
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Developing practical stochastic
programming approaches to
power grid operations and
planning

John D. Siirola

Discrete Math & Optimization (1464)
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM USA

Texas A&M University
21 October 2015

SAND2015-9231PE

Acknowledgements

 Sandia National Laboratories

 William Hart

 Jean-Paul Watson

 Francisco Munoz (now at Universidad Adolfo Ibáñez)

 University of California, Davis

 Prof. David L. Woodruff

 Prof. Roger Wets

 Purdue University

 Prof. Carl D. Laird

 Oregon State University

 Gabe Hackebeil

 Carnegie Mellon University

 Bethany Nicholson

 Imperial College London

 Mahdi Sharifzadeh

Siirola 2

 Sandia National Laboratories

 Science & Technology Division

 Center for Computing Research

– Discrete Math and Optimization

 Sandia is a Federally-Funded Research and Development Center operated
for the U.S. Department of Energy

 Multimission national security laboratory

 Historical focus on engineering applications

 Science & Technology Division is home to the Labs’ Research Foundations

 Pursue fundamental research driven by mission needs

 Discrete Math & Optimization Department

 Conducts fundamental and applied OR/CS/Analytics research

 Focus on algorithms, modeling approaches, and scalable tools

 Partners with universities, other OR groups in Sandia “mission areas”

OR research at Sandia

Siirola 3Exceptional service in the national interest

3 threads to our research (and this talk)

Siirola 4

Implementation
Pyomo / PySP
Pyomo / GDP
Pyomo / DAE

Applications
Power grid

Water security
Advanced computing

Cyber security

Algorithms & Modeling
Progressive hedging
Block decomposition

Disjunctive programming

 Conceptually simple

 This is just a single(*) component process flow network with fixed
demands and controllable supplies

 In practice, this is complicated by
 No (significant) storage

 Dynamic constraints (ramp rates)

 Transmission limitations

 Security (reliability) requirements

 Market constraints

Operating the electric power grid

Siirola 5

    Ttlossesgenerationdemand

(*) Actually, it is a 2-component
system (real and reactive
power) with “reactors” at every
node, but for the purposes of
this talk we will follow industry’s
lead and allow a small angle
assumption to only work with the
“DC” optimal power flow model.

 [Unit Commitment]: Plan a day ahead (1600h)
 Demand forecast

 Generator bids

 Produce:

 Hourly (on/off) schedules for all participants

 Hourly interconnect schedules

 Hourly DAEM Locational Marginal Prices (LMPs)

 So what’s the problem?
 No one believes the forecast.

 Things go wrong

An ISO’s view of operating the grid (1)

Siirola 6

“Day Ahead Market”
(DAM)

/
“Day Ahead Energy
Market” (DAEM)

00h 12h 24hD-8h

D

DAEM
(UC)

 [Reliability Unit Commitment]: Modify the plan
 Reserve Adequacy Analysis – allocate reserves to meet load

 Standard: 10% reserve requirement

 Contingency analysis

 N-1: survive loss of (1) generator / line

 Produces:

 Additional commitments (DAEM respected)

 Updated generator dispatch points

An ISO’s view of operating the grid (2)

Siirola 7

00h 12h 24hD-2hD-8h

D

DAEM
(UC)

RAA

 [Economic Dispatch]: operate the grid / serve actual load
 H – 1h: Look-ahead economic dispatch

 H: Hourly economic dispatch

 H+5n: 5-minute economic dispatch

 Produces:

 Updated dispatch points (generator output levels)

 Additional commitments (fast-start units)

An ISO’s view of operating the grid (3)

Siirola 8

00h 12h 24hD-2hD-8h

D

DAEM
(UC)

HH-1h

RAA ED

 Nondispatchable generation (renewables)
 Frequently treated as “must-take” resources

 Appears as “negative demand”

 Less predictable than consumer demand

 Increased reserve requirement

Given the lights are on, why care?

Siirola 9

0% and 30% renewable penetration for an “easy week” in July.
Reproduced from NREL 2010 Western Wind and Solar Integration Study

 Nondispatchable generation (renewables)
 Increased ramping of base-load generation

 Results in increased O&M costs and higher forced outage rates

 Can we reduce cost by explicitly addressing uncertainty?

Given the lights are on, why care?

Siirola 10

0% and 30% renewable penetration for an “challenging week” in April.
Reproduced from NREL 2010 Western Wind and Solar Integration Study

Stochastic Unit Commitment

Siirola 11

 Many options for capturing uncertainty
 Sampling / Surrogate methods / Robust optimization /

(Approximate) dynamic programming / Stochastic programming

 We focus on stochastic programming

 Capture problem uncertainty as a set of possible scenarios

 Solve to select a single answer that optimizes across all scenarios

Optimization under Uncertainty

Siirola 12

t = 0 t = 1 t = 2

… … …

… … …

… … …

… … …

t = 0 t = 1 t = 2

Sample
Uncertainty

 Many options for capturing uncertainty
 Sampling / Surrogate methods / Robust optimization /

(Approximate) dynamic programming / Stochastic programming

 We focus on stochastic programming

 Capture problem uncertainty as a set of possible scenarios

 Solve to select a single answer that optimizes across all scenarios

Optimization under Uncertainty

Siirola 13

t = 0 t = 1 t = 2

… … …

… … …

… … …

… … …

t = 0 t = 1 t = 2

Sample
Uncertainty

…
…

…

…

t = 0 t = 1 t = 2

Add
NAC

 Pyomo is…
 A library of classes for expressing optimization models in Python?

 A collection of tools for importing and exporting data?

 A set of interfaces to numerous LP, MIP, NLP, and MINLP solvers?

 An executable that takes a model & data, sends it to a solver, and
reports the final solution?

 A collection of routines for manipulating optimization models?

 A collection of optimization algorithms implemented in Python?

 A software environment for teaching optimization?

 An open-source community for applied OR research?

 But doesn’t this sound a lot like
AMPL, GAMS, AIMMS, gPROMS, …?
 Why did we “reinvent the wheel”?

Pyomo: PYthon Optimization Modeling Objects

Siirola 14

 10 years ago…

 Modeled primarily in AMPL (with some GAMS)

 Developed solvers primarily in C++ (with MPI)

 PICO, Coliny, DAKOTA, Opt++, APPSPACK

 This model worked, but…

 Large code bases were unwieldly and not easily extensible

 Commercial modeling environments lacked support for “higher level”
modeling constructs, e.g. stochastic programming

 No obvious path to implementing “meta algorithms”

 Require frequent calls to optimization codes to solve subproblems

 Difficult to implement in optimization modeling environments

 Tedious to code directly against a solver’s API (and then you are tied to that solver)

 Difficult to transfer our results to other organizations

 Difficult to incorporate new ideas developed by the broader OR community

 Dampened our ability to rapidly prototype ideas and explore new areas

 We increasingly found ourselves providing optimization support to larger projects

Why we needed Pyomo

Siirola 15

Pyomo at a Glance

Solver Interfaces

GLPK

CPLEX

Gurobi

Xpress

CBC

BARON

OpenOpt

Ipopt

KNITRO

Bonmin

AMPL Solver Library

Core Modeling
Objects

NEOS

Couenne

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Core Optimization
Objects

Model
Transformations

DAKOTA

Siirola 16

More than just mathematical modeling…

Meta-solvers
 Integrate scripting and/or transformations into optimization solver

 Leverage Python’s introspective nature to build “generic” capabilities

 e.g., progressive hedging, Benders decomposition

Model transformations (a.k.a. reformulations)
 Automate generation of one model from another

 Leverage Pyomo’s object model to apply transformations sequentially

 e.g., DAE  NLP, GDP  Big M

Scripting
 Construct models using native Python data

 Iterative analysis of models leveraging Python functionality

 Data analysis and visualization of optimization results

Siirola 17

 Step 1: write the deterministic model (in Pyomo)
 You’ve (probably) already done this

 Step 2: generate scenario data
 This is the hardest part (for UC, it took 2 years)

 Step 3: PySP expands the model & adds the NACs

PySP: SP made Simple

Siirola 18

t = 0 t = 1 t = 2

… … …

… … …

… … …

… … …

t = 0 t = 1 t = 2

Sample
Uncertainty

…
…

…

…

t = 0 t = 1 t = 2

Add
NAC

 The PySP process is conceptually no different than you would
do in any other AML
 Except in a traditional AML you would have to explicitly add and track

the scenario index and add the NAC

 If the Extensive Form is solvable, no significant difference between
PySP and AMPL / GAMS / AIMMS…

 But what if it’s not solvable?

 Structure: The real power of PySP
 PySP explicitly understands the structure of the problem

 We can automate decomposition strategies

 Stage-wise decomposition (e.g., Benders decomposition)

 Scenario-wise decomposition (e.g., Progressive hedging)

“So what?”

Siirola 19

Progressive Hedging: the algorithm

Siirola 20

Solve individual
scenario subproblems
��∗, ��∗ = argmin

�,�
��(�, �)

Start
Initialize �

�� = �(� − �̅)

Fix � that have converged
� − �̅ ≤ � ?

�	converged?
� − ���

� < �

Solve individual
weighted scenario subproblems

��∗, ��∗ = argmin
�,�

��(�, �) + ��� +
�

2
� − �̅ �

Update �
� = � + �(� − �̅)

No

“Done”

…
…

…

…

t = 0 t = 1 t = 2

t = 0 t = 1 t = 2

… … …

… … …

… … …

… … …

optimize
optimize

optimize
optimize
optimize

optimize

optimize
optimize

optimize

Stochastic Unit Commitment (at scale)

0 5 10 15 20 25

0

2

4

6

8

10

12

14

16

Hour of day

G
e

n
e

ra
to

r
N

u
m

b
e

r

… Scenario NScenario 2Scenario 1

First stage variables:
• Unit On / Off

Second stage variables
(per time period):

• Generation levels
• Power flows
• Voltage angles
• …

Nature resolves uncertainty
• Load
• Renewables output
• Forced outages

p2
p1 pN…

Objective: Minimize expected cost

[J.-P. Watson, D. Woodruff]

Siirola 21

Progressive Hedging Results: WECC-240++

ISO-NE results are obtained on Red Sky on average in 10 minutes,
20 minutes in the worst case (with 100 scenarios)

166
119
167
212
280
315

Latest…

Siirola 22

Improved UC Formulations?
 Morales-Espana et al. (2013)

 Extends prior tight formulation by Ostrowski et al.

 Shows off advantage of PH, in that improved deterministic
models immediately impact stochastic solve times

 Results

 ISO-NE results drop to 15 minutes maximum (10 average)

Siirola 23

 Cost-savings analysis for ISO-NE
 2004 Eastern Wind data

 50 wind scenarios per day

 Generated using our tool chain based on epi-splines

 (Simulated) actual taken from NREL database

 1 load scenario per day

 Expected load computed using our epi-spline tool chain

 Models fit using historical ISO-NE 2011 data

 Actual taken from actual ISO-NE 2011 data

 “Platinum” standard simulation, i.e., rolling horizon

 Wind is not modeled as must-take

 Per advice from NREL

 In practice, there are days at these penetration levels in which it is
impossible to use net load formulations w/o shedding

So what is the impact? ISO-NE analysis

Siirola 24

Cutting to the Chase: Cost Savings

 Computed in terms of relative cost increase of deterministic
(w/ 10% reserves) over stochastic (w/ 2% reserves)
 Yes, this implies that stochastic does win (but)…

 Results in terms of percentages
 Q1: 1.52%

 Q2: 1.31%

 Q3: 0.89%

 Q4: 1.23%

 Not as significant as we would have anticipated, given the
large wind penetration levels we simulated
 For various reasons, we believe these results underestimate savings

Siirola 25

Cutting to the Chase: Cost Savings

 Computed in terms of relative cost increase of deterministic
(w/ 10% reserves) over stochastic (w/ 2% reserves)
 Yes, this implies that stochastic does win (but)…

 Results in terms of percentages
 Q1: 1.52%

 Q2: 1.31%

 Q3: 0.89%

 Q4: 1.23%

 Not as significant as we would have anticipated, given the
large wind penetration levels we simulated
 For various reasons, we believe these results underestimate savings

~$ 4M per month

~$ 3M per month

~$12M per month

~$2.5M per month

$64.5M “estimated savings” for 2011

Siirola 26

Reliability Results

 We did not report load shedding and/or reserve shortfalls in
the previous cost savings statistics
 Placing arbitrary penalty values on these quantities is not useful

 Distinct reporting allows more insight into system behaviors

 Stochastic UC
 One load shedding event – peak day in July

 Incurred due to particularly bad load forecast

 Deterministic UC
 Five load shedding events – including the peak day in July

 Additionally incurs reserve margin shortfalls on approximately
10% of all days in 2011

 Summary
 Stochastic UC, despite lower reserve margins, is more reliable

Siirola 27

Power grid contingency analysis

Siirola 28

 U.S. ISO’s must operate with “N-1” reliability
 System must be able to “survive” loss of 1 generator / (non-radial) line

 Not explicitly included in Unit Commitment model

 Practice is to include “proxy constraints” and post-solve verification

 Some studies indicate that intentionally switching lines could
improve contingency response
 UC + N-1 + Transmission switching (e.g. [Hedman, et al. 2010])

 “Just allowing processing [of the RTS-96 test case] at the root node
typically takes 20h on a desktop workstation…”

 “While reducing [the] optimality gap to zero is an interesting academic
issue…”

 Case study: RTS-96 test case
 73 busses, 115 non-radial lines, 99 generators

 214 contingencies

Power grid contingency analysis

Siirola 29

[with J.-P. Watson]

The solution: UC + Transmission Switching + N-1

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission
Switching With N-1 Reliability," IEEE Trans Power Systems, 25(2), pp.1052-1063, 2010

Siirola 30

The challenge: MP is dense and subtle

Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission
Switching With N-1 Reliability," IEEE Trans Power Systems, 25(2), pp.1052-1063, 2010

To a first approximation:

- DCOPF
- Economic dispatch
- Unit commitment
- Transmission switching
- N-1 contingency

Siirola 31

(Nonobvious) Inherent structure

contingencies

N-1 Economic Dispatch

nominal case

Unit Commitment

EDOPFSwitching

Siirola 32

 “2-D” grid of linked optimal power flow models

UC + N-1 + Switching block structure

Switched

OPF
Switched

OPF
Switched

OPF
Switched

OPF

OPF OPF OPF OPF

OPF OPF OPF OPF

OPF OPF OPF OPF

D
et

er
m

in
is

ti
c

U
n

it
 C

om
m

it
m

en
t

C
on

ti
n

ge
n

ci
es

Siirola 33

Explicitly expose disjunctive decisions

 Transmission switching:

 Generation
















 0)(21 kct

kct

kkkkct

kct

P
z

BP
z























































































0

)|(

1

1

1
1

1

gt

gtgt
SD
g

kt
SD
ggt

ktkt

gtgt
SU
g

SU
gggtgt

kt

gtgtg

gtgtg

ggtgt

gt

P

PPR

ucC

vu

PPR

ccPC

v

PPR

PPR

cPC

u

Siirola 34

Embed within structured model

~~

~

~
Switchable Transmission LineNetwork Model

Bus model

Switchable Generator

Current Balance
(KCL)

Transmission Line
Power Flow Model

V

Start-Up
Model

)

Ramp Limits (

V Generation
Model

V

Siirola 35

 If the N-1 model has all this structure, why do we write it

 What I want:
 Clear, structured syntax

 Explicit disjunctions

 Express block structure

 Define meaningful components

 “bus,” “line,” “generator”

 Control how this gets mapped to the solver

Expressing & preserving modeler intent

Siirola 36

What do these have in common?

� = � + �
� ≤ � ⋅ �

� ≥ 0
� ∈ 0,1

� = � + �
� ≤ � ⋅ �

� ≤ � 1 − �
� − 3 = � − �

� ≥ 0
� ≥ 0

� ∈ 0,1

� = (� − 3)�+�� = (� − 3)�+�

� =
2(� − 3)

1 + ��	
���
�

− � + 3� =
2(� − 3)

1 + ��	
���
�

− � + 3

� ≥ � − 3
� ≥ 3 − �
� ≥ � − 3
� ≥ 3 − �

� = � + �
� − 3 = � − �
� ≥ 0 ⊥ � ≥ 0

� = � + �
� − 3 = � − �
� ≥ 0 ⊥ � ≥ 0

Siirola 37

What do these have in common?

� = � + �
� ≤ � ⋅ �

� ≥ 0
� ∈ 0,1

� = � + �
� ≤ � ⋅ �

� ≤ � 1 − �
� − 3 = � − �

� ≥ 0
� ≥ 0

� ∈ 0,1

� = (� − 3)�+�� = (� − 3)�+�

� =
2(� − 3)

1 + ��	
���
�

− � + 3� =
2(� − 3)

1 + ��	
���
�

− � + 3

� ≥ � − 3
� ≥ 3 − �
� ≥ � − 3
� ≥ 3 − �

� = � + �
� − 3 = � − �
� ≥ 0 ⊥ � ≥ 0

� = � + �
� − 3 = � − �
� ≥ 0 ⊥ � ≥ 0

� = ���(� − 3)� = ���(� − 3)

If we mean “� = ���(� − 3)”,
why don’t we write that in our models???

Siirola 38

A new solution workflow

 Model Transformations: Projecting problems to problems
 Project from one problem space to another

 Standardize common reformulations or approximations

 Convert “unoptimizable” modeling constructs into equivalent
optimizable forms

+Model Data Compile Problem

Solve

Transform

Siirola 39

model = ConcreteModel()

[…]

TransformFactory(“abs.complements”).apply(model, inplace=True)

TransformFactory(“mpec.disjunctive”).apply(model, inplace=True)

TransformFactory(“gdp.bigm”).apply(model, inplace=True)

A transformation-centric view of abs()

 Chaining transformations

0,0

)1(
0,0

0000

)(






































































xx

yMx

Myx

xxx

xxf

xx

x

Y

x

Y
xxx

xxf

xx

xxx

xxf

xabsf

Siirola, p. 40Siirola

Why are we interested in transformations?

 Separate model expression from how we intend to solve it
 Defer decisions that improve tractability until solution time

 Explore alternative reformulations or representations

 Support solver-specific model customizations (e.g., abs())

 Support iterative methods that use different solvers requiring
different representations (e.g., initializing NLP from MIP)

 Support “higher level” or non-algebraic modeling constructs
 Express models that are “closer” to reality, e.g.:

 Piecewise expressions

 Disjunctive models (switching decisions & logic models)

 Differential-algebraic models (dynamic models)

 Bilevel models (game theory models)

 Reduce “mechanical” errors due to manual reformulation

Siirola 41

 Pyomo is an object model
 Extensions declare new object classes (components)

 Supports annotating model components

 Transformations can detect presence of relevant components

 Core code (e.g., problem writers) can validate supported components

 Whole model (including expressions) is transparent and manipulatable

 Pyomo natively supports hierarchical models
 “Block”: collection of modeling components (e.g., Sets, Prams, Vars)

 Namespacing: component names must only be unique within a block

 Blocks can contain blocks: hierarchical structure

 Many modeling extensions derive from Block

 Transformations can be “sandboxed” in transformation-specific Blocks

Why transformations in Pyomo?

Siirola 42

Expressing disjunctive programming

 Disjunctions: selectively enforce sets of constraints
 Sequencing decisions: x ends before y or y ends before x

 Switching decisions: a process unit is built or not

 Alternative selection: selecting from a set of pricing policies

 Implementation: leverage Pyomo “blocks”
 Disjunct:

 Block of Pyomo components

– (Var, Param, Constraint, etc.)

 Boolean (binary) indicator variable determines
if block is enforced

 Disjunction:

 Enforces logical XOR across a set of Disjunct indicator variables

 (Logic constraints on indicator variables)

 

  trueY

c

oxh
Y

ikk

ik

ik

Di k




















 
V

Siirola 43

Solving disjunctive models

 Few solvers “understand” disjunctive models
 Transform model into standard math program

 Big-M relaxation:

 Convert logic variables to binary

 Split equality constraints in disjuncts into pairs of inequality constraints

 Relax all constraints in the disjuncts with “appropriate” M values

– Automatically calculate M values for linear expressions

 Convex hull relaxation (Balas, 1985; Lee and Grossmann, 2000)

 Disaggregate variables in all disjuncts

 Bound disaggregated variables with Big-M terms

Siirola 44

 What is the key challenge in disjunctive programming?

 Big-M: small formulation ↔ weak LP relaxation

 Convex Hull: tight(er) relaxation ↔ larger formulation

 Idea: apply preprocessing to probe the model and customize the
transformation on a disjunction-by-disjunction basis

 Key operation: Basic Step [Balas, 1985]
��

��� ≤ 0
⋁

��
��� ≤ 0

��
��� ≤ 0

⋁
��

��� ≤ 0


��⋀��
��� ≤ 0
��� ≤ 0

⋁
��⋀��
��� ≤ 0
��� ≤ 0

⋁
��⋀��
��� ≤ 0
��� ≤ 0

⋁
��⋀��
��� ≤ 0
��� ≤ 0

 Approach 1: [Trespalacios and Grossmann, 2014]

 Identify key disjunctions to combine using basic steps, relax with convex hull

 Relax the balance of the disjunctions with big-M

 Approach 2: [Trespalacios and Grossmann, In Press]

 Identify key disjunctions as before, but apply basic steps to a copy of the model

 Solve a series of separation problems between the big-M relaxation of the original
model the convex hull relaxation of the modified model + basic steps.

– Add separation cuts to the original model

Scripting complex transformations

Siirola 45

[with M. Sharifzadeh, F. Trespalacious]

 Performance profiles for a family of constrained layout, strip packing, and
process synthesis test problems from minlp.org

Impact on solution time

Siirola 46

UC + N-1 + Switching model

~~

~

~
Switchable Transmission LineNetwork Model

Bus model

Switchable Generator

Current Balance
(KCL)

Transmission Line
Power Flow Model

V

Start-Up
Model

)

Ramp Limits (

V Generation
Model

V

Siirola 47

Optimal Solution of RTS-96

 From Hedman, et al. 2010
 N-1 UC solution: 3,245,997

 N-1 UC w/ Switching: 3,125,185 (2 pass UC+switching heuristic)

 Restructured problem (complete N-1 UC w/ switching):

 Solution (1e-4 gap): 2,990,004 (60,000 sec)

 Automated Big-M relaxation (including automatic M calculation)

 Default CPLEX settings

Rows Columns Binaries

Raw model 21,232,224 13,129,692 3,796,830

After presolve 2,471,714 1,249,976 187,194

Rows Columns Binaries

Raw model 5,118,760 1,501,177 5,184

After presolve 2,634,851 1,062,290 4,476

Siirola 48

 Consider the Benders “feasibility” cut:
 Given �∗ computed by the RMP, if subproblem is unbounded, add a

cut determined by an extreme ray in the dual space to the RMP

 In PH, a similar operation would be fix the values of � in
subproblem �� to the values computed by subproblem ��:

min
�

��(�
�∗, �)

 If the problem is infeasible, then we can solve a separation problem
(in the primal space) to determine a valid cut in the 1st-stage variables:

min
�,�

� − ��∗
�

�. �. 			��� (�, �)

 Notes:

 ��� is the continuous relaxation of ��  not guaranteed to generate a cut

 The resulting cut is valid for all scenario subproblems

 ∑����(�
�∗, ��∗) for initial scenario solves (� = 0) gives Lagrangian bound

Improving PH: borrowing from Benders

Siirola 49

 2-stage unit commitment model for the electric power grid
 24-hour horizon, 1-hour commitment intervals

 Explicitly include N-1 analysis (loss of any 1 generator / non-radial line)

 Each contingency modeled as a no-cost recourse scenario

 Case 1: 5 busses, 7 generators (13 scenarios):
 Optimal solution (extensive form): 19.9756

 Default PH (� = 1):

 17 iterations, objective = 22.9997, total time 123 seconds

 PH (� = 1) + Feasibility cuts:

 3 feasibility cut iterations at PH iteration 0

– Improved Lagrangian bound from 19.7 to 19.909

 13 iterations, objective = 23.14, total time 1300 seconds

Case study: UC + N-1 analysis

Siirola 50

 How do we get “good” values of �?
 Currently: experimentation

 Challenge: � is problem dependent

 Too low and PH never converges

 Too high and PH rapidly converges to suboptimal solution

 Hint: scale relative to cost of each variable [Watson & Woodruff, 2011]

 We can get good cost estimates from the subproblem duals

 When we evaluate ��(�
�∗, �), record the duals for � = ��∗

 Compute average duals weighted relative to scenario probability

 Adds two new scalar tuning parameters:
 Dual scaling factor and a change damping factor

Improving PH: setting �

Siirola 51

 Recall:
 Optimal solution (extensive form): 19.9756

 Default PH (� = 1):

 17 iterations, objective = 22.9997, total time 123 seconds

 PH (� = 1) + Feasibility cuts:

 3 feasibility cut iterations at PH iteration 0

– Improved Lagrangian bound from 19.7 to 19.909

 13 iterations, objective = 23.14, total time 1300 seconds

 Now:
 PH + Feasibility cuts + � setter (rhoScale = 0.5)

 12 iterations, objective = 19.9814, total time 1060 seconds

Case studies: UC + N-1 analysis

Siirola 52

Power system expansion planning

Siirola 53

Power system expansion planning

Solar Resources (NREL) Wind Resources (NREL) U.S. Transmission System (FEMA)

Zone Scenario Generation and Transmission Cost
(MISO, 2010)

Goal:

Identify most cost effective combination
of transmission and generation
investments to meet:

1) Forecasted demand
2) Renewable and environmental goals

[F. Munoz, J.-P. Watson]

Siirola 54

• Reported literature results
• Often applied to small test cases

• Usually consider only a few scenarios (often just one)

• Exception: Munoz et al (2014) solved WECC 240-bus system using
Benders decomposition.

 Considered 8,736 scenarios, 87 hours to attain a 2.4% optimality gap.

 Investigate scenario reduction and progressive hedging
 2-stage planning model:

 Investments: Generation (continuous) + Transmission (binary)

 Operations: Economic dispatch (DCOPF) + Soft constraint enforcing RPS

 Scenario reduction

 k-means clustering

 How many clusters (scenarios) do we really need?

Tackling planning at scale

Siirola 55

[F. Munoz, J.-P. Watson]

Assessing Solution Quality

Upper Bound: Full resolution economic dispatch model

Could also use:

- Production cost model (e.g., PLEXOS)
- Monte Carlo simulation with component failures

Lower Bound: LP relaxation of MILP investment problem with clustered data
LP provides tight lower bound on optimal TC of MILP

To
ta

l C
o

st

Number of Clusters

PH Solution

Optimality gap wrt LP relaxation of extensive form

Optimality gap wrt
global optimum
(upper bound,

Munoz et al (2014))

Optimality gap of PH solution wrt true operating costs

Siirola 56

Experiments: WECC-240 system

Our Hardware Environments
• Red Sky/Red Mesa HPC: 43,440 cores of Intel Xeon series processors, 64TB of RAM (12 GB per node)

• Multi-Core SMP Workstation: 48-core Intel Xeon, 2.3 GHz, 512 GB RAM (~$20K)

Description
• Dataset of 8,736 historical observations of load, wind, solar, and hydro levels for year 2004

• Results in ~15M variables and ~35M constraints

• 257 generation investment variables (continuous)

• 339 variables for transmission backbones (binary)

• 31 variables for interconnections to renewable hubs (integer)

Economic
dispatch
week 1

Trial investment plan

Economic
dispatch
week 2

Economic
dispatch
week 2

Upper
bound

Scenario
or bundle 1

Scenario
or bundle 2

Scenario
or bundle N

Clustered time-dependent data

Trial
investment

plan

Lower
bound

Siirola 57

Computational Performance

Extensive form, 100 scenarios
• CPLEX, no feasible solution after 1 day on a 48-core workstation

Progressive Hedging, 100 scenarios
• Red Mesa: ~15 minutes, 186 iterations until full convergence of investment variables

• Workstation: ~31 minutes, 180 iterations until full convergence of investment variables

(3) LB from solving extensive form LP relaxation : $555.4B

(2) Expected cost from PH : $565.7B

(1) UB from investment cost PH + true operating cost : $582.7B

Gap LP = 1.82%

Gap UB = 2.9%

Gap LP => How suboptimal is the solution found using PH w.r.t. LP relaxation (not zero!!)
Gap UB => Difference between operating costs using clustered vs. full dataset

Total Gap => 3.5% (w.r.t. best lower bound)

Siirola 58

Computational Performance

0%

2%

4%

6%

8%

10%

12%

14%

16%

400

450

500

550

600

650

700

0 100 200 300 400 500

O
p

ti
m

a
li
ty

 G
a
p

T
o

ta
l

C
o

s
t

[$
B

]

Number of Clusters

Total Cost PH

Lower Bound

Upper Bound

Gap

Convergence of upper and lower bounds

Expected value problem,
upper bound on VSS ~$100B

Siirola 59

500-scenario problem

• Red Mesa HPC: 1.9 hrs.

• Workstation : 8.7 hrs.

 Pyomo is a full-featured, extensible, open source AML
 …and we always welcome new users

 Pyomo enables our applied OR research
 Transformation-centric approach to modeling

 Extensions to new (or non-algebraic) modeling paradigms

 …stochastic, dynamic, disjunctive

 Development of new solution approaches

 Decomposition-based algorithms

 Problem analysis, cut generation, hybrid algorithms

 Pyomo is the vehicle through which we impact applications
 Stochastic unit commitment at scale

 Operations with explicit contingency analysis

 System expansion planning

Summary

Siirola 60

 For more information…

 Project homepages

 http://www.pyomo.org

 http://software.sandia.gov/pyomo

 User mailing lists

 pyomo-forum@googlegroups.com

 “The Book”

 Mathematical Programming Computation papers
 Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)

 PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)

Thank you!

Siirola 61

