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Abstract 

A Monte Carlo solution method for the system of deterministic equations arising in 

the application of stochastic collocation (SCM) and stochastic Galerkin (SGM) 

methods in radiation transport computations with uncertainty is presented for an 

arbitrary number of materials each containing two uncertain random cross sec-

tions. Moments of the resulting random flux are calculated using an intrusive and a 

non-intrusive Monte Carlo based SCM and two different SGM implementations each 

with two different truncation methods and compared to the brute force Monte Carlo 

sampling approach. For the intrusive SCM and SGM, a single set of particle histo-

ries is solved and weight adjustments are used to produce flux moments for the 

stochastic problem. Memory and runtime scaling of each method is compared for 

increased complexity in stochastic dimensionality and moment truncation. Results 

are also compared for efficiency in terms of a statistical figure-of-merit. 

SGM Solution Methods 

The SGM implementations solve the fully coupled set of equations (Eq. (7)) apply-

ing the SG-1 or SG-2 truncation as a closure, written here in vector form as 

utilizing the following matrix definitions: 

Both implementations account for the first two terms in Eq. (12) by sampling dis-

tance to collision or interface. 

The first implementation, designated SG-I, couples moments through particle in-

teractions.  Once the location of a collision has been determined, Eq. (14) is sam-

pled against to decide if the collision is a particle scatter or streaming event. 

For either outcome, a weight matrix of flux coefficients is modified according to 

the corresponding operation from Eq. (15) such that the chosen event outcome is 

in effect solved in each coupled equation. 

The second implementation, designated SG-S, increases coupling of moments 

during simulation by adjusting the weight matrix at every sampled distance and 

particle scatter separately.  Again according to Eq. (12), weight adjustments due to 

a collision or streaming event are performed using the first and third terms of Eq. 

(12) as the set of eigenvalue problems 

where         is a vector in the total cross section dimension. The general solution 

along with coefficient normalization are found in Eq. (17). 

Note that the normalization must be calculated for each vector size J, such that 

the SG-1 truncation requires K-1 normalization solves for each event and material. 

The first and last terms of Eq. (12) are written as  

and moderate weight adjustment for interactions.  The integral is evaluated by 

randomly sampling a new direction, the first fraction is incorporated in survival bi-

asing, and the second requires a matrix operation. 

SCM Solution Methods 

The Correlated Random Number Stochastic Collocation implementation (CR-SC) 

solves all histories at each collocation point, but begins the histories at each point 

with the same random number seed. 

The Correlated Sampling Stochastic Collocation implementation (CS-SC) only 

solves particle histories for a baseline point, then calculates event outcomes at 

collocation points with weight adjustment ratios based on correlated sampling of 

the general form: 

For distance to collision operations and scattering operations this form becomes 

those in Eq. (20) respectively. 

Memory Scaling 

The simplex-shaped weight array of the 

SG-1 truncation method scales as the 

binomial coefficients: 

Transmission Results 

Table 4 defines a two material and three material test 

problem used for transmission and Figure-of-Merit 

results, where materials 1 and 3 have the same phys-

ical properties. 
Conclusions 

 All SCM and SGM methods outperformed brute force Monte Carlo in FOM

 SCM implementations converged the most moments

 SGM implementations produced best FOM values for lower-order moments

 CS-SC solved more moments more efficiently than other methods, but is intrusive

 CR-SC produced much better results than brute-force Monte Carlo and is non-

intrusive

 SCM implementations may be improved upon using sparse or anisotropic grids

 SG-1 truncation requires less memory and solves more quickly than SG-2

 SG-2 more accurate than SG-1 for same truncation order

 SG-1 may be only choice as complexity increases

 SG-I implementation produced better FOM values for lower moments than SG-S

 SG-S resolved more higher moments than SG-I

Stochastic Transport Equation with 

Generalized Polynomial Chaos 

We consider the steady state, single speed transport equation 

and define total and scattering cross sections as a random perturbation from a dis-

tribution, in this case uniform, about the average 

The 2M-dimensional (M=number of materials) generalized polynomial chaos expan-

sion of the angular flux using random orthogonal polynomials, in this case Legen-

dre polynomials, becomes: 

By the orthogonality of the Legendre polynomials, flux coefficients relate to the an-

gular flux by  

For notational simplicity define the following: 

Eq. (4) is solved two different ways using Monte Carlo particle simulation. 

Stochastic Galerkin Method 

Using the Legendre polynomial recurrence relationship 

and projecting the transport equation over the chaos functions produces the fol-

lowing fully coupled system of SGM transport equations 

Stochastic Collocation Method 

Instead approximating Eq. (4) with a multidimensional quadrature rule of order K 

where   values are taken at quadrature nodes gives 

such that the flux coefficients are acquired by solving a system of uncoupled equa-

tions equal to instances of Eq. (1) at collocation points: 

Runtime Scaling 

The runtime per history solved is compared to the average 

runtime for a benchmark history: 

(runtime/(#histories * #points))/(average runtime). 

This metric does not consider accuracy of results, but pro-

vides scaling efficiency of computational solve against a 

benchmark solution. 

Figure of Merit Results 

A Figure of Merit (FOM) is defined which compares relative error (R) and computa-

tional time (T) such that the higher the FOM value, the quicker the convergence of 

the moment: 

This FOM is solved for three combinations of K and M physically defined in Table 4. 
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K=2 K=3 K=4 K=5 K=6 

M=1 3 6 10 15 21 

M=2 5 15 35 70 126 

M=3 7 28 84 210 462 

M=4 9 45 165 495 1287 

M=5 11 66 286 1001 3003 

M=6 13 91 455 1820 6188 

K=2 K=3 K=4 K=5 K=6 

M=1 4 9 16 25 36 

M=2 16 81 256 625 1296 

M=3 64 729 4096 1.6E4 4.7E4 

M=4 256 6561 6.6E4 3.9E5 1.7E6 

M=5 1024 5.9E4 1.0E6 9.8E6 6.0E7 

M=6 4096 5.3E5 1.7E7 2.4E8 2.2E9 

Table 2: SG-2 Weight Matrix Size Table 1: SG-1 Weight Matrix Size 

Mat #/(cm
-1

) 

2 5.0 3.5 1.0 0.4 

1 or 3 5.0 1.0 0.5 0.4 

Mat Arrng.: 1 2 2 1 or 3 

Table 3: Runtime Scaling 

Material Arrangements 

Figures 7-8:Transmission PDFs 

SG-1S(top) SG-2S(bot) 

Table 4:Material Definitions and Arrangements 

Figures 4-6:FOM values for M=2, K=3(top); M=2, K=4(middle); and M=3, K=4(bottom) 

Figures 7 and 8 show PDFs of transmission results 

for SG-1S and SG-2S with various truncation orders 

K.  For the same truncation order K, SG-2S produces 

better results, especially further from the mean, but it 

also requires solving more moments.  Both methods 

appear to be converging to the benchmark solution. 
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Figures 1-6: Runtime Scaling 
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Truncation Methods 

The “total-order” truncation, labeled SG-

1, by setting flux coefficients to 0 for 

The “tensor-product” truncation, labeled 

SG-2, sets the flux coefficients to 0 for  

(10) (11) 

(21) (22) 

(13) 

(12) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

SAND2015-2992C


