

PDE constrained optimization for digital image correlation

SAND2015-9272C

Rich Lehoucq, Dan Turner,

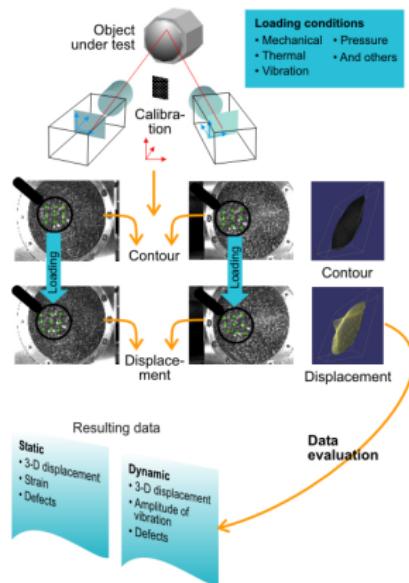
Sandia National Laboratories and
Carlos A. Garavito-Garzón, University of Minnesota

Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

ASCAM 15 (October 9–10, 2015)

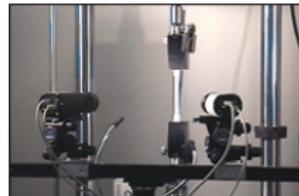
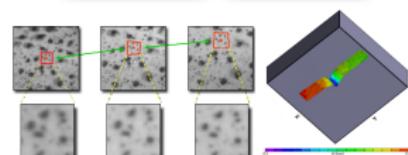
Digital Image Correlation (DIC)

- ▶ DIC is a full-field image analysis method based on grey value digital images
- ▶ Determine the deformation, strain of an object subjected to a load
- ▶ Courtesy Dantec Dynamics



Basic DIC process

- ▶ Two cameras photograph a “speckled” dogbone subjected to a load
- ▶ A speckling (or contrast) occurs by spraying a mist of black paint over a white dogbone
- ▶ DIC tracks the speckles by comparing the sequence of photos, or images
- ▶ Extract deformation, strain
- ▶ Courtesy Correlated Solutions



Sandia National Laboratories

Problem of interest

- ▶ Given a sequence of images, we are interested in the deformation and strain
- ▶ The rate of deformation—velocity—is given by the optical flow constraint

$$\frac{\partial}{\partial t} \phi + \mathbf{b} \cdot \nabla \phi = 0$$

where ϕ represents the image intensity

- ▶ Velocity \mathbf{b} is assumed to be spatially varying but not temporally
- ▶ **Goal:** Estimate velocity \mathbf{b} given image intensity data $\hat{\phi}$

Deformation : $\tau \mathbf{b}$

Strain : $\tau^2 (\nabla \mathbf{b})^T \nabla \mathbf{b} - \mathbf{I}$

Modeling assumption

- ▶ Optical flow constraint $\frac{\partial}{\partial t}\phi + \mathbf{b} \cdot \nabla\phi = 0$ assumes that the trajectory

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{b}(\mathbf{x}(t)) & 0 < t \leq \tau \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

is well-behaved

- ▶ Measured image intensity $\hat{\phi}$ is subject to error
- ▶ We model this error by assuming that the trajectory is given by Itô's stochastic differential equation

$$\begin{cases} d\mathbf{X}_t = \mathbf{b} dt + \sqrt{2\sigma} d\mathbf{W}_t & 0 < t \leq \tau \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

with the “diffusion enhanced” optical flow constraint

$$\frac{\partial}{\partial t}\phi + \mathbf{b} \cdot \nabla\phi = \sigma\Delta\phi$$

Model fit

- ▶ Image intensity evolves according to the diffusion equation

$$\begin{cases} \frac{\partial}{\partial t}\phi + \mathbf{b} \cdot \nabla \phi = \sigma \Delta \phi & 0 < t \leq \tau \text{ over } \Omega_t, \\ \phi(\mathbf{x}, 0) = \phi_0(\mathbf{x}), \end{cases}$$

- ▶ The difference, or “model fit”

$$\phi(\mathbf{x}, t) - \hat{\phi}(\mathbf{x}, t) = \mathbb{E}^{\mathbf{x}}[\phi_0(\mathbf{X}_t)] - \phi_0(\mathbf{X}_t)$$

is the intensity fluctuation about the mean of a trajectory

One dimension

- ▶ In one dimension, the term

$$\phi(x, t) = \mathbb{E}^x[\phi_0(X_t)] = \frac{1}{\sqrt{4\pi\sigma t}} \int_{\mathbb{R}} e^{-(x-y-bt)^2/(4\sigma t)} \phi_0(y) dy$$

is the expectation of the random variable $\phi_0(X_t)$ conditioned on the point x

- ▶ By Itō's Lemma, the data $\hat{\phi}(\mathbf{x}, t) = \phi_0(\mathbf{X}_t)$ (a random variable!) is also given by a stochastic differential equation
- ▶ Can use inference methods but we use a PDE constrained optimization approach

PDE constrained optimization

$$(\phi_*, \mathbf{b}_*) = \operatorname{argmin}_{(\phi, \mathbf{b}) \in (\mathcal{P} \times \mathcal{B})} \left(\|\phi - \hat{\phi}\|_{L^2(\Omega) \times (0, \tau)}^2 + \frac{\beta}{2} \tau \|\mathbf{b}\|_{L^2(\Omega)}^2 \right)$$

subject to
$$\begin{cases} \frac{\partial}{\partial t} \phi + \mathbf{b} \cdot \nabla \phi = \sigma \Delta \phi & 0 < t \leq \tau \\ \phi(\mathbf{x}, 0) = \phi_0(\mathbf{x}) & \mathbf{x} \in \Omega \\ \nabla \cdot \mathbf{b} = 0 & \text{over } \Omega \end{cases}$$

- ▶ Ito & Kunish (1997) analyzed the steady-state version of the above optimization problem¹ (but no mention of DIC)
- ▶ The solenoidal constraint needed because otherwise the velocity is unique up to a rotational vector
- ▶ Spaces \mathcal{P}, \mathcal{B} depend upon the boundary conditions for the intensity ϕ and solenoidal constraint

¹Thanks to Drew Kouri for help digesting the paper

Optimization Problem

- ▶ Ito & Kunish (1997) showed the (steady-state) problem is well-posed given homogeneous Dirichlet boundary conditions for the intensity ϕ
- ▶ Important that the model fit $\|\phi - \hat{\phi}\|_{L^2(\Omega) \times (0,\tau)}^2$ is not large
- ▶ Ito & Kunish analyzed gradient and SQP methods
- ▶ Summer intern Carlos Garavito demonstrated that the functional is sensitive and robust via a slew of stochastic simulations—distance traveled (velocity \times time) must be sufficient to induce a minimum

Initialization

Important issue not discussed by Ito & Kunish is that of initialization—how do you pick an initial velocity that satisfies the diffusion equation?

- ▶ Constrained optimization problem

$$\mathbf{b}_0 = \arg \min_{\mathbf{b} \in H_{\text{div}}(\Omega)} \|R(\mathbf{b})\|_{L^2(\Omega)}^2 \quad \text{subject to } \nabla \cdot \mathbf{b} = 0 \quad \text{in } \Omega$$

where

$$R(\mathbf{b}) = \frac{\partial \psi}{\partial t} + \mathbf{b} \cdot \nabla \psi - \sigma \Delta \psi$$

- ▶ Technical detail: Need to go from discrete data $\hat{\phi}(\mathbf{x}_i, 0)$ to the initial condition ψ_0

Optimality system

Given $\psi \in H_0^1(\Omega)$, find $(\mathbf{b}_0, u) \in H_{\text{div}}(\Omega) \times L^2(\Omega)$

$$\int_{\Omega} (\nabla \psi \cdot \mathbf{w})(\nabla \psi \cdot \mathbf{b}_0) dx - \int_{\Omega} u \nabla \cdot \mathbf{w} dx = \int_{\Omega} \left(\sigma \Delta \psi - \frac{\partial \psi}{\partial t} \right) \nabla \psi \cdot \mathbf{w} dx \quad \mathbf{w} \in H_{\text{div}}(\Omega)$$

$$\int_{\Omega} v (\nabla \cdot \mathbf{b}_0) dx = 0 \quad v \in L^2(\Omega)$$

- ▶ Velocity, or drift, is contained in the quantity $\sigma \Delta \psi - \frac{\partial \psi}{\partial t} = \mathbf{b} \cdot \nabla \psi - R(\mathbf{b}) \approx \mathbf{b} \cdot \nabla \psi$ when $R(\mathbf{b}) \approx 0$ i.e., model fit is small
- ▶ Our assumption is that a trajectory is “modeled” by an Itô SDE so that the residual R is small; otherwise we need to add other Markovian noise, e.g., a jump process

III-posed problem

- ▶ LBB satisfied but coercivity is not because

$$a(\mathbf{w}, \mathbf{w}) := \int_{\Omega} (\nabla \phi \cdot \mathbf{w})^2 dx \not\geq \alpha \|\mathbf{w}\|_{H_{\text{div}}(\Omega)}$$

for some $\alpha > 0$

- ▶ One possible regularization is via the mixed formulation of the Poisson problem

$$a_{\mu}(\mathbf{w}, \mathbf{w}) := a(\mathbf{w}, \mathbf{w}) + \mu^{-2} \left\{ (\mathbf{w}, \mathbf{w})_{L^2(\Omega)} + (\nabla \cdot \mathbf{w}, \nabla \cdot \mathbf{w})_{L^2(\Omega)} \right\}$$

- ▶ Use of Raviart-Thomas elements leads to a stable discrete problem

Standard DIC approach

- ▶ Taylor series approximation for the intensity about the initial condition ϕ_0

$$\phi(\mathbf{x}, t) = \phi_0(\mathbf{x}) - \nabla \phi_0(\mathbf{x}) \cdot \mathbf{b}(\mathbf{x})t + r(\mathbf{b}(\mathbf{x}))$$

- ▶ A least squares approximation leads to the rank one DIC optimality system

$$(\nabla \phi_0 \otimes \nabla \phi_0) \mathbf{b}_* = -t^{-1} \nabla \phi_0(\phi - \phi_0) \quad 0 < t < \tau$$

- ▶ Regularize by considering a collection of points about \mathbf{x}
- ▶ Standard DIC approach does NOT recognize that the problem is ill-posed, does not enforce a constraint on the rotational component, solves a discrete under-determined least squares problem