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Abstract

A Monte Carlo solution method for the system of deterministic equations arising in
the application of stochastic collocation (SCM) and stochastic Galerkin (SGM)
methods in radiation transport computations with uncertainty is presented for an
arbitrary number of materials each containing two uncertain random cross sec-
tions. Moments of the resulting random flux are calculated using an intrusive and a
non-intrusive Monte Carlo based SCM and two different SGM implementations each
with two different truncation methods and compared to the brute force Monte Carlo
sampling approach. For the intrusive SCM and SGM, a single set of particle histo-
ries is solved and weight adjustments are used to produce flux moments for the
stochastic problem. Memory and runtime scaling of each method is compared for
increased complexity in stochastic dimensionality and moment truncation. Results
are also compared for efficiency in terms of a statistical figure-of-merit.

Stochastic Transport Equation with
Generalized Polynomial Chaos

We consider the steady state, single speed transport equation
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and define total and scattering cross sections as a random perturbation from a dis-
tribution, in this case uniform, about the average
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The 2M-dimensional (M=number of materials) generalized polynomial chaos expan-
sion of the angular flux using random orthogonal polynomials, in this case Legen-
dre polynomials, becomes:
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By the orthogonality of the Legendre polynomials, flux coefficients relate to the an-
gular flux by

1 1 1 1
11'/‘51 Jma,. ,.,Eﬂ.f JITEAT (TF’J gz) — a‘il-ml ...E_.M*rra.ﬂ.f / / et / / 1') (F" gz" Etl b '581 el gtﬂ.-{ 7 gb‘ﬂ.f) Pf-l (gtl )PT}’L1 (6.‘3’1 ) ' '-PI_,U ('gtpl,f )Pﬂ’iﬂ,f ('fb‘_,fu ) dé-f-l dfsl . 'dé-tﬂ.f dfb’ﬂ.f
1 -1

~1 =1 —

v (4)

ﬂflml---f.ﬂ.:m.u = H {2[; + l}(gi'?'lj + 1}

j=1

For notational simplicity define the following:
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Eq. (4) is solved two different ways using Monte Carlo particle simulation.
Stochastic Galerkin Method
Using the Legendre polynomial recurrence relationship
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and projecting the transport equation over the chaos functions produces the fol-
lowing fully coupled system of SGM transport equations
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Stochastic Collocation Method

Instead approximating Eq. (4) with a multidimensional quadrature rule of order K
where £ values are taken at quadrature nodes gives
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such that the flux coefficients are acquired by solving a system of uncoupled equa-
tions equal to instances of Eq. (1) at collocation points:
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Truncation Methods

The “total-order” truncation, labeled SG- The “tensor-product” truncation, labeled
1, by setting flux coefficients to 0 for SG-2, sets the flux coefficients to 0 for

SGM Solution Methods

The SGM implementations solve the fully coupled set of equations (Eq. (7)) apply-
ing the SG-1 or SG-2 truncation as a closure, written here in vector form as
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utilizing the following matrix definitions:
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Both implementations account for the first two terms in Eq. (12) by sampling dis-
tance to collision or interface.
The first implementation, designated SG-Il, couples moments through particle in-
teractions. Once the location of a collision has been determined, Eq. (14) is sam-
pled against to decide if the collision is a particle scatter or streaming event.
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For either outcome, a weight matrix of flux coefficients is modified according to
the corresponding operation from Eq. (15) such that the chosen event outcome is
in effect solved in each coupled equation.
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The second implementation, designated SG-S, increases coupling of moments
during simulation by adjusting the weight matrix at every sampled distance and
particle scatter separately. Again according to Eq. (12), weight adjustments due to
a collision or streaming event are performed using the first and third terms of Eq.
(12) as the set of eigenvalue problems
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where ¢ is a vector in the total cross section dimension. The general solution
along with coefficient normalization are found in Eq. (17).
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Note that the normalization must be calculated for each vector size J, such that
the SG-1 truncation requires K-1 normalization solves for each event and material.
The first and last terms of Eq. (12) are written as
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and moderate weight adjustment for interactions. The integral is evaluated by
randomly sampling a new direction, the first fraction is incorporated in survival bi-
asing, and the second requires a matrix operation.

SCM Solution Methods

The Correlated Random Number Stochastic Collocation implementation (CR-SC)
solves all histories at each collocation point, but begins the histories at each point
with the same random number seed.

The Correlated Sampling Stochastic Collocation implementation (CS-SC) only
solves particle histories for a baseline point, then calculates event outcomes at
collocation points with weight adjustment ratios based on correlated sampling of
the general form:
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For distance to collision operations and scattering operations this form becomes

those in Eq. (20) respectively.
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Memory Scaling

The simplex-shaped weight array of the The hyper-cube-shaped weight array of

SG-1 truncation method scales as the the SG-2 truncation method scales as

binomial coefficients:

the exponential:

(QM; K) (21) KM (22)

lable 1: SG-1 Weight Matrix Size lable 2: SG-2 Weight Matrix Size

K=2 | K=3 | K=4 | K=5 | K=6 K=2 | K=3 | K=4 | K=5 | K=6
M=1| 3 6 10 15 21 M=1| 4 9 16 25 36
M=2| 5 15 35 70 | 126 M=2| 16 81 | 256 | 625 | 1296
M=3| 7 28 384 | 210 | 462 M=3| 64 | 729 | 4096 |1.6E4 4.7E4
M=4| 9 45 | 165 | 495 | 1287 M=4 | 256 | 6561 6.6E4|3.9E5 1.7E6
M=5| 11 66 | 286 | 1001|3003 M=5|1024 |5.9E4|1.0E6|9.8E6 6.0E7
M=6| 13 91 | 455 | 1820|6188 M=6 4096 [5.3E5|1.7E7|2.4E8 2.2E9

Runtime Scaling

The runtime per history solved is compared to the average

runtime for a benchmark history:

(runtime/(#histories * #points))/(average runtime).
This metric does not consider accuracy of results, but pro-
vides scaling efficiency of computational solve against a

benchmark solution.
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Figures 1-6: Runtime Scaling
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Transmission Results
Table 4 defines a two material and three material test
problem used for transmission and Figure-of-Merit

results, where materials 1 and 3 have the same phys-

ical properties.

1able 4:Material Definitions and Arrangements

-1 —~ —~
Mat #/(cm™) (34) <ZS> >, 3.
2 5.0 3.5 1.0 0.4
lor3 5.0 1.0 0.5 0.4
Mat Arrng.: ) 2 2 1 or3

Figures 7 and 8 show PDFs of transmission results

for SG-1S and SG-2S with various truncation orders
K. For the same truncation order K, SG-2S produces _
better results, especially further from the mean, butit |

also requires solving more moments. Both methods
appear to be converging to the benchmark solution.
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Probability
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lable 3: Runtime Scaling
Material Arrangements

Figure of Merit Results
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A Figure of Merit (FOM) is defined which compares relative error (R) and computa-
tional time (T) such that the higher the FOM value, the quicker the convergence of

the moment:

FOM =

1
R*T

This FOM is solved for three combinations of K and M physically defined in Table 4.
Figures 4-6:FOM values for M=2, K=3(top);, M=2, K=4(middle); and M=3, K=4(bottom)

100

10

0.1

0.01

Slanjm|s|n|ol~lo 0|
- EEEEEEEEEE
= Q
1f1/171}1/1}111(1/1/1
2111211211211 2/1|2
3111231231231
4(112(3/4/1(2/3|4/1|2
51112/3/4/5/1/2/3/ 4|5
CR-SC
[ | " M=l ]
_ M=2 _
I M=3 %
[ M=4 -5 |
_ M=5
{ : '4

1000 ¢
100 |

10 |

0.1

0.01

2 3
Truncation Order (K)

Figures 7-8:Transmission PDFs
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Flux Moment Figure of Merit
SCM SGM
l1.mq,lo,m9 | Uy my 1o.ms MC CR-SC | CS-SC | SG-IT | SG-2I | SG-1S | SG-2S
0.0.0.0 [.9E-2 1.9E+0 | 8.4E+1 | 1.7E+2 | 6.8E+2 | 49E+2 | 2.4E+2 | 1.4E+2
1,0,0,0 -1.2E-2 3.6E-2 | 25E+1 | 1.3E+2 | 2.4E+2 | 1.8E+2 | 1.5E+2 | 9.0E+1
2.0.0,0 3.0E-3 .2E-3 | 1.3E+0 | 6. 4E+1 | 2.4E+1 | 1.7E+1 | 5.8E+1 | 3.4E+1
[,1,0,0 -2.7E-3 49E-4 | 1.7E+1 | 7.7E+1 | 2.7E+1 | 1.8E+1 | 2.4E+1 | 1.3E+1
2,2,0,0 [.3E-4 a 2.5E+0 | 2.5E+1 b 5.3E-1 b [.7E+0
[,1,1.1 [.0E-4 a 1.3E+1 | 7.0E+1 b a b 9.6E-1
2,2,2,2 [.3E-7 a 24E-1 | 4.2E+1 b a b 2.1E-2
Time (s): 2.9E+6 | 21437 7759 600 843 3649 5941
Flux Moment Figure of Merit
SCM SGM
liymalama | Uy my domo MC CR-SC | CS-SC | SG-II | SG-2I | SG-1IS | SG-2S
0,0.0.0 [.9E-2 1.9E+0 | 3.4E+1 | 5.2E+1 | 2.7E4+2 | 1.6E+2 | 9.1E+1 | 5.0E+1
1,0,0,0 -1.2E-2 3.6E-2 | 1.3E+1 | 3.9E+1 | 9.6E+1 | 5.9E+1 | 5.6E+1 | 3.1E+1
2.0.0.0 3.0E-3 [.2E-3 | 6.3E-1 | 1.9E+1 | 8.9E+0 | 5.3E+0 | 2.0E+1 | [.1E+]
3.0.0.0 -5.4E-4 3.1E-5 | 1.7E-2 | 7.1E4+0 | 1.5E4+0 | 9.1E-1 | 5.9E+0 | 3.1E+0
[,1,0,0 -2.7E-3 49E-4 | 83E+0 | 2.4E+1 | 1.0E+1 | 6.2E+0 | 9.9E+0 | 4.6E+0
2.2.0.0 |.4E-4 a 9.1E-1 | 7.1E+0 b [.5E-1 b J.2E-1
3.3.0.0 -5.7E-6 a [.1E-1 | 2.2E+0 b 4.6E-2 b 7.6E-2
[,1,1.1 [.1E-4 a 4 8E+0 | 2.1E+1 b a b 3.3E-1
2,2,2,2 [ .4E-7 a [.3E-1 | 1.0OE+1 b a b a
3.3.3.3 [.3E-10 a [.2E-3 | 3.3E+1 b a b a
Time (s): 2.9E+6 | 66363 | 25318 1526 2558 8994 17295
Flux Moment Figure of Merit
SCM SGM
l1.ma,lom | Yy g o me MC CR-SC | CS-SC | SG-1T | SG-2I | SG-1IS | SG-2S
0.,0,0,0,0,0 [.9E-2 3.9E+0 | 1.3E4+0 | 1.6E+0 | 4.9E+1 | 6.7E+0 | 1.2E+1 | 1.6E+0
1,0,0,0.,0,0 -5.1E-3 [.8E-3 | 1.3E+0 | 2.1E+0 | 8.3E+0 | [.1E+0 | 1.2E+1 | 1.5E+0
2,0.0,0,0,0 S.4E-4 a [.1E-2 | 2.6E+0 | 5.0E-1 | 6.9E-2 | 5.4E+0 | 6.9E-]
3,0.0,0.0,0 -4 9E-5 a [.6E-4 | 74E-1 | 1.2E-1 | 1.2E-2 | 6.5E-1 | 6.7E-2
1,1,0,0.,0,0 -3.7E-4 1.9E-4 | 2.2E-1 | 1.4E+0 | 5.1E-1 | 7.2E-2 | S54E-1 | 6.9E-2
2,2.0,0.,0,0 [.3E-5 a 4.5E-2 | 2.9E-1 b a b 3.4E-3
3,3.0,0.0,0 -4.2E-7 a 3.0E-3 | 3.8E-2 b a b a
[,1,1,1,1,1 -1.9E-6 a 4.8E-2 | 3.7E-1 b a b 3.3E-3
2,2,2,2,2,2 8.8E-11 a [.4E-4 | 2.0E-2 b a b a
3.3.3,3.3.3 a a 1 a b a b a
Time (s): 24E+7 | 1.1E+6 | 5.5E+5 | 6835 | 49801 | 34087 | 2.6E+5
a FOM values omitted due to poor statistical convergence
b Moment not calculated with this truncation method
Conclusions

. All SCM and SGM methods outperformed brute force Monte Carlo in FOM

. SCM implementations converged the most moments
. SGM implementations produced best FOM values for lower-order moments

. CS-SC solved more moments more efficiently than other methods, but is intrusive
. CR-SC produced much better results than brute-force Monte Carlo and is non-

intrusive

. SCM implementations may be improved upon using sparse or anisotropic grids

. SG-1 truncation requires less memory and solves more quickly than SG-2

. SG-2 more accurate than SG-1 for same truncation order

. SG-1 may be only choice as complexity increases
. SG-l implementation produced better FOM values for lower moments than SG-S
. SG-S resolved more higher moments than SG-I
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