
Physical Security Assessment Using Temporal
Machine Learning

Meghan A. Gal i ardi*, Stephen J. Verzi, Gabriel C. Birch, Jaclynn J. Stubbs, Bryana L. Woo, and Camron G. Kouhestani
Sandia National Laboratories

1515 Eubank SE, Albuquerque, NM, USA
*mgaliar@sandia.gov

Abstract—Nuisance and false alarms are prevalent in modern
physical security systems and often overwhelm the alarm station
operators. Deep learning has shown progress in detection and
classification tasks, however, it has rarely been implemented as a
solution to reduce the nuisance and false alarm rates in a physical
security systems. Previous work has shown that transfer learning
using a convolutional neural network can provide benefit to
physical security systems by achieving high accuracy of physical
security targets [10]. We leverage this work by coupling the
convolutional neural network, which operates on a frame-by-
frame basis, with temporal algorithms which evaluate a sequence
of such frames (e.g. video analytics). We discuss several alterna-
tives for performing this temporal analysis, in particular Long
Short-Term Memory and Liquid State Machine, and demonstrate
their respective value on exemplar physical security videos. We
also outline an architecture for developing an ensemble learner
which leverages the strength of each individual algorithm in its
aggregation. The incorporation of these algorithms into physical
security systems creates a new paradigm in which we aim to
decrease the volume of nuisance and false alarms in order to
allow the alarm station operators to focus on the most relevant
threats.

I. INTRODUCTION

Physical security systems (PSS) typically rely upon sensing
devices (e.g. microwaves, active infrared beam break sensors)
to create an alarm, assessment devices (e.g. cameras) to assess
alarms and human operators to determine the validity or sever-
ity of an event. This traditional architecture places a significant
burden on human operators, as all sources of nuisance alarms
or false alarms must be evaluated by a human after watching
the associated assessment video. This reliance upon human
analysts has been shown to potentially create challenging
conditions for vigilance maintenance, which ultimately could
reduce the effectiveness of the system [9]. New approaches
are needed that place intermediary algorithmic components
between raw sensed events and human notification.

New advancements in machine learning could aid in solving
persistent problems in this domain by:

. Lowering nuisance alarms and false alarms

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA0003525

. Enabling human operators to focus on the most challeng-
ing alarms to analyze rather than being inundated with
easily assessed alarms

. creating foundational technology the enables the creation
of autonomous security systems that ultimately multiples
force

. Facilitating new security paradigms such as distributed
security or autonomous security

The vision for integrating algorithmic components into a
physical security system is as follows: A sensor in the physical
security system is alarming. Instead of sending the alarm
directly to the alarm station operator, video data leading up to
the alarm is sent to an intermediary algorithmic component.
The machine learning algorithm will then analyze the data
to classify the source of the alarm. If the alarm is classified
as as nuisance or false alarm with high confidence, then the
alarm is logged, but not displayed to the operator. If the
confidence is not as high, a warning may be sent to the
operator with the algorithm's best guess at a classification and
the operator can review the classification. This interaction can
also be used to determine if the machine learning algorithms
need to be retrained and can provide the necessary data for
retraining. If the alarm is classified as an intrusion with high
confidence, then the operator is alerted to the intrusion and
the algorithmic components could also assist in determining
responses. This intermediary algorithmic component can help
lessen the burden of nuisance and false alarms on the operator
while allowing them to focus on the real intrusions.
The goal of this paper is to describe an approach for

incorporating temporal machine learning algorithms into a
physical security system. The paper is organized as follows:
Section II describes previous work, both on the physical
security side and algorithmic side, Section III describes the ar-
chitecture the authors have implemented, Section IV discusses
the results of various experiments to determine the benefit of
such algorithms, and Section V discusses the improvements
planned as this research progresses.

II. PREVIOUS WORK

Not much work has been done on applying machine learn-
ing algorithms to physical security. One previous effort has
shown success of using transfer learning to assess physical
security threats using a video assessment data [10]. This

SAND2018-8542C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

work extracted individual frames from the video data set and
performed a frame-by-frame classification. Our paper seeks to
analyze a different approach using temporal machine learning
algorithms. The authors conjecture that temporal machine
learning algorithms can identify dependencies across time and
accurately classify video from a physical security system.
The architecture developed in this work will use three

different machine learning algorithms: convolutional neural
networks (CNNs), long short-term memory (LSTMs), and
liquid state machines (LSMs). The design of CNNs are based
on an animal's visual cortex [5]. Groups of nodes in one layer
feed into a single node in the next layer known as the visual
field. CNNs were first used in 1998 for document recognition
[7], but are more commonly known for their extremely good
classification of images. LSTMs are a fairly new type of
neural network first discovered in 1997 by Hochreiter and
Schmidhuber [4]. In the innovative paper, they showed that
LSTMs can solve long time lag dependencies that had never
previously been solved by a neural network. Shortly thereafter,
Gers and colleagues improved upon the LSTM by adding
adding functionality which allows an LSTM to learn to reset
itself at the end of a data sequence [2]. LSMs are a type
of reservoir computing neural network in which nodes in the
reservoir compute a dynamical system in time and the state
of the dynamical system is read out to perform classification.
These types of neural networks were most recently reinvented
simultaneously as Echo State Networks and LSMs by Jaeger
and Mass, respectively [6], [8]. By leveraging the advances in
all three of these algorithms, we seek to create an architecture
for classifying physical security data.

III. ARCHITECTURE

We design an architecture which has three main compo-
nents:

1) Preprocess the data
2) Classify videos using temporal algorithms
3) Combine the results of the different algorithms

The structure of our video classification architecture is
shown in Fig. 1.

A. Preprocessing data

The input data for our architecture is physical security
videos. A video can be deconstructed into a sequence of
images where the sequential aspect represents the temporal
nature of the video. As shown in Fig. 2, a single video
can be represented as a 3-dimensional object with size
image height x image width x video length where the first
two dimensions are the spatial dimensions of each image and
the third dimension is the temporal dimension of the video.
However, for the temporal algorithms in this architecture
(see III-B), we want to use a 2-dimensional objects with only
one spatial dimension followed by the temporal dimension.
This forces us to represent each image of a the video in
only 1 spatial dimension and this transformation is done by
preprocessing the data.

Preprocess data

LSTM LSM

LSTM
prediction

LSM
prediction

Ensemble

Ensemble
prediction

Fig. 1. Temporal architecture for classifying physical security videos

video

Fig. 2. 3-dimensional representation of video

image width

Fig. 3. Preprocessing using vectorization.

The most straightforward way to preprocess a 2-dimensional
image into a 1-dimensional representation is to simply vector-
ize the image, shown in Fig. 3. That is, take all the columns
of the image and stitch them together in one large vector.
This preprocessing step is fast, but looses most of the spatial
relationships in the image.

Spatial relationships in each image are important for good
performance of the algorithms. CNNs have been shown to
work well in identifying spatial relationships in images by
representing these relationships as a set of features. Our second

approach in preprocessing is to use a CNN to extract features
from each image, shown in Fig. 4. There exist many CNNs
which have been trained on a wide variety of images and
show good performance. We therefore choose to use existing
pre-trained CNNs as a preprocessing step, namely Inception-
v3 [12] and Googlenet [11]. The classification layer of these
CNNs is stripped off to obtain a features vector for each image.

Pretrained CNN

Fig. 4. Preprocessing using CNN feature extraction

B. Temporal Algorithms

We chose to start with two temporal algorithms. Long Short-
Term Memory (LSTM) and Liquid State Machine (LSM).
Both algorithms have shown good results in language process-
ing, handwriting recognition, time-series prediction, among
others.

1) Long Short-Term Memory (LSTM): LSTMs are a type
of recurrent neural network. Recurrent neural networks are
similar to feed forward neural networks except the current state
of a node is fed back to itself in addition to feeding forward
to the next layer of the network. LSTMs can be thought of
in the same way as recurrent neural networks, except each
node now has a more complex structure. LSTM nodes have
additional gates which can add and remove information to
the information flow within the sequence. There are three
sigmoidal gates which add/remove information, the first of
which is a forget gate. A forget gate decides how much of
the previous information to keep. If the gate outputs a 1 then
it means keep all the previous information while 0 means
forget all the previous information and partial information is
kept otherwise. The second type of gate is the input gate
which determines what values within the information flow
will be updated (i.e. what new information we care about).
The last gate decides how much information we are going to
output to the next node. Each of these gates has their own set
of weights and are adjusted via a learning process just like
traditional recurrent neural networks. Thus LSTMs learn what
information to forget, input, and output. LSTMs maintain a
more constant error that is back propagated though time and
therefore continue to learn over much longer timescales than
traditional recurrent neural networks.

For the architecture developed in this paper, each feature in
the features vector of the input has a corresponding LSTM
node and the input sequence for that feature is the input
to the LSTM node. The output from the LSTMs are then
densely connected to a classification layer. Since the input
is a sequence, the output from the classification layer is
also a sequence, but the final classification is read after the

Fig. 5. Architecture used for the LSTM for a 2-class problem

entire input sequence has propagated through the LSTM. The
architecture for the LSTM is shown in Fig. 5.
2) Liquid State Machine: The input into liquid state ma-

chines is given as a vector x(t) which represents a sequence
of disturbances to the liquid and the output function o(t) is a
function which provides real time analysis of the input such as
classification. The goal is to have the LSM learn the function
that maps the input function to the output function. The input
nodes are randomly connected to the liquid nodes, and the
liquid nodes are also randomly connected to each other. At
every timestep, the liquid has an internal state denoted xm (t)
which represents the response of the liquid to all the previous
inputs s < t. In other words, the current state of the liquid
can be thought of as a filter, LM applied to the input function

xm (t) = (LAI x)(t).

Additionally, LSMs contain a readout function, fm, which
transforms the current state of the liquid to the output function

y(t) = f (xm (t)).

This readout function can be any function, but most commonly
used is a linear readout function such as an SVM since SVMs
are faster and easier to train than RNNs. Readout functions are
most often memoryless in that they only depend on xm (t) and
not xm (s) for s < t. The readout function is learned to map
the state of the liquid to the output function. Thus there is
no training of weights within the liquid, just learning of the
readout function.

For the architecture described in this paper, each feature in
the features vector is randomly connected to the liquid using
a uniform probability distribution and the nodes in the liquid
are randomly connected to each other with probability 0.1. The
readout function used is a simple one layer dense classification
layer. Similar to the LSTM, the output from the classification
layer is also a sequence, but the final classification is read after
the entire input sequence has propagated through the LSM.
The architecture for the LSM is shown in Fig. 6.

Feature 1

Fig. 6. Architecture used for the LSM for a 2-class problem

3) Ensemble: It is anticipated that the LSTM and LSM
included in the architecture will have different strengths and
weaknesses for physical security data sets. By combining the
classification results from both the LSTM and LSM into an
ensemble allows for these strengths to be utilized. The en-
semble implemented in the architecture is a voting ensemble.
Given a video, both the LSTM and LSM will output a vector
of probabilities which represents the likelihood that the video
is of one of the m classes

P/stm = WIstm stm 13• • • 71r.Lstml

r„,1 1
Plsm = LPIsm, Plsm, • • • Plinsmi•

A voting ensemble weights the class probabilities of the LSTM
and LSM and the final classification is the class with the largest
classification probability

p = tvlstmPlstm tvlsmPlsm•

For the initial experiments used in this paper, each algorithm
had equal voting (WI stm = W Ism = •5), however, in the future
a learning ensemble will be implemented to better leverage
the benefits of each model (see section V).

IV. EXPERIMENTAL RESULTS

The data used for the following results is from the Image
Library for Intelligent Detection Systems (i-LIDS) [1]. i-LIDS
is comprised of CCTV video surveillance videos consisting
of 4 scenarios. Our focus is on the sterile zone monitoring
scenario which consists of videos of a fence line under various
situations and conditions: day/night, sun/rain, animals, people
walking/running/rolling/carrying objects, etc. The data was
organized into 2 classes: background and person which leads
to a 2-class classification problem. A small detail in the
description of the LSTM and LSM above, is that the temporal
dimension is required to be the constant between inputs. The
videos contained in the i-LIDS have varying lengths and
therefore the data needs one more step of preprocessing. To
solve this problem, we define a constant size window and slide
it through the video, creating multiple constant length videos
from a single video. Additionally, frames in the video may be

TABLE I
ALGORITHM ACCURACY WITH VARYING PREPROCESSING.

LSTM LSM Ensemble
accuracy accuracy accuracy

Inception-v3
Googlenet

.931 .923 .927

.862 .886 .874

TABLE II
ALGORITHM ACCURACY WITH VARYING WINDOW SIZE AND SUB

SAMPLING RATES.

Sub-sampling Window LSTM LSM Ensemble
rate size accuracy accuracy accuracy
1 50 .929 .922 .9255
2 25 .931 .922 .9265
5 10 .931 .923 .927
10 5 .908 .915 .9115
25 2 .894 .913 .9035
50 1 .880 .906 .893

subsampled to decrease the length of the video in order to aid
in training of the algorithms.

A. Experiment 1 - Algorithm peiformance

The first experiment tests the baseline performance of
the algorithms on the i-LIDS data set described above. A
subsampling rate of 5 frames and window size of 10 frames
was used and the data set was preprocessed in 2 ways:
features extraction from pretrained Inception-v3 CNN [12],
and feature extraction from pretrained Googlenet CNN [11].
The results are shown in Table I. Both experiments show
high performance, although Inception-v3 preprocessing out
performed the Googlenet preprocessing.

B. Experiment 2 - Subsampling rate and window size

The second experiment tests the affect on choosing the
subsampling rate and window size on the i-LIDS data set.
Based on the first experiment, we conduct this one using
features from the Inception-v3 CNN. The parameters and
results for the LSTM and LSM are shown in Table II. The
results show the best performance when there is a balance
between subsampling rate and window size. If the subsampling
rate is too small then there is not as much differentiation
between frames for the temporal algorithms to learn. On the
other hand, if the window size is too small then we are not
leveraging the memory benefits of using temporal algorithms
to the full potential.

C. Experiment 3 - Comparison of LSTM and LSM

The last experiment digs into the results of the LSTM
and LSM individually and investigates how each algorithm
performs on the i-LIDS data set. Although both algorithms per-
form fairly accurately, we want to investigate the areas where
the algorithms are wrong. For physical security applications,
a false positive results in a nuisance or false alarm while a
false negative results in missing of an intrusion. Ideally, we
want no false negatives and low false positives, but in reality
we want to lower false positives and false negatives as much
as possible.

0.10

0.08

0.06

0.04

0.02

— LSTM false negative rate

- LSTM false positive rate

— LSM false negative rate

- LSM false positive rate

.......

--------------- --

• --------

2/25 SAO 10/5 24/2

Sub-sampling rate/ Window size

50/1

Fig. 7. Comparison of LSTM and LSM false positive and false negative rates

Fig. 7 shows the false positive and false negative rates
for both the LSTM and LSM using the same parameters
as Experiment 2. For smaller subsampling rates and larger
window sizes, the LSM has a better false positive rate while
the LSTM had a better false negative rate. Shortly after the
subsampling rate/window size that gave the best performance,
the LSTM has a better false positive rate while the LSM had a
better false negative rate. These results show that the strengths
of each algorithm depend on preprocessing which needs to be
further explored in order to best combine the algorithms into
an ensemble with both low false positive and false negative
rates.

V. FUTURE WORK

The results described in section IV only begin to inves-
tigate the benefits of using temporal machine learning to
assist operators and reduce NAR/FAR. The results in this
paper present good classification results and suggest that this
approach should be further studied. There are many directions
for future work to improve the architecture described in this
paper.

First, we want to implement a learning ensemble. The
ensemble will be similar to the one described in section III-B3,
except that the weights of the voting will also be learned
through an additional algorithm. In addition, we will explore
inclusion of additional algorithms into this ensemble such as
temporal frequency analysis (TFA) [13] and 3D convolutional
neural networks [3] and determine the benefits each algorithm
will provide to the ensemble.
Second, we want to explore hyperparameter optimization

of each algorithm to improve performance. Each algorithm
has different parameters (such as how many nodes or the
activation functions within each node) that can be tuned to
improve performance. Hyperparameter optimization seeks to
find the combination of such parameters which yields the
best performance. No hyperparameter optimization was done
to obtain the results in section IV, so we conjecture that
hyperparameter optimization will improve the results shown
in this paper.

The results presented in this paper were not as good as
the previous work performing frame-by-frame classification
using transfer learning [10]. These previous results suggest
that transfer learning is helpful in classifying the i-LIDS data
set. The next step for future work is to use the resulting CNN
from the transfer learning in [10] as a preprocessor for the
temporal algorithms.
Once the above additions are incorporated into the archi-

tecture, we want to analyze its performance on higher fidelity
data. This includes continuing to use i-LIDS, but performing a
finer level of classification by distinguishing between walking,
running, crawling, etc. We will also investigate how the
architecture performs on data from different physical security
sites with varying camera views.

Overall, we aim to continually improve the architecture
described in this paper to develop an architecture that will aid
alarm station operators in evaluating threats and allows them to
focus on the most relevant threats. This will be accomplished
by producing an architecture that has low false negative rates
(i.e., low NAR/FAR rates), but also has a low false positive
rate (i.e., don't miss an intrusion).

REFERENCES

[1] HOSD Branch. Imagery library for intelligent detection systems (i-lids).
In The Institution of Engineering and Technology Conference on Crime
and Security, pages 445-448, 2006.

[2] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to
forget: Continual prediction with lstm. 1999.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, Cambridge, MA, 2016.

[4] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735-1780, 1997.
David H Hubel and Torsten N Wiesel. Receptive fields and functional
architecture of monkey striate cortex. The Journal of physiology,
195(1):215-243, 1968.

[6] Herbert Jaeger. The echo state approach to analysing and training
recurrent neural networks-with an erratum note. Bonn, Germany:
German National Research Center for Information Technology GMD
Technical Report, 148(34):13, 2001.

[7] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278-2324, 1998.

[8] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-
time computing without stable states: A new framework for neural
computation based on perturbations. Neural computation, 14(11):2531-
2560, 2002.
Judi E See. Vigilance: A review of the literature and applications to
sentry duty. Technical report, SAND2014-17929, 2014.
Jaclynn J Stubbs, Gabriel C Birch, Bryana L Woo, and Camron G
Kouhestani. Physical security assessment with convolutional neural
network transfer learning. In Proceedings of the 2017 International
Carnahan Conference on Security Technology (ICCST). IEEE, 2017.

[11] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1-
9, 2015.

[12] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[13] Bryana L Woo, Gabriel C Birch, Jaclynn J Stubbs, and Camron G
Kouhestani. Unmanned aerial system detection and assessment through
temporal frequency analysis. In Proceedings of the 2017 International
Carnahan Conference on Security Technology (ICCST). IEEE, 2017.

[5]

[9]

[10]

