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Life Cycle Analysis (LCA)

LCA is a comprehensive form 
of analysis that evaluates the 
environmental, economic, and 
social attributes of energy 
systems ranging from the 
extraction of raw materials 
from the ground to the use of 
the energy carrier to perform 
work (commonly referred to as 
the “life cycle” of a product). 
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CO2 Capture, Utilization, and Storage (CCUS) 
creates a very complex life cycle system to model

Possible products from this system:
– Electricity
– Crude oil
– Refined fuel
– Captured CO₂
– Some combination of the above



5National Energy 
Technology Laboratory

LCA of complex systems requires co-product 
management to apportion burdens

• The objective of LCA is to assign ownership of environmental 
burdens to a single function

• When more than one product exits the system boundary of an 
LCA, it is necessary to redefine the system boundaries or apply an 
assignment that splits life cycle burdens between products

• NETL has studied the system (captured fossil power coupled with 
CO2-EOR extensively and recommends system expansion with 
displacement
– System expansion alters system boundaries to include all co-products 
– With displacement, the system receives a credit for the GHGs emitted via 

the conventional product route for co-products
– This analysis expands the boundaries of the system to include 

displacement of one of the co-products, leaving us with the desired 
product (power or fuel)
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Life Cycle of Gasoline from CO2-EOR-Crude

† Lyons, W.C., and Plisga, G.J. (2011). Standard Handbook of Petroleum and Natural Gas Engineering . Gulf 
Professional Publishing. – Crude content of oil is 84-87 wt%.
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Life Cycle of Gasoline from CO2-EOR-Crude

† Lyons, W.C., and Plisga, G.J. (2011). Standard Handbook of Petroleum and Natural Gas Engineering . Gulf 
Professional Publishing. – Crude content of oil is 84-87 wt%.
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Life Cycle of Gasoline from CO2-EOR-Crude
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CO2 Intensity of Upstream CO2

• Emissions downstream of EOR 
are static

• EOR is indifferent to CO2 source
• CO2 source choice determines 

achievable life cycle targets
• Options for sourcing CO2 (modeled)

– Natural Dome
– Supercritical Pulverized Coal (SCPC)
– Natural Gas Combined Cycle 

(NGCC)
– SCPC co-fired biomass and coal

• Displacement of existing power
– 2014 Grid Mix
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Power Plant 
Fuel & 

Transport

CO2 Pipeline 
Transport

Displaced 
Electricity

1.0 kg CO2

1.0 kg 
CO2

Y kWh

X kg coal/bio/NG 1.0 kg CO2
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CO2 Intensity of Upstream CO2
Comparison of All Sources

• Fossil CO2 is preferred to 
natural dome
– Credit for displacement of 

existing power
• Adding biomass reduces 

upstream fuel component
– 30% switchgrass results in net 

negative upstream fuel GHG 
emissions

• NGCC is a less efficient CO2
generator
– For a fixed amount of CO2, NGCC 

yields more power and thus 
receives a larger credit

– Ratio NGCC:SCPC is 2.4:1
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CO2 Intensity of Upstream CO2
Grid Displacement Impacts
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CO2-EOR Performance Data
Crude Recovery Ratio (barrels of crude oil per tonne of CO2 sequestered)

Residual Oil Zone (ROZ)
Data Summary:

- Four counties in the Permian 
Basin of West Texas

- Each county divided into 
partitions (32 each for low and 
high quality)

- Crude Recovery Ranges 
(bbl/tonne CO2 sequestered):

- HQ: 1.2 – 5.2 (production wtd. 
mean 3.2)

- LQ: 0.07 – 4.2 (production wtd. 
mean 1.5)
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Reference: NETL, 2016; Defining an Overlooked Domestic Oil Resource: A 
Four-County Appraisal of the San Andres Residual Oil Zone (ROZ) 
“Fairway” of the Permian Basin, DOE/NETL-2015/1730, U.S. Department 
of Energy, National Energy Technology Laboratory, Pittsburgh, PA; report 
prepared by Advance Resources, Inc. (Draft Report Publication Pending)
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Achievable targets are based on the intersection 
of CO2 source technology and crude recovery
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Fixed Crude Recovery Ratio – 2.0 bbl/tonne
EOR Operator Perspective
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Achievable targets are based on the intersection 
of CO2 source technology and crude recovery
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Achievable targets are based on the intersection 
of CO2 source technology and crude recovery
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intensity and achievable 
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Variability in CO2 Intensity Due to Displacement 
Mix

• A given source of CO2
can span a range of CO2
intensities according to 
the assumptions 
regarding the type of 
displaced electricity

• This range can inform 
the types of reduction 
targets that may be 
achievable
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implemented, the grid 
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• Hypothetical example 
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• This analysis can help 
determine the grid GHG 
intensity at which it is no 
longer possible to hit a 
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• Under full fossil capture, 
transportation would 
likely shift away from 
conventional technology

1,041 g/kWh

163 g/kWh

Low ROZ Quality High



19National Energy 
Technology Laboratory

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

0.0 1.0 2.0 3.0 4.0

CO
₂ I

nt
en

sit
y 

of
 U

ps
tr

ea
m

 C
O

₂
(k

g 
CO

₂e
/k

g 
CO

₂)

Crude Recovery Ratio (bbl/tonne CO₂ sequestered)

As the grid decarbonizes, the CO2 intensity of 
upstream CO2 increases

Baseline

10% Reduction

25% Reduction

50% Reduction

-50 g CO₂e/MJ-100 g CO₂e/MJ

NGCC

Net Zero 
GHG Fuel1,041 g/kWh

163 g/kWh

• As capture is 
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Key Conclusions

• Life cycle net negative carbon crude oil can be produced 
from CO2 EOR pathways

• The percentage reduction from the petro baseline depends 
on the source of CO2 and the efficiency of the EOR operation

• Displacing carbon intensive power by capturing CO2 at an 
alternative plant increases the credit

• Sources of CO2 that are inefficient at generating captured 
CO2 per unit of power (or other output) result in a larger 
credit

• As the electricity sector becomes less carbon intensive, the 
life cycle GHG profile for EOR crude will increase
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Evaluating the Climate Benefits of CO2-
Enahanced Oil Recovery Using Life Cycle Analysis

• Detailed models are necessary to give 
confidence to broader system 
applications 

• CO2-EOR is a GHG-intensive way of 
extracting crude compared to 
conventional extraction methods 

• Linking EOR with anthropogenic CO2
yields a benefit due to the 
displacement of uncaptured electricity

• Crude recovery impacts depend on the 
source of CO2 (natural vs. fossil)

• Inefficient CO2 generators are best 
(NGCC vs. SCPC): increasing efficiency 
will increase the amount of power 
generated per unit of CO2 captured and 
sent to EOR

Cooney, G., Littlefield, J., Marriott, J., & Skone, T. J. 
(2015). Evaluating the Climate Benefits of CO2-
Enhanced Oil Recovery Using Life Cycle Analysis. 
Environmental Science & Technology, 49(12), 7491-
7500. doi: 10.1021/acs.est.5b00700
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Other NETL CCUS-related publications

• Gate-to-Gate Life Cycle Inventory and 
Model of CO₂-Enhanced Oil Recovery (Sept. 
2013)

– Full process detail and comparison of four gas 
processing technologies

• Gate-to-Grave Life Cycle Analysis Model of 
Saline Aquifer Sequestration of Carbon 
Dioxide (Sept. 2013)

• Cradle-to-Gate Life Cycle Analysis Model for 
Alternative Sources of Carbon 
Dioxide (Sept. 2013)

– Three potential sources considered: natural dome, 
ammonia production, natural gas processing 

• All reports accessible via:
www.netl.doe.gov/LCA

http://www.netl.doe.gov/LCA


25National Energy 
Technology Laboratory

Saline aquifer sequestration of CO2 drilldown of 
gate-to-grave GHG emissions
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CO₂ CH₄ N₂O SF₆
• Emissions associated with 

electricity for CO2 injection pump 
compose 62.6 percent of gate-to-
gate GHG emissions 

• Next highest contributor is leakage 
of sequestered CO2 from formation 
(33.8 percent )

• Lower bound of uncertainty bars 
for formation leakage is zero, 
representing a scenario with no 
leakage from formation

• Uncertainty in CO2 injection pump 
electricity requirement is based on 
power demand for pump to 
achieve required injection pressure 
(function of geology)

• Added uncertainty for pumping 
GHG emissions is due to source of 
electricity to power pump (U.S. grid 
mix, ERCOT mix, GTSC)
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Enhanced oil recovery drilldown of gate-to-gate 
GHG emissions

• Results are gate-to-gate and thus 
do not account for the source of 
CO2

• Mass allocation used to NGL co-
product

• Emissions associated with 
electricity for CO₂ injection 
compressor, crude oil artificial lift 
pump, and gas processing compose 
majority of gate-to-gate GHG 
emissions 

• 98% of purchased CO2 is 
sequestered

• Other significant contributors 
include venting and flaring 
activities during oil, gas, and water 
separation, as well as natural gas 
combustion 

• Uncertainty in total gate-to-gate 
GHG emissions is driven by three 
main factors: crude recovery per 
tonne of CO₂ sequestered, required 
formation injection pressure, and 
makeup of electricity grid
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