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Digital Image Correlation (DIC)

» DIC is a full-field image

analysis method based on

grey value digital images
» Determine the

deformation, strain of an

object subjected to a load

» Courtesy Dantec
Dynamics
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Basic DIC process

» Two cameras photograph a
“speckled” dogbone subjected to
a load

» A speckling (or contrast) occurs
by spraying a mist of black paint
over a white dogbone

» DIC tracks the speckles by
comparing the sequence of
photos, or images

» Extract deformation, strain
» Courtesy Correlated Solutions




Problem of interest

» Given a sequence of images, we are interested in the
deformation and strain

» The rate of deformation—velocity—is given by the optical
flow constraint

0
EQS—I-b-VQS—O

where ¢ represents the image intensity

» Velocity b is assumed to be spatially varying but not
temporally

» Goal: Estimate velocity b given image intensity data ¢

Deformation : 7b
Strain : 72(Vb)"Vb —1
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Modeling assumption
» Optical flow constraint %qﬁ +b - V¢ = 0 assumes that the

trajectory
() =b(x(t)) 0<t<r
X(0) = X
is well-behaved
» Measured image intensity ¢ is subject to error

» We model this error by assuming that the trajectory is
given by It0’s stochastic differential equation

dX;=bdt+vV2cdW; 0<t<r
x(0) =xo

with the “diffusion enhanced” optical flow constraint
%05 +b-V¢p=0lA¢
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Model fit

» Image intensity evolves according to the diffusion equation

{;¢+b-v¢0A¢ 0<t< T overy,
B(x,0) = ¢o(X),
» The difference, or “model fit”
$(X, 1) — (%, 1) = EX [po(Xr)] — do(X1)

is the intensity fluctuation about the mean of a trajectory
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One dimension

» |In one dimension, the term

o(x, 1) = EX[po(Xt)] = / e~ (xy=b0/ (o g () dy

1
Varot Jr

is the expectation of the random variable ¢q(X;)
conditioned on the point x

» By Itd’s Lemma, the data ¢(x, t) = ¢o(X;) (a random
variable!) is also given by a stochastic differential equation

» Can use inference methods but we use a PDE constrained
optimization approach
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PDE constrained optimization

(6 = aramin (16~ H3aysqon + 571l

(6.b)E(PxB)

0 b Vo—ons O<t<r

subject to 6(x,0) =do(x)  x€Q
V-b=0 over

» Ito & Kunish (1997) analyzed the steady-state version of
the above optimization problem’ (but no mention of DIC)

» The solenoidal constraint needed because otherwise the
velocity is unique up to a rotational vector

» Spaces P, B depend upon the boundary conditions for the

intensity ¢ and solenoidal constraint g —
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Optimization Problem

» Ito & Kunish (1997) showed the (steady-state) problem is
well-posed given homogeneous Dirichlet boundary
conditions for the intensity ¢

» Important that the model fit ||¢ — ¢HL2(Q)X (0.7) is not large
» Ito & Kunish analyzed gradient and SQP methods

» Summer intern Carlos Garavito demonstrated that the
functional is sensitive and robust via a slew of stochastic
simulations—distance traveled (velocity x time) must be
sufficient to induce a minimum
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Initialization

Important issue not discussed by Ito & Kunish is that of
initialization—how do you pick an initial velocity that satisfies
the diffusion equation?

» Constrained optimization problem

bo = argmin || R(b)| %o, subjecttoV-b=0 in Q
beHdiv(Q)

where

R(b) = ng L b Vi — oAl
» Technical detail: Need to go from discrete data $(x;,0) to
the initial condition /g
)/ .\ 7<)
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Optimality system
Given 1 € H}(Q), find (bo, u) € Haiv(Q) x L3(R)

/sz(vw'w)(v¢'bo)dx—/QUV-wdx: /Q (amp_ %@f)

Vi -wdx we Hdiv(Q)
/ v(V-bo)dx =0 v e L3(Q)
Q

> VeI00|ty, or drift, is contained in the quantity
oAy — 57 =b-Vy—R(b)~b-Vy when R(b)~0i.e.,
model f|t |s small

» Our assumption is that a trajectory is “modeled” by an It6
SDE so that the residual R is small; otherwise we need to

add other Markovian noise, e.g., a jump process
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lll-posed problem

» LBB satisfied but coercivity is not because
aw,w) = [ (V6 w)dx # oWl o

forsome a >0

» One possible regularization is via the mixed formulation of
the Poisson problem

a,(w,w) = a(w,w) +;f2{(w, W)2(0)+ (V- W, V-W)LZ(Q)}

» Use of Raviart-Thomas elements leads to a stable discrete
problem
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Standard DIC approach

» Taylor series approximation for the intensity about the initial
condition ¢q

$(X, 1) = ¢o(X) — Veo(X) - b(x)t + r(b(x))

» A least squares approximation leads to the rank one DIC
optimality system

(Voo ® V)b, = =t 'Vep(¢ —¢o) 0<t<rT

» Regularize by considering a collection of points about x

» Standard DIC approach does NOT recognize that the
problem is ill-posed, does not enforce a constraint on the
rotational component, solves a discrete under-determined
least squares problem
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