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i 1/} Electrochemical ion insertion controls materials chemistry

——®

e
C; © LiC,
Electrolyte __ FePO4<:>LiFePO4
L TiO, < LiTIO,
. - I:i-|h0'ft‘ B
Metal Li* Metal

Substrate

1) Using electronic controls, we alter the material composition of the Li host,
conducting solid-state chemistry using current and voltage

2) The ions balance the electron charge, so a large amount of electrons can be
moved without an electrostatic voltage

4
Y. Li, W. Chueh. Ann. Rev. Mater. Res. 48, 137 (2018)




[@ lon insertion in a Li-ion battery
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Li*
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Graphite Electrolyte LiFePO,
LiCy - Lit + e + Cq4 Li* + e~ + FePO, - LiFePO,

Net Reaction: LiC, + FePO, — C¢ + LiFeP0O, |

kJ
AG = —-320—
mol
AG
Discharge: inserting Li into LiyFePO, V=- e 3.4V
Charge: removing Li from LiyFePO,




[@ Phase

separation in LiXFePOﬁ
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Large miscibility gap
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Phase separation

Single battery particle
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2% lattice mismatch
>1 GPa stress

Y. Li et al. Nature Mater. 13, 1149-56 (2014)
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ﬁ)nsequences of phase separation
Mechanical strain

Yu et al. Nano Lett. (2015)
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Goal: to understand the kinetics of phase separation and to suppress it
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[@ Visualizing battery (dis)charge using in situ X-ray microscopy

Tracking lithium insertion within individual battery particle building blocks

Photodiode

~50 nm spatial resolution
~30 s temporal resolution

LiFePO,
SiNy

Zone plate

Electrolyte

J. Lim", Y. Li", et al. Science, 353, 566-571 (2016)
*equal contribution authors

X-ray

|

Robust electrochemical cycling

Voltage (V)

4 8 12
Capacity (nA h) 7




. Tracking lithium insertion within particles in situ

500 nm
7

100-nm thick single crystalline particles One dimensional lithium conductor

J. Lim", Y. Li", et al. Science, 353, 566-571 (2016)
*equal contribution authors

Equilibrium & slow rates



Tracking lithium insertion within particles in situ

500 nm
J

100-nm thick single crystalline particles One dimensional lithium conductor

Discharging
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1 min (interpolated) S00 nm

Equilibrium & slow rates 30 min lithiation



How do we prevent phase separation?

)

@)
Solid solution Phase separation I

30 min lithiation Open-circuit |
Lithium must diffuse along the non-conducting directions for phase separation
i
Electrolyte diffusion
Surface diffusion
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How do we prevent lithium from migrating between channels?
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' ]j Phase separation without electrolyte

Solid solution Li, sFePO, prepared under Li,FePO,

30 min discharge x=1 [ X=0
LFP Solid solution FP 100 hin Ar

84% solid solution

50 hr Ar
_ B
- - ® I,
s o 2
L o.aleol® PCB 100 h in air
< '-x - 32% solid solution
® @ . A A N N
.
® ooleoe

humidified Ar

| | |
29.5 30.0 30.5 31.0

20

Fluid molecules enhance phase separation rate.

Y. Li, et al. Nature Mater., 17, 915 (2018)
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Molecular dynamics shows solvent-assisted surface diffusion

EC to surface EC lifting Li* Li* moved to
another site

! yigratigs Li*

Y. Li, et al. Nature Mater., 17, 915 (2018) Collaboration: Hungru Chen & Saiful Islam, Univ of Bath
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(11} Phase separation with electrolyte
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Surface diffusion: Electrolyte diffusion:
Intra-particle phase separation Inter-particle phase separation
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® Aididi Locally lowest-energy configuration Globally lowest-energy configuration
No electrolyte exposure 8 hr electrolyte 500 hr electrolyte

Mosaic: 0.19+/- 0.14 Mosaic: 0.29 +/- 0.16 Mosaic: 0.62 +/- 0.20

FePO,

LiFePO,

Solid solution Phase separation Mosaic
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Y. Li, et al. Nature Mater., 17, 915 (2018)
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Surface diffusion controls phase separation

Diffusion is faster than lithitaion Diffusion is slower than lithiation
\N /7 AW 4 AW 4
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VARN PALS Electrolyte /l\ VAR
e l Coating ¢ O O
© > < L +] Surface ’
oGO SO ® ® e
oo0O®OGO® O Bulk ® e ® ® ®
oo0o0000| LA ®e |
C 020 A0 A0 A0 2 S ® oPeo® @ ® e
oo e®®| ee - oee ®e
( 20 20 A0 BC 30 3 ) ®e L [ J
C 20 3 A0 20 JC X0 ) ® ®e ® ®e
oGO OG O ®oe (1L
L 20 20 20 A0 20 JC ) (20 [ ) C 20 2L JL J ®
Phase separation Solid solution
Da<1 Da > 1

30 min lithiation 7 hr lithiation
Y. Li, et al. Nature Mater., 17, 915 (2018)
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[@] Surface diffusion controls phase separation

0X D
RVHIE . — =V [—X(l - X) VHL'] +j(X, uzi) Phase boundary:
Cahn-Hilliard: at kgT l L 2-4% lattice mismatch
w; = QX)(1 — X) + kT In — kV2X + ... >1 GFa stress

1-X

Coating

separation

Suppress phase ’:;
3

Yu et al. Nano Lett. (2015)
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Cracks

Y. Li, et al. Nature Mater., 17, 915 (2018)
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I[DI Solid solution allows us to access intermediate compositions

-
o

Inaccessible

harge-transfer Resistance (Q m-2)
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Xin LiyFePO
Skew X

t=21 min 35 min 42 min 64 min 84 min 89 min
Li concentration

Current density

J. Lim", Y. Li", et al. Science, 353, 566-571 (2016)
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Phase separation in LiyFePO,

LiFePO, undergoes phase separation thermodynamically, but the phase
separation is suppressed upon fast charge and discharge

K0

30 min lithiation 7 hour lithiation

Surface diffusion and fluid molecules facilitate phase separation

Li* moved to
EC to surface EC lifting Li* another site

Migrating Li*
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[@] Artificial neural networks and deep learning

anuters are fast and efficient ax

task-specific programming

dx 5
ac "
x=1;
dt = 0.01;
for i =1:1000 {
dxdt = x."2;
xnew = dt*dxdt;
X = Xnew; }

N /

Artificial neural networks: use training examples and error backpropagation to find the

Computers struggle when there are
no clear instructions for the task

Which one of these images is a cat?

A e
Image recognition

Autonomous driving
Natural language processing /

matrix weights that correctly maps the input x onto the desired output y

V1 Wi

Win lx1
Ym Wm1i = Wmnl [ Xn

Artificial neural networks are power intensive

Andrew Ng, Coursera
Nawrocki et al. IEEE Elec. Dev. 2016

n, m > 1000




[@] Implementing a neural network

Y1 Wi1 o Wl,n‘ ’x1
Ym Wi " WmnllXn
Von Neumann Digital In-memory Analog
Separate logic and memory structures Use non-volatile memory
SRAM to store the Arithmetic logic unit 3 B~ Vul Wi Wi
weights for multiplication 8 Y2 _@
S » Worl Wl  Wo3
V3 _+
|" 3 W31 w?gj w;ﬁ
Data Bus — 3y 3 3
) i

Y
PR
N
Y| Y

. X X L
(-
= Iy =V ;Wyy + V Wy + VW,

Simultaneous logic and memory
3 orders of magnitude less power

Challenge: find an appropriate non-
volatile memory whose conductance
can be tuned in a linear and
predictable manner

Uses established CMOS technology
Data bus results in latency and power

M. Marinella, IEEE Circuits and Systems, 8, 86-101, 2018
Zidan, Strachan, & Lu, Nat. Elec. 1, 22, 2018




I[DI Retention time of transistor-based memory

Transistors store information by moving charge between the gate and the channel

Vw Tretention = Cgate Rorr
| e A - 2 16 2
: Cgate = eoert— ~107°Fcm™ =10"""F (A =100 nm*~)
Contrdl Gate § X
Oxide Q) Option 1: transistor switch: Rger ~ 1015 Q
Floating Gate Tretention< 1 S (Dynamic RAM)
+ + + + S. Ambrogio, G. Burr, et al. Nature, 558, 60 (2018)
Oxide '
Channel Option 2: floating gate oxide switch, Rgogp ~ =
: Tretention > 10 yr (Flash memory)
J; 10V, high power, limited endurance (10°)
Improving retention by increasing Cy4? C = %
Electrochemical double-layer transistors lon insertion transistors
Electrons stored at the interface Electrons (and ions) are stored in the bulk of the
Cgate ~ 107* F cm™ material (pseudo-capacitor)
troy < 1mm Electron/ion neutral ambipolar pair enables AQ
without electrostatic charging
o Coate ~ 1071 .F‘:'“?_.Z (100-nm film)
g + & © | © L
, Electrolyte | o [F2[ [ [
= = - El |
Channel e ,ajc,t",) ),’te,%’
2 a Channel
P. Gkoupidenis, G. Malliaras, Adv Mater, 27, 7176 (2015) E. Fuller, Adv Mater. 29, 1604310 (2017)

Y. van de Burgt, Nat. Mater., 16, 414 (2017) 20



Lithium insertion into Li,TiO, (anatase)

¢LiyTiO, ©
© (gate) <
Electrolyte
2 LixTiO, =
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X in LixTiO, X in LixTiO,

Small polarons increase the electronic conductivity
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lon insertion transistor using LixTiOz (anatase)

v —od | |
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lon insertion transistor using LiXTiO2 (anatase)

Retention during
+ training timescale

Retention over hours
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[@ Linear programming and high accuracy

LixTiO, transistor lon insertion: stores informatior\ /Linearity is essential to train\

Voltage: £ 0.15V continuously as dopants in a crystal an accurate neural network
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R. Jacobs-Gedrim et al. ICRC, 2017 Wang et al. Nat Mater. 2017
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Low-voltage, Si-free electrochemical memory

I e || Diffusive memristor (Ag in
i ’5,?:’”_ SiOy): high ON/OFF ratio
Ve + @ ] . . :
OEEG ° lon insertion transistor: high
_L® _ o | charge density via bulk storage |
Solid Electrolyte || "
+) () [+ ] )
[ Both: Low switching voltages I

J7 Wang et al. Nat. Mater. 2017

Non-volatile memory that switches at just 6 times the thermal voltage
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I[DI Switching speed and endurance
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lon insertion transistors for neuromorphic computing

/ Analog neuromorphic computing provides lower energy and \
more parallelism compared to digital computing.

Vv, *::)_‘ééwl—‘d—

?O Wil Wiz
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the brain ~10 Hz

100 billion neurons

100 trillion synapses

/

f Electrochemical ion insertion can be used to create highly \
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Evolution of Computing Machinery

Energy Per Mathematical Computation

Dennard
Scaling Era

*

1fJ—— New paradigms’:’,
100 aJ_| _ Neuromorphic,
analog, quantum,
10aJ_1_ approximate
1a | ] | | I I I | 5

J | |
1946 | | 1980 1990

2000

2010 NOW 2025 2035
28
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IE]I Energy and computing
/ \ / Autonomous Chevy Bolt (Electric) \
2000: Why is my Propulsion at 20mph: 5 kW

computer so slow? Computers & sensors: 2 kW

J. Gawron, Env. Sci.Tech. 2018

Computing already consumes over 10% o\

global electricity

N

2018: Why is my
phone’s battery dead?

1 024
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World energy production
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10°
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Year
Semiconductor industry association 2015
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Non-volatile memory at the thermal limit

What is the minimum switching voltage for non-volatile memory?

Diffusive memristor

OFF: Ag clusters

10° -
< 10° 1
S . 0
© IJ_l"fQ'—(i)thip)z oLl ]| ON: Ag Filament £ 10
a ; § o
1072 -
e iyTi im 4
\ (channe e 10 7

-0.2 0.0 0.2
Voltage (V)

Diffusive memristor has an extremely sharp
ON/OFF ratio at just 150mV threshold

Collaboration: Joshua Yang, U-Mass

Wang et al. Nat Mater. 2017 33




Non-volatile memory at the thermal limit

Non-volatile memory that switches at just 6 times the thermal voltage
22 F

Channel conductance (uS)

22+
2.0 A
1.8 1
1.6 1
1.4 1

104"

0.8

1.2'

Vi, = 250 mV
"Q

Pulse number

Channel Conductance (uS)

1.8+
1.6+

Diffusive memristor: high

ON/OFF ratio

lon insertion transistor: high
charge density via bulk storage

Both: Low switching voltages

PRVE actnn

Non-volatile state retention

1.4 o ———————

1.2+
1.0 "W_B—_—”
0.8+

0 40 80 120

Pulse number
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High ON/OFF ratios with low

/ Field-effect transistor \

@) AE <e AVgate

000 l

Drain

The gate voltage lowers the
energy barrier

Transistor gain cannot exceed 60
mV/decade due to the Boltzmann

/ Diffusive memristor \

OFF (Ag clusters) ON (Ag filament)

Pt
Roed 75’5’ |

e Ag:Sio, - Ag:Si0, j%

& . & . &

Eparrier~ Nygqg (ﬂAg,filament - .uAg,clusters)

Voltage modifies Ap,g
AEbarrier > eAV

Switching slope ~ 2 mV/decade, allowing for

\ electron energy distribution /

/

35

~150 mV switching thresholds




[@ Materials technologies for energy and climate challenges

/ Energy generation \ / Energy storage \

C

\ Batteries
Negative carbon emission J
/ Energy efficiency / Resource management \

Soligstate Low-energy
K LED Lighting computing /
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? Phase separation with electrolyte

FePO,

LiFePO,

>

Surface diffusion: Electrolyte diffusion:
Intra-particle phase separation Inter-particle phase separation

Locally lowest-energy configuration Globally lowest-energy configuration
No electrolyte exposure 8 hr electrolyte 500 hr electrolyte

Mosaic: 0.19+/- 0.14 Mosaic: 0.29 +/- 0.16 Mosaic: 0.62 +/- 0.20

Solid solution Phase separation Mosaic
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