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Life Cycle Analysis (LCA)

LCA is a comprehensive form
of analysis that evaluates the 1Y
environmental, economic, and i

social attributes of energy ’ a  on ‘
systems ranging from the \M
extraction of raw materials .
from the ground to the use of
the energy carrier to perform

work (commonly referred to as
the “life cycle” of a product).
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CO, Capture, Utilization, and Storage (CCUS)
creates a very complex life cycle system to model

N=TL

Possible products from this system:
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LCA of complex systems requires co-product

management to apportion burdens

 The objective of LCA is to assign ownership of environmental
burdens to a single function

e When more than one product exits the system boundary of an
LCA, it is necessary to redefine the system boundaries or apply an
assignment that splits life cycle burdens between products

e NETL has studied the system (captured fossil power coupled with
CO,-EOR extensively and recommends system expansion with
displacement

— System expansion alters system boundaries to include all co-products

— With displacement, the system receives a credit for the GHGs emitted via
the conventional product route for co-products

— This analysis expands the boundaries of the system to include
displacement of one of the co-products, leaving us with the desired
product (power or fuel)
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Life Cycle of Gasoline from CO,-EOR-Crude N=TL
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Life Cycle of Gasoline from CO,-EOR-Crude
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Life Cycle of Gasoline from CO,-EOR-Crude
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CO, Intensity of Upstream CO,

PovFVS;P;Lant * Emissions downstream of EOR
Transport are static
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CO, Intensity of Upstream CO,

Comparison of All Sources
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CO, Intensity of Upstream CO,

Grid Displacement Impacts
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CO,-EOR Performance Data N=TL

Crude Recovery Ratio (barrels of crude oil per tonne of CO, sequestered)
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Achievable targets are based on the intersection
of CO, source technology and crude recovery

N=TL
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Fixed Crude Recovery Ratio — 2.0 bbl/tonne
EOR Operator Perspective

N=TL
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Achievable targets are based on the intersection
of CO, source technology and crude recovery

N=TL
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Achievable targets are based on the intersection

N=TL

of CO, source technology and crude recovery
 The CO, intensity of a 0.5 NGCC-Fleet Coal ——SCPC-Fleet Coal
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Variability in CO, Intensity Due to Displacement

Mix N=TL
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As the grid decarbonizes, the CO, intensity of

upstream CO, increases

As capture is 0.5
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As the grid decarbonizes, the CO, intensity of
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Key Conclusions

* Life cycle net negative carbon crude oil can be produced
from CO, EOR pathways

 The percentage reduction from the petro baseline depends
on the source of CO, and the efficiency of the EOR operation

* Displacing carbon intensive power by capturing CO, at an
alternative plant increases the credit

e Sources of CO, that are inefficient at generating captured
CO, per unit of power (or other output) result in a larger
credit

* As the electricity sector becomes less carbon intensive, the
life cycle GHG profile for EOR crude will increase

I %, U.5. DEFARTMENT OF National Energy
) ENERGY Technology Laboratory



Contact Information

Timothy J. Skone, P.E.

Senior Environmental Engineer ¢ Strategic Energy Analysis and Planning Division e (412) 386-4495 e timothy.skone@netl.doe.gov

Joe Marriott, Ph.D.

Lead Associate ® Booz Allen Hamilton ¢ (412) 386-7557 » marriott_joe@bah.com

Greg Cooney

Associate ® Booz Allen Hamilton e (412) 386-7555 * cooney_gregory@bah.com

.

Life Cycle Analysis

environmental | economic | social

p—

A netl.doe.gov/LCA DA LcA@netl.doe.gov @NETL_News

U.5. DEPARTMENT OF

National Energy
ENERGY Technology Laboratory




Backup Slides

77, U.S. DEPARTMENT OF National Energy
4 j ENERGY Technology Laboratory




Evaluating the Climate Benefits of CO,-

Enahanced Oil Recovery Using Life Cycle Analysis 2=

 Detailed models are necessary to give

confidence to broader system EQ!.!#QL'@&'JJ%% =
a p p I ications a:lgi;g%::;:?ate Benefits of CO,-Enhanced Oil Recovery Using
« CO,-EOR is a GHG-intensive way of e S

extracting crude compared to
conventional extraction methods

e Linking EOR with anthropogenic CO,
yields a benefit due to the
displacement of uncaptured electricity

 Crude recovery impacts depend on the
source of CO, (natural vs. fossil)

* Inefficient CO, generators are best =
(NGCC vs. SCPC): increasing efficiency o
will increase the amount of power

generated per unit of COZ captu red and (Czooolnst;y,EG.,I Lit:!efiilk]d, tI,‘Matrrigtt, th& SI;cér(ljez, T. ).
sent to EOR . Evaluating the Climate Benefits o -

Enhanced Oil Recovery Using Life Cycle Analysis.
Environmental Science & Technology, 49(12), 7491-
7500. doi: 10.1021/acs.est.5b00700

#7%% U.5. DEPARTMENT OF

Fin National Energy
ﬂ ENERGY Technology Laboratory




Other NETL CCUS-related publications

e Gate-to-Gate Life Cycle Inventory and
Model of CO,-Enhanced Oil Recovery (Sept.

|
2013 ) —:E‘(‘_NE\‘y—TL NATIONAL ENERGY TECHNOLOGY LASORATORY

— Full process detail and comparison of four gas e il

processing technologies

* @Gate-to-Grave Life Cycle Analysis Model of
Saline Aquifer Sequestration of Carbon

Dioxide (Sept. 2013)
Cradle-to-Gate Life Cyecle Analysis Model
for Alternative Sources of Carbon Dioxide

e Cradle-to-Gate Life Cycle Analysis Model for Sy
Alternative Sources of Carbon
Dioxide (Sept. 2013)
(2 ENERGY
— Three potential sources considered: natural dome, ornce or rossi. suency
ammonia production, natural gas processing

* All reports accessible via:
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http://www.netl.doe.gov/LCA

Saline aquifer sequestration of CO, drilldown of

gate-to-grave GHG emissions L

* Emissions associated with
mCO, " CH, WN,0 mSFs o T
) electricity for CO, injection pump
8 survey Operations | <0.01 compose 62.6 percent of gate-to-
L2 a c o
g g gate GHG emissions
o) 2} Diesel Upstream | <0.01
= * Next highest contributor is leakage
g Construction and Installation | <0.01 of sequestered co, from formation
3 (33.8 percent)
3 Closure | <0.01
= e Lower bound of uncertainty bars
< 8 Direct Land Use | <0.01 for formation leakage is zero,
representing a scenario with no
2 Injection Pump Electricity |IMESS—— 925 —— leakage from formation
S
] . . L
g Seal Leakage | 0.03 * Uncertainty in CO, injection pump
o electricity requirement is based on
5 Formation Leakage [ 5 00— power demand for pump to
achieve required injection pressure
D w . .
E ) .g Survey Operations | <0.01 (functlon of geology)
£22 . .
2 s é Diesel Upstream | <0.01 * Added uncertainty for pumping
_ GHG emissions is due to source of
[O— o . .
£ S ®  Water Treatment or Injection F—@.44 electricity to power pump (U.S. grid
T o .
- mix, ERCOT mix, GTSC)
2 ol [ — 1175
'_

0 5 10 15 20 25 30
GHG Emissions in 2007 IPCC 100-yr GWP (kg CO.e/tonne CO, sequestered)
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Enhanced oil recovery drilldown of gate-to-gate

GHG emissions NI

mCO, mCH, ®MN,O mSFe * Results are gate-to-gate and thus
T 5 do not account for the source of
E, “ Direct Land Use F 1.4 co2
) Formation Leakage F 1.6  Mass allocation used to NGL co-
é Crude Oil Artificial Lift Pump Elec. _ 10.7 product
©
@ CO, Injection Compressor Emissions | 0.1 * Emissions associated with
o .« . .o . .
= electricity for CO, injection
o CO; Injection Compressor Elec. [N 37.8 y 2 J. ipe 1
= compressor, crude oil artificial lift
Brine Injection Pump Elec. | 1.2 pump, and gas processing compose
2 c Venting and Flaring M 3.3 maJ_or_Ity of gate-to-gate GHG
© S emissions
® & T Natural Gas Upstream | 0.2 .
° =a * 98% of purchased CO2 is
o) 2 Natural Gas Combustion | 1.1 sequestered
S 2 Venting and Flaring | 0.5 * Other significant contributors
= @© o ege . .
c & S - activities during oil, gas, and water
o =2 5 Brine Disposal Pump Elec. 0.7 .
- separation, as well as natural gas
£ Natural Gas Upstream | <0.1 combustion
3
S Natural Gas Combustion | <0.1 e Uncertainty in total gate-to-gate
o . . . .
g Electricity Upstream F . GH§ emissions is driven by three
= main factors: crude recovery per
5 Total m 66:5 T tonne of CO, sequestered, required
(') 2'0 4'0 6'0 20 100 formation injection pressure, and
Greenhouse Gas Emissions IPCC 2007 100-yr GWP (kg CO,e/barrel crude) makeup of electricity grid
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