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OR research at Sandia rh) s

Sandia National Laboratories
= Science & Technology Division
= Center for Computing Research
— Discrete Math and Optimization

= Sandiais a Federally-Funded Research and Development Center operated
for the U.S. Department of Energy

= Multimission national security laboratory
= Historical focus on engineering applications
= Science & Technology Division is home to the Labs’ Research Foundations
=  Pursue fundamental research driven by mission needs
= Discrete Math & Optimization Department
= Conducts fundamental and applied OR/CS/Analytics research
= Focus on algorithms, modeling approaches, and scalable tools
= Partners with universities, other OR groups in Sandia “mission areas”
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Sandia

3 threads to our research (and this talk) @tz

Applications
Power grid
Water security
Advanced computing
Cyber security
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Operating the electric power grid ) S

= Conceptually simple

Z demand = Z generation — Z losses VteT

= This is just a single(*) component process flow network with fixed
demands and controllable supplies

= |n practice, this is complicated by

= No (significant) storage

= Dynamic constraints (ramp rates) (*) Actually, it is a 2-component
system (real and reactive
power) with “reactors” at every

= Security (reliability) requirements node, but for the purposes of
this talk we will follow industry’s
lead and allow a small angle
assumption to only work with the
"CCR “DC” optimal power flow model.

" Transmission limitations

= Market constraints




An ISO’s view of operating the grid (1) @&.

= [Unit Commitment]: Plan a day ahead (1600h)

= Demand forecast )
= Generator bids “Day Ahead Market”
= Produce: >_ (D'A/‘M)
= Hourly (on/off) schedules for all participants “Day Ahead Energy
" Hourly interconnect schedules Market” (DAEM)
* Hourly DAEM Locational Marginal Prices (LMPs) )
= So what’s the problem?
= No one believes the forecast. I
= Things go wrong
DAEM
(UC) —r--bht—_
"‘CCR D-8h 00h 12h 24h
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An ISO’s view of operating the grid  (2) @&x.

= [Reliability Unit Commitment]: Modify the plan
= Reserve Adequacy Analysis — allocate reserves to meet load
= Standard: 10% reserve requirement
= Contingency analysis
= N-1:survive loss of (1) generator / line

= Produces:
= Additional commitments (DAEM respected)
= Updated generator dispatch points

%/
DAEM RAA

(U.C) l R —l

#CCR D-8h D-2h 00h 12h 4h




An ISO’s view of operating the grid  (3) @&x.

= [Economic Dispatch]: operate the grid / serve actual load

= H-1h: Look-ahead economic dispatch

= H: Hourly economic dispatch
= H+5n: 5-minute economic dispatch
= Produces:

= Updated dispatch points (generator output levels)
= Additional commitments (fast-start units)

-

DAEM RAA ED
#CCR D-8h D-2h 00h  H-1h H 12h 24h

Siirola 8




Given the lights are on, why care?

Sandia
m National
Laboratories

= Nondispatchable generation (renewables)

= Frequently treated as “must-take” resources

= Less predictable than consumer demand

= Appears as “negative demand”

= Increased reserve requirement
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0% and 30% renewable penetration for an “easy week” in July.
Reproduced from NREL 2010 Western Wind and Solar Integration Study




Given the lights are on, why care?

= Nondispatchable generation (renewables)

= |ncreased ramping of base-load generation

= Results in increased O&M costs and higher forced outage rates

= Can we reduce cost by explicitly addressing uncertainty?

Sandia
National _
Laboratories
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®Nuclear

15-Apr  16-Apr

50,000

30,000

20,000

10,000

10-Apr  11-Apr  12-Apr  13-Apr  14-Apr  15-Apr

16-Apr

o?
o
®5%
Center for Computing Research

0% and 30% renewable penetration for an “challenging week” in April.
Reproduced from NREL 2010 Western Wind and Solar Integration Study
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Stochastic Unit Commitment h) i,
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Optimization under Uncertainty ) .

= Many options for capturing uncertainty

= Sampling / Surrogate methods / Robust optimization /
(Approximate) dynamic programming / Stochastic programming
= We focus on stochastic programming
= Capture problem uncertainty as a set of possible scenarios
= Solve to select a single answer that optimizes across all scenarios

{ Sample }
Uncertainty
O >0 >0
4 ° >0 >0
o >O >0
O >0 >0
° >0 >0
o >0 >0 .< o >0 >0
> :
t=0 t=1 t=2 o >0 >0
O >0 >0
o >0 >0
~ >
. t=0 t=1 t=2
#CCR

Siirola 12




Optimization under Uncertainty ) .

= Many options for capturing uncertainty

= Sampling / Surrogate methods / Robust optimization /
(Approximate) dynamic programming / Stochastic programming
= We focus on stochastic programming
= Capture problem uncertainty as a set of possible scenarios
= Solve to select a single answer that optimizes across all scenarios

{ Sample } {Add}
Uncertainty NAC
/‘

>0
>0
>O
>0
>0
>0

SR ESD

e Q-0 0 O

>0
>0

Q0O Ounn
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Pyomo: PYthon Optimization Modeling Objects ) e

= Pyomo is...
= Alibrary of classes for expressing optimization models in Python?
= A collection of tools for importing and exporting data?
= A set of interfaces to numerous LP, MIP, NLP, and MINLP solvers?

= An executable that takes a model & data, sends it to a solver, and
reports the final solution?

= A collection of routines for manipulating optimization models?
= A collection of optimization algorithms implemented in Python?
= A software environment for teaching optimization?

= An open-source community for applied OR research?
= But doesn’t this sound a lot like ‘
AMPL, GAMS, AIMMS, gPROMS, ...? ‘/‘pYOMO
= Why did we “reinvent the wheel”?
#CCR

Siirola 14




Why we needed Pyomo h) ..

= 10 vyears ago...
= Modeled primarily in AMPL (with some GAMS)
= Developed solvers primarily in C++ (with MPI)
= PICO, Coliny, DAKOTA, Opt++, APPSPACK
= This model worked, but...
= Large code bases were unwieldly and not easily extensible

= Commercial modeling environments lacked support for “higher level”
modeling constructs, e.g. stochastic programming

= No obvious path to implementing “meta algorithms”
= Require frequent calls to optimization codes to solve subproblems
= Difficult to implement in optimization modeling environments
= Tedious to code directly against a solver’s API (and then you are tied to that solver)
= Difficult to transfer our results to other organizations
= Difficult to incorporate new ideas developed by the broader OR community
= Dampened our ability to rapidly prototype ideas and explore new areas
= We increasingly found ourselves providing optimization support to larger projects

o?
.'i'-
Center for Computing Research
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Pyomo at a Glance ) e

6 ‘ o CPLEX
T
) PYDMO Solver Interfaces Gurobi
Xpress
Meta-Solvers i
» Generalized Benders Core Optimization GLPK
* Progressive Hedging .
* Linear bilevel Objects —
» Linear MPEC BARON
Core Modeling OpenOpt
Objects NEOS
Modeling Extensions _
« Disjunctive programming siilFL sl LIsGEDy
« Stochastic programming Model - lpopt
* Bilevel programming Transformations L™ KNITRO
« Differential equations -
« Equilibrium constraints —___Bonmin
K i — Couenne
. —  DAKOTA
“CCR

Siirola 16




More than just mathematical modeling... @&,

Meta-solvers
" |ntegrate scripting and/or transformations into optimization solver
= Leverage Python’s introspective nature to build “generic” capabilities

= e.g., progressive hedging, Benders decomposition

Model transformations (a.k.a. reformulations)
= Automate generation of one model from another
= Leverage Pyomo’s object model to apply transformations sequentially
= e.g., DAE 2> NLP, GDP - Big M

Scripting
= Construct models using native Python data
= |terative analysis of models leveraging Python functionality
= Data analysis and visualization of optimization results

o?
.'i'-
Center for Computing Research
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PySP: SP made Simple

= Step 1: write the deterministic model (in Pyomo)
= You’ve (probably) already done this

= Step 2: generate scenario data
= This is the hardest part (for UC, it took 2 years)

= Step 3: PySP expands the model & adds the NACs

Sandia
National _
Laboratories

{ Sample } {Add}
Uncertainty NAC
~ 1) o
; \
O >0
‘? TC)\ >0
o >0 >0 .< o 30’ >0
> . . .
t=0 t=1 t=2 o >0
O >0
>0
~ >
t=0 t=1 t=2

21 R
o ‘ ‘

5
Center for Computing Research

Siirola

18




“So what?” =

= The PySP process is conceptually no different than you would
do in any other AML

= Exceptin a traditional AML you would have to explicitly add and track
the scenario index and add the NAC

= |f the Extensive Form is solvable, no significant difference between
PySP and AMPL / GAMS / AIMMS...

= But what if it’s not solvable?

= Structure: The real power of PySP
= PySP explicitly understands the structure of the problem

= We can automate decomposition strategies
= Stage-wise decomposition (e.g., Benders decomposition)
= Scenario-wise decomposition (e.g., Progressive hedging)

o?
o
®5%
Center for Computing Research
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Progressive Hedging: the algorithm )

Solve individual —
Start > Scenario subproblems >  Initialize w
x",y"* = argmin f;(x,y) Wy = p(x — X)

Xy

x converged?

Fix x that have converged
lx — x| <e?

v

Solve individual
weighted scenario subproblems

o >0 >0 timi I* o ix - T P _ 2
S—e— o] x*,y!* = argmin f;(x,y) + wx + 2 ||lx — |
o >0 >0 optimize LY
(o, >0 >0 optimize
_C >_C >_O optimize
° >0 >0
n n n
g ,‘:C ;g optimize

>0 > optimize
o >0 > Update w

> w=w+p(x —X)

HCCR t=0 t=1 t=2

Center for Computing Research
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Stochastic Unit Commitment (at scale) iz
[J.-P. Watson, D. Woodruff]

Objective: Minimize expected cost First stage variables:
OO TNET I IR » Unit On / Off
Nature resolves uncertainty
L nit + Load
 Renewables output
? ? # « Forced outages

P4 P, PN i

Second stage variables
(per time period):
« Generation levels
» Power flows
« Voltage angles

Scenario 1 Scenario 2 Scenario N
#CCR

Siirola 21




Progressive Hedging Results: WECC-240++

mh
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Laboratories

Table 7 Solve time (in seconds) and solution quality statistics for PH executing on the WECC-
240-r1 instance, with a = 0.5, p = 6, and v = 0.025

# Scenarios  Convergence Metric  Obj. Value PH L.B. # Vars Fx. Time
64-Core Workstation Results Latest...

3 0.0 (20 iters) 64213.397 63235.381 4080 508 166

5 0.0 (in 18 iters) 62642.531 61767.253 4079 674 119

10 0.0 (in 35 iters) 61396.553 60476.604 4066 648 167

25 0.0 (in 22 iters) 60935.040 59992.622 4066 761 212

50 0.0 (in 15 iters) 60625.149 59631.839 4034 1076 280

100 0.0 (in 25 iters) 61155.387 60014.571 4080 1735 315

Red Sky Results
50 0.0 (in 16 iters) 60623.343 59779.813 4007 404
100 0.0 (in 25 iters) 61120.943 60275.744 4080 549

ISO-NE results are obtained on Red Sky on average in 10 minutes,
#/CCR 20 minutes in the worst case (with 100 scenarios)

Siirola
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Improved UC Formulations? ) i,
= Morales-Espana et al. (2013)

= Extends prior tight formulation by Ostrowski et al.

= Shows off advantage of PH, in that improved deterministic
models immediately impact stochastic solve times

= Results

Table 10 Solve time (in seconds) and solution quality statistics for PH executing on the
WECC-240-r1 instance, with a = 0.5, ¢ = 3, and the MTR deterministic UC model.

# Scenarios  Convergence Metric Obj. Value PH L.B. # Vars Fx. Time

64-Core Workstation Results

3 0.0 (in 36 iters) 64141.771 64109.021 4080 237
5 0.0 (in 23 iters) 62628.532 62499.212 4080 161
10 0.0 (in 26 iters) 61384.016 61327.734 4080 215
25 0.0 (in 41 iters) 60927.903 60850.717 4080 366
50 0.0 (in 11 iters) 60617.311 60470.956 4044 318

= |SO-NE results drop to 15 minutes maximum (10 average)

o?
o
®5%
Center for Computing Research
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So what is the impact? ISO-NE analysis

= Cost-savings analysis for ISO-NE

= 2004 Eastern Wind data

= 50 wind scenarios per day
= Generated using our tool chain based on epi-splines
= (Simulated) actual taken from NREL database

= 1 |load scenario per day
= Expected load computed using our epi-spline tool chain
= Models fit using historical ISO-NE 2011 data
= Actual taken from actual ISO-NE 2011 data
= “Platinum” standard simulation, i.e., rolling horizon

= Wind is not modeled as must-take

= Per advice from NREL

= |n practice, there are days at these penetration levels in which it
impossible to use net load formulations w/o shedding

o?
o
®5%
Center for Computing Research
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Cutting to the Chase: Cost Savings )

= Computed in terms of relative cost increase of deterministic
(w/ 10% reserves) over stochastic (w/ 2% reserves)

= Yes, this implies that stochastic does win (but)...

= Results in terms of percentages
= Ql:1.52%
" Q2:1.31%
= Q3:0.89%
" Q4:1.23%

= Not as significant as we would have anticipated, given the
large wind penetration levels we simulated

= For various reasons, we believe these results underestimate savings

o?
o
®5%
Center for Computing Research
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Cutting to the Chase: Cost Savings )

= Computed in terms of relative cost increase of deterministic
(w/ 10% reserves) over stochastic (w/ 2% reserves)

= Yes, this implies that stochastic does win (but)...

= Results in terms of percentages

= Ql:1.52%
" Q2:1.31%
= Q3:0.89%
" Q4:1.23%

—

—

—

—

~S 4M per month
~S 3M per month
~S$12M per month
~52.5M per month

S64.5M “estimated savings” for 2011

= Not as significant as we would have anticipated, given the
large wind penetration levels we simulated

= For various reasons, we believe these results underestimate savings

o?
.'i'-
Center for Computing Research
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Reliability Results h) e,

= We did not report load shedding and/or reserve shortfalls in
the previous cost savings statistics
= Placing arbitrary penalty values on these quantities is not useful
= Distinct reporting allows more insight into system behaviors

= Stochastic UC

®= One load shedding event — peak day in July
= |ncurred due to particularly bad load forecast

= Deterministic UC
= Five load shedding events — including the peak day in July
= Additionally incurs reserve margin shortfalls on approximately
10% of all days in 2011
= Summary
= Stochastic UC, despite lower reserve margins, is more reliable
#CCR

Siirola 27




Power grid contingency analysis ) =

o?
.
*3%
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Power grid contingency analysis ) e
[with J.-P. Watson]

= U.S.ISO’s must operate with “N-1” reliability
= System must be able to “survive” loss of 1 generator / (non-radial) line
= Not explicitly included in Unit Commitment model
= Practice is to include “proxy constraints” and post-solve verification

= Some studies indicate that intentionally switching lines could
improve contingency response
= UC+ N-1 + Transmission switching (e.g. [Hedman, et al. 2010])

= “Just allowing processing [of the RTS-96 test case] at the root node
typically takes 20h on a desktop workstation...”

= “While reducing [the] optimality gap to zero is an interesting academic
issue...”

= Case study: RTS-96 test case
= 73 busses, 115 non-radial lines, 99 generators

"CCR = 214 contingencies

Siirola 29




. Sandia
The solution: uc + Transmission Switching + N-1 Y 2

Minimize : Z Z (cgPoor + 5 vt + ¢5 Pwyr) (1)
t g
St 0T < B <O, Vo,et (2)
Z Pt — Z Prot + z Py = dps,
Y k(n,.) Y k(.,n) ¥ g(n)
Vn, ¢=0, transmission contingency states c, ¢ (3a)
Z Pkct_ Z Pkct+ Z chtz nts
Y k(n,.) Y k(.,mn) ¥ g(n)
V n, generator contingency states ¢, t (3b)
PPN, 2y < Pret < PP Nlpezpe, Ykt )
Bk(anct - emct) — Pret + (2 — Zkt — lec)Mk >0, Vkct (5a)
Bk(enct - gmct) - Pkct - (2 — Zkt — lec)Mk < 07 v I’i:, et (5b)
P;nlegcugt < Pyt < P;lalegcugt: Vg,ct (6)
Vgt — Wyt = Ug,t — Ug,t—1, vgat (7)
t
Z Vgq S Ugy, Vg te{UTLy,...,T} (8)
q=t—UTy+1
t
Y wgy<l-ugy, Vg t€{DT,,...,T} 9)
q=t—DTy+1
Pyot — Pgo—1 < R;ug,t—l + REUUg,t, Vgt (10)
PgO,t—l _PgO,t < Rg_ug,t+RgSDwg,t= Vgt (11)
cht_PgU,t SR;a Vgacst (12)
PgD,tngc_chtSRg_a Vg,Cat (]3)
0<wg, <1, Vgt (14)
0<wy, <1, Vg,t (15)
ugy € {0,1}, Vgt (16)
:}2 CC R Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission

Switching With N-1 Reliability," IEEE Trans Power Systems, 25(2), pp.1052-1063,2010

Center for Computing Research
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The challenge: MP is dense and subtle @ik,

Minimize :
Sut. 0™ < 0, < 07, Vol . . .
= e ! To a first approximation:
> Pet— Y Prat
Y k(n,.) ¥ k() |:| - DCOPF
[ ] - Economic dispatch
[ ] - Unit commitment
[ - Transmission switching
Bu(Boet — fmer) — Powt + [ ] -N-1 contingency
Bk(enct - mct) - Pkct -
:5__%8 CC R Hedman, et al., "Co-Optimization of Generation Unit Commitment and Transmission

Switching With N-1 Reliability," IEEE Trans Power Systems, 25(2), pp.1052-1063,2010

Center for Computing Research
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(Nonobvious) Inherent structure ) e,

Switching OPF ED

'\

Unit Commitment
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Laboratories

UC + N-1 + Switching block structure

= “2-D” grid of linked optimal power flow models

JUSWIIWIO)) J1U)

Oﬂmﬁﬁé@a@g mDMOGDWGSGOU
N N

r Y4 A\

)

s e ~
| K |
o w w w
Ilsa o o o I
1|20 O O O |1
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| 3 |
o w w w
Ilsa o o a ||
1|20 O O O |1
\— | _ = =
S ———ee—_—_—_—_EE—E—_—_—_——————a
| 3 |
o w w w
Ilsa o o a | !
1|20 O O O |1
\ | ) =
s —_————_—_—_—_EE—_—_—_—_——————s
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\ !
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Explicitly expose disjunctive decisions @&z

= Transmission switching:

|: cht :| \/ |: _'cht :|
B =B, (le _ka) B = 0

= Generation

Ugi i v ] —(uy, | Vi)
C,=PF,c, kt C,=c, u
. v |C,=Pyc,+c,) | v Sg’ o
I M el N L)
&2p,-p,| L% ) p=0

#CCR
i

®5%
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Embed within structured model

Network Model

Switchable Transmission Line

"
W _ez===5x3 s Transmission Line V
W .27 Power Flow Model

S s

<=

~
~S =~ :
S5

Generation
Model

-

==========) Current Balance
(KCL)

—(Y;5V | Y;6) Bus model

)
kRamp L|m|ts(Yl))

Switchable Generator

o?
.'i'-
Center for Computing Research
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Expressing & preserving modeler intent

Sandia
National _
Laboratories

= |f the N-1 model has all this structure, why do we write it

Minimize :

What | want:

= Clear, structured syntax
= Explicit disjunctions
= Express block structure
= Define meaningful components

n u

= “bus,” “line,” “generator”

= Control how this gets mapped to the solver

#CCR

Center for Computing Research

St

D12 (eoPoorlt € vg + 5P we)

t

g
0min < ant < e:nax, Vﬂ,

E Pkct_ Z Pkct+ z PgOt:

Y k(n,.) ¥ k(.,n) Y g(n)

V7, c¢=0,|transmission contingency states dl
z Pret — Z Prey + E Pyer = dyy.

Y k(n,.) Y k(.m) ¥ g(n)
V1, generator contingency states ¢, t

PEsNLrd < Pio < PEINLLad, v &L
Bk(gn.ct - gnwt) - Pkct + (2 — Zht — le Mk 2 0: v }“B
Bk(enct — emct) — Pic —I2= Zﬂ;NljiM;

P;“"’ngclugl < Pyct < P;I&X 1 a g], nglE

Vgt — Wa,t = Ug,t — Ugt—1, Y gst
'

Z Vgq Stgr. Vgt €{UT, ..., T}
q=t-UT,+1
¢
Y wggSl-ugnVgte{DT,.....T}
q=t—DT,+1

Poot — Pao-1 € Rfuga—y + R5Vv,0. Vgt
Pyou—1 = Poo € Ryugs + B3 wgs. Vgt

Pgtt_Pgo,tSR;x Vg7c'it
LooalNlge = Pyt S Ry, Vg.ct

OS‘Ug,le: ngt
Oswg,tsl: V.t
ugy € {0.1}, Vg.t

Siirola
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Sandia

What do these have in common? )t

£a=\/(x—3)2+e J

fa=b+c \
b<M:-y
c<M(1—-y)
x—3=c—b>b
b=>0
c=>0
\_ y €{0,1} )
~
a=b+c
x—3=c—b»b
b>01Lc=>=0
N
#CCR

Siirola

[a

a=>x—3
a=>3—x
2(x — 3

( x_)3—x+3
l1+e h

37



Sandia

What do these have in common? )t

£a=\/(x—3)2+e J

[a = abs(x — 3) J ng_x}

/a=b+c \
b<M:-y
c<M(—-y)
x—3=c—b>b
b>=0
c=>0
\_ y €10,1} )
- )
a=b+c
x—3=c—0»b
b>01Lc=>=0
N /

Siirola

[a

2(x — 3
= ( x_)3—x+3
l1+e h

If we mean “a = abs(x — 3)’,
“CCR why don’t we write that in our models???

38



A new solution workflow rh) e

= Model Transformations: Projecting problems to problems
= Project from one problem space to another
= Standardize common reformulations or approximations

= Convert “unoptimizable” modeling constructs into equivalent
optimizable forms

Transform

~ yd
Model |+| Data Problem

21 R
o ‘ ‘

5
Center for Computing Research
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A transformation-centric view of abs() M.

= Chaining transformations

f=x"+x =X +Xx

f=x"+x x=x"—x" x=x"—x"

f:abS(.X) — x:x+ —-X — Y v _IY j— X SMy
x">0Lx >0 x =0] [x =0 X <M(1-y)
x"20,x >0 x'>20,x =0

model = ConcreteModel()

7

TransformFactory(“abs.complements®).apply(model, inplace=True)
TransformFactory(“mpec.disjunctive”).apply(model, inplace=True)
TransformFactory(“gdp.bigm”).apply(model, inplace=True)

21 R
o ‘ ‘

5
Center for Computing Research
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National

. . . Sandia
Why are we interested in transformations? @i,

= Separate model expression from how we intend to solve it
= Defer decisions that improve tractability until solution time
= Explore alternative reformulations or representations
= Support solver-specific model customizations (e.g., abs())
= Support iterative methods that use different solvers requiring
different representations (e.g., initializing NLP from MIP)

= Support “higher level” or non-algebraic modeling constructs

= Express models that are “closer” to reality, e.g.:
= Piecewise expressions
= Disjunctive models (switching decisions & logic models)
= Differential-algebraic models (dynamic models)
= Bilevel models (game theory models)

III

= Reduce “mechanical” errors due to manual reformulation

o?
.'5'-
Center for Computing Research
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Why transformations in Pyomo?

= Pyomo is an object model
= Extensions declare new object classes (components)
= Supports annotating model components
= Transformations can detect presence of relevant components
= Core code (e.g., problem writers) can validate supported components
= Whole model (including expressions) is transparent and manipulatable

= Pyomo natively supports hierarchical models

= “Block”: collection of modeling components (e.g., Sets, Prams, Vars)
= Namespacing: component names must only be unique within a block
= Blocks can contain blocks: hierarchical structure
= Many modeling extensions derive from Block
= Transformations can be “sandboxed” in transformation-specific Blocks

o?
.'i'-
Center for Computing Research
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Expressing disjunctive programming @iz

= Disjunctions: selectively enforce sets of constraints

= Sequencing decisions: x ends before y or y ends before x
= Switching decisions: a process unit is built or not
= Alternative selection: selecting from a set of pricing policies

= |mplementation: leverage Pyomo “blocks”

= Disjunct: i . ]
l
= Block of Pyomo components ( )
y por V h,\x)<o
— (Var, Param, Constraint, etc.) ieD, .
Cr =7V

" Boolean (binary) indicator variable determines —
if block is enforced Q(Y) =true

* Disjunction:
= Enforces logical XOR across a set of Disjunct indicator variables

" (Logic constraints on indicator variables)
#CCR
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Solving disjunctive models ) e,

= Few solvers “understand” disjunctive models
= Transform model into standard math program

= Big-M relaxation:
= Convert logic variables to binary
= Split equality constraints in disjuncts into pairs of inequality constraints

= Relax all constraints in the disjuncts with “appropriate” M values
— Automatically calculate M values for linear expressions

= Convex hull relaxation (Balas, 1985; Lee and Grossmann, 2000)
= Disaggregate variables in all disjuncts
= Bound disaggregated variables with Big-M terms

21 R
o ‘ ‘

5
Center for Computing Research

Siirola 44




1 1 1 sgtnigi:a
Scripting complex transformations ) s
[with M. Sharifzadeh, F. Trespalacious]

=  What is the key challenge in disjunctive programming?
= Big-M: small formulation <> weak LP relaxation
= Convex Hull: tight(er) relaxation <> larger formulation
= |dea: apply preprocessing to probe the model and customize the
transformation on a disjunction-by-disjunction basis

= Key operation: Basic Step [Balas, 1985]

Y, A\Y; Y, A\Y, Y,A\Y; Y,A\Y,
Ajx <0|V]A;x <0V ]|Ax <0V ][Ax <0
A3x <0 Ayx <0 A3x <0 Ayx <0

[Alx < O] [Azx <0

[Alx < O] [Alx <0
= Approach 1: [Trespalacios and Grossmann, 2014]

= |dentify key disjunctions to combine using basic steps, relax with convex hull

= Relax the balance of the disjunctions with big-M
= Approach 2: [Trespalacios and Grossmann, In Press]

= |dentify key disjunctions as before, but apply basic steps to a copy of the model

= Solve a series of separation problems between the big-M relaxation of the original
model the convex hull relaxation of the modified model + basic steps.

e _ , .
2'CCR Add separation cuts to the original model
Centerfor Computing Research
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Impact on solution time RN

= Performance profiles for a family of constrained layout, strip packing, and
process synthesis test problems from minlp.org

#CCR

Center for Computing Research
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UC + N-1 + Switching model

Network Model

Switchable Transmission Line

W _ez===5x3 s Transmission Line V
W .27 Power Flow Model
u

Sandia
|I1 National

Laboratories

S s

Generation
Model

-

(6 1 1:6)

§

urrent Balance
(KCL)

)
L Ramp Limits (Y;) )

Switchable Generator

Bus model

#CCR
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Optimal Solution of RTS-96 ) o,

= From Hedman, et al. 2010

= N-1 UC solution: 3,245,997
= N-1 UC w/ Switching: 3,125,185 (2 pass UC+switching heuristic)
Rows Columns Binaries
Raw model 5,118,760 1,501,177 5,184
After presolve 2,634,851 1,062,290 4476
= Restructured problem (complete N-1 UC w/ switching):
Rows Columns Binaries
Raw model 21,232,224 13,129,692 3,796,830
After presolve 2,471,714 1,249,976 187,194
= Solution (1e-4 gap): 2,990,004 (60,000 sec)

= Automated Big-M relaxation (including automatic M calculation)
2ccR™ Default CPLEX settings
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Improving PH: borrowing from Benders @ E:.

= Consider the Benders “feasibility” cut:

= Given x* computed by the RMP, if subproblem is unbounded, add a
cut determined by an extreme ray in the dual space to the RMP

= |n PH, a similar operation would be fix the values of x in
subproblem f; to the values computed by subproblem f;:
min f;(x"*, y)
Yy
= |f the problem is infeasible, then we can solve a separation problem

(in the primal space) to determine a valid cut in the 15t-stage variables:
2

min||x — x*

X,y

s.t. fi(x,y)
= Notes:

m f] is the continuous relaxation of f; = not guaranteed to generate a cut
= The resulting cut is valid for all scenario subproblems
"CCR = Yp;fi(x", y**) for initial scenario solves (w = 0) gives Lagrangian bound
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Case study: UC + N-1 analysis ) .

= 2-stage unit commitment model for the electric power grid
= 24-hour horizon, 1-hour commitment intervals

= Explicitly include N-1 analysis (loss of any 1 generator / non-radial line)
= Each contingency modeled as a no-cost recourse scenario

= Case 1: 5 busses, 7 generators (13 scenarios):
= Optimal solution (extensive form): 19.9756
= Default PH (p = 1):
= 17 iterations, objective = 22.9997, total time 123 seconds
"= PH (p = 1) + Feasibility cuts:
= 3 feasibility cut iterations at PH iteration O
— Improved Lagrangian bound from 19.7 to 19.909

= 13 iterations, objective = 23.14, total time 1300 seconds

o?
o
®5%
Center for Computing Research
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National

Improving PH: setting p ) .

= How do we get “good” values of p?
= Currently: experimentation

= Challenge: p is problem dependent
" Too low and PH never converges
* Too high and PH rapidly converges to suboptimal solution

= Hint: scale relative to cost of each variable [Watson & Woodruff, 2011]

= We can get good cost estimates from the subproblem duals

= When we evaluate f;(x*, y), record the duals for x = x*
j y

= Compute average duals weighted relative to scenario probability

= Adds two new scalar tuning parameters:

= Dual scaling factor and a change damping factor

o?
o
®5%
Center for Computing Research
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Case studies: UC + N-1 analysis ) .

= Recall:

= Optimal solution (extensive form): 19.9756
= Default PH (p = 1):
= 17 iterations, objective = 22.9997, total time 123 seconds
= PH (p = 1) + Feasibility cuts:
= 3 feasibility cut iterations at PH iteration O
— Improved Lagrangian bound from 19.7 to 19.909

= 13 iterations, objective = 23.14, total time 1300 seconds

= Now:

" PH + Feasibility cuts + p setter (rhoScale = 0.5)
= 12 iterations, objective = 19.9814, total time 1060 seconds

21 R
o ‘ ‘
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Power system expansion planning .

o?
.
*3%
Center for Computing Research
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. . Sandia

Power system expansion planning )
[F. Munoz, J.-P. Watson]

Solar Resources (NREL) Wind Resources (NREL) U.S. Transmission System (FEMA)

5130.000 T

Zone Scenario Generation and Transmission Cost
(MISO, 2010)

w

s110,000 |- +

Goal:

$100.000 |

Identify most cost effective combination
of transmission and generation
investments to meet:

|
590,000 ——— | —*

580,000 |

1) Forecasted demand
2) Renewable and environmental goals | |' |

°
:-?‘ CCR Local Combination (Local & Regional
o’
Centerfor Computing Research

Generation Regional) Generation Generation

Total Generation and Transmission Costs (5M)

w
o
=3
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Tackling planning at scale ) ..
[F. Munoz, J.-P. Watson]

* Reported literature results
e Often applied to small test cases
e Usually consider only a few scenarios (often just one)

e Exception: Munoz et al (2014) solved WECC 240-bus system using
Benders decomposition.

= Considered 8,736 scenarios, 87 hours to attain a 2.4% optimality gap.

= |nvestigate scenario reduction and progressive hedging
= 2-stage planning model:
" |nvestments: Generation (continuous) + Transmission (binary)
= QOperations: Economic dispatch (DCOPF) + Soft constraint enforcing RPS
= Scenario reduction
= k-means clustering
= How many clusters (scenarios) do we really need?

21 R
o ‘ ‘
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Assessing Solution Quality ) s,

A Upper Bound: Full resolution economic dispatch model
)
3 Could also use:
8 - Production cost model (e.g., PLEXOS)
8 \ - Monte Carlo simulation with component failures
(@)
= \
N\ Optimality gap of PH solution wrt true operating costs
Optimality gap wrt
global optimum
(upper bound,
M | (2014
- Optimality gap wrt LP relaxation of extensive form unoz et al (2014))
Lower Bound: LP relaxation of MILP investment problem with clustered data
LP provides tight lower bound on optimal TC of MILP
>
Number of Clusters
#CCR

Center for Computing Research

Siirola
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Experiments: WECC-240 system ) i,

Description

* Dataset of 8,736 historical observations of load, wind, solar, and hydro levels for year 2004
* Results in ¥15M variables and ~35M constraints

* 257 generation investment variables (continuous)

* 339 variables for transmission backbones (binary)

* 31 variables for interconnections to renewable hubs (integer)

Our Hardware Environments
* Red Sky/Red Mesa HPC: 43,440 cores of Intel Xeon series processors, 64TB of RAM (12 GB per node)
e Multi-Core SMP Workstation: 48-core Intel Xeon, 2.3 GHz, 512 GB RAM (~S20K)

Clustered time‘-l’dependent data Trial investment plan
A4 A4 A4 Trial L 2 v
ria . . .
. . ; Economic Economic Economic
Scenario Scenario Scenario . . . . Upper
or bundie 1 I or bundle 2 - investment dispatch dispatch dispatch bound
p|an week 1 week 2 week 2
Lower
bound

#CCR

Center for Computing Research
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Computational Performance ) s,

Extensive form, 100 scenarios
 CPLEX, no feasible solution after 1 day on a 48-core workstation

Progressive Hedging, 100 scenarios
 Red Mesa: ~15 minutes, 186 iterations until full convergence of investment variables
Workstation: ~31 minutes, 180 iterations until full convergence of investment variables

(1) UB from investment cost PH + true operating cost : $582.7B
Gap UB =2.9%

(2) Expected cost from PH : $565.7B
Gap LP =1.82%

(3) LB from solving extensive form LP relaxation : $555.4B

Gap LP  => How suboptimal is the solution found using PH w.r.t. LP relaxation (not zero!!)
Gap UB => Difference between operating costs using clustered vs. full dataset

Total Gap => 3.5% (w.r.t. best lower bound)

#CCR
i

®5%

Center for Computing Research
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Computational Performance ) s,

Convergence of upper and lower bounds

Expected value problem,
upper bound on VSS ~$100B

700 16%
650  14% ===Total Cost PH
==| ower Bound
o 12n g Upper Bound
— er Boun
&, 600 0% © pp
7 e ==0Gap
3 550 8% =
et \go, E
£ 500 6% &
L !_ 0/0 °
450 v
400 . . . . 0
0 100 200 300 400 500
Number of Clusters
500-scenario problem
* Red Mesa HPC: 1.9 hrs.
e Workstation :8.7 hrs.
+CCR
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Summary h) e,

= Pyomo is a full-featured, extensible, open source AML

= _.and we always welcome new users

= Pyomo enables our applied OR research
= Transformation-centric approach to modeling

= Extensions to new (or non-algebraic) modeling paradigms
= ..stochastic, dynamic, disjunctive

= Development of new solution approaches
= Decomposition-based algorithms
= Problem analysis, cut generation, hybrid algorithms

= Pyomo is the vehicle through which we impact applications
= Stochastic unit commitment at scale
= QOperations with explicit contingency analysis
"CCR. System expansion planning
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Thank you! )

= For more information...

Flexible modeling of

= Project homepages - __ B Gpimzion poblers n Pyon >
= http://www.pyomo.org - '
= http://software.sandia.gov/pyomo  wesrene s pocs

Pyamais a python-based, The easlest way 10 install Peoma s Documendaton af cone Pyamo

source optimizalion madeling o use pip. Pyomo alse nooss moselng canabllgios s avaliable
language wih a diverse set of #oooss o aptimization sohvens,
oatmization capabiities. Aead mode

= User mailing lists o
= pyomo-forum@googlegroups.com G
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contritutions af numerous peogie ancl get hielp fram ather wers.
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Optimization

I ” i s Modeling
The Book i in Python

@ Springer

Mathematical Programming Computation papers
=  Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)
= PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)

1!CCR
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