
•

•

•

•

•••

Surface diffusion:
Intra-particle phase separation

Locally lowest-energy configuration

No electrolyte exposure
Mosaic: 0.19+/- 0.14

Solid solution

Electrolyte diffusion:
Inter-particle phase separation

Relax 110

Globally lowest-energy configuration

8 hr electrolyte
Mosaic: 0.29 +/- 0.16

Phase separation

500 hr electrolyte
Mosaic: 0.62 +/- 0.20

Mosaic

37


