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Digital Image Correlation (DIC)

I DIC is a full-field image
analysis method based on
grey value digital images

I Determine the
deformation, strain of an
object subjected to a load

I Courtesy Dantec
Dynamics
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Basic DIC process

I Two cameras photograph a
“speckled” dogbone subjected to
a load

I A speckling (or contrast) occurs
by spraying a mist of black paint
over a white dogbone

I DIC tracks the speckles by
comparing the sequence of
photos, or images

I Extract deformation, strain
I Courtesy Correlated Solutions
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Problem of interest

I Given a sequence of images, we are interested in the
deformation and strain

I The rate of deformation—velocity—is given by the optical
flow constraint

∂

∂t
φ+ b · ∇φ = 0

where φ represents the image intensity
I Velocity b is assumed to be spatially varying but not

temporally
I Goal: Estimate velocity b given image intensity data φ̂

Deformation : τb
Strain : τ2(∇b)T∇b− I
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Modeling assumption

I Optical flow constraint ∂
∂tφ+ b · ∇φ = 0 assumes that the

trajectory {
ẋ(t) = b

(
x(t)

)
0 < t ≤ τ

x(0) = x0

is well-behaved
I Measured image intensity φ̂ is subject to error
I We model this error by assuming that the trajectory is

given by Itō’s stochastic differential equation{
dXt = b dt +

√
2σ dWt 0 < t ≤ τ

x(0) = x0

with the “diffusion enhanced” optical flow constraint
∂
∂tφ+ b · ∇φ = σ∆φ
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Model fit

I Image intensity evolves according to the diffusion equation
∂

∂t
φ+ b · ∇φ = σ∆φ 0 < t ≤ τ over Ωt ,

φ(x,0) = φ0(x) ,

I The difference, or “model fit”

φ(x, t)− φ̂(x, t) = Ex[φ0(Xt )
]
− φ0(Xt )

is the intensity fluctuation about the mean of a trajectory
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One dimension

I In one dimension, the term

φ(x , t) = Ex[φ0(Xt )
]

=
1√

4πσ t

∫
R

e−(x−y−bt)2/(4σ t)φ0(y) dy

is the expectation of the random variable φ0(Xt )
conditioned on the point x

I By Itō’s Lemma, the data φ̂(x, t) = φ0(Xt ) (a random
variable!) is also given by a stochastic differential equation

I Can use inference methods but we use a PDE constrained
optimization approach
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PDE constrained optimization

(φ∗,b∗) = argmin
(φ,b)∈(P×B)

(
‖φ− φ̂‖2L2(Ω)×(0,τ) +

β

2
τ‖b‖2L2(Ω)

)

subject to


∂

∂t
φ+ b · ∇φ = σ∆φ 0 < t ≤ τ

φ(x,0) = φ0(x) x ∈ Ω

∇ · b = 0 over Ω

I Ito & Kunish (1997) analyzed the steady-state version of
the above optimization problem1 (but no mention of DIC)

I The solenoidal constraint needed because otherwise the
velocity is unique up to a rotational vector

I Spaces P,B depend upon the boundary conditions for the
intensity φ and solenoidal constraint

1Thanks to Drew Kouri for help digesting the paper
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Optimization Problem

I Ito & Kunish (1997) showed the (steady-state) problem is
well-posed given homogeneous Dirichlet boundary
conditions for the intensity φ

I Important that the model fit ‖φ− φ̂‖2L2(Ω)×(0,τ)
is not large

I Ito & Kunish analyzed gradient and SQP methods
I Summer intern Carlos Garavito demonstrated that the

functional is sensitive and robust via a slew of stochastic
simulations—distance traveled (velocity × time) must be
sufficient to induce a minimum
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Initialization

Important issue not discussed by Ito & Kunish is that of
initialization—how do you pick an initial velocity that satisfies

the diffusion equation?

I Constrained optimization problem

b0 = arg min
b∈Hdiv(Ω)

‖R(b)‖2L2(Ω) subject to ∇ · b = 0 in Ω

where

R(b) =
∂ψ

∂t
+ b · ∇ψ − σ∆ψ

I Technical detail: Need to go from discrete data φ̂(xi ,0) to
the initial condition ψ0
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Optimality system

Given ψ ∈ H1
0 (Ω), find (b0,u) ∈ Hdiv(Ω)× L2(Ω)∫

Ω
(∇ψ ·w)(∇ψ · b0)dx −

∫
Ω

u∇ ·wdx =

∫
Ω

(
σ∆ψ − ∂ψ

∂t

)
∇ψ ·wdx w ∈ Hdiv(Ω)∫

Ω
v(∇ · b0)dx = 0 v ∈ L2(Ω)

I Velocity, or drift, is contained in the quantity
σ∆ψ − ∂ψ

∂t = b · ∇ψ − R(b) ≈ b · ∇ψ when R(b) ≈ 0 i.e.,
model fit is small

I Our assumption is that a trajectory is “modeled” by an Itō
SDE so that the residual R is small; otherwise we need to
add other Markovian noise, e.g., a jump process
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Ill-posed problem

I LBB satisfied but coercivity is not because

a(w,w) :=

∫
Ω

(∇φ ·w)2dx � α‖w‖Hdiv(Ω)

for some α > 0
I One possible regularization is via the mixed formulation of

the Poisson problem

aµ(w,w) := a(w,w) +µ−2
{

(w,w)L2(Ω) + (∇·w,∇·w)L2(Ω)

}
I Use of Raviart-Thomas elements leads to a stable discrete

problem
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Standard DIC approach

I Taylor series approximation for the intensity about the initial
condition φ0

φ(x, t) = φ0(x)−∇φ0(x) · b(x)t + r
(
b(x)

)
I A least squares approximation leads to the rank one DIC

optimality system(
∇φ0 ⊗∇φ0

)
b? = −t−1∇φ0(φ− φ0) 0 < t < τ

I Regularize by considering a collection of points about x
I Standard DIC approach does NOT recognize that the

problem is ill-posed, does not enforce a constraint on the
rotational component, solves a discrete under-determined
least squares problem
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