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Fast matrix multiplication:
bridging theory and practice

- There are a number of Strassen-like algorithms for matrix
multiplication that have only been “discovered” recently.
[Smirnov13], [Benson&Ballard14]

- We show that they can achieve higher performance with
respect to MKL (sequential and sometimes in parallel).

- We use code generation to do extensive prototyping. There
are several practical issues, and there is plenty of room for
improvement (lots of expertise at UT to help here!)

| | | |
2 2.37 2.81 3
[Williams12] [Strassen79]




Strassen’s algorithm
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Key ingredients of Strassen’s algorithm

- 1. Block partitioning of matrices (<2, 2, 2>)

- 2. Seven linear combinations of sub-blocks of A
- 3. Seven linear combinations of sub-blocks of B
- 4. Seven matrix multiplies to form M, (recursive)
- 5. Linear combinations of M, to form C;



Key ingredients of fast matmul algorithms

- 1. Block partitioning of matrices (<M, K, N>)

- 2. R linear combinations of sub-blocks of A

- 3. R linear combinations of sub-blocks of B

- 4. R matrix multiplies to form M. (recursive)
R < MKN - faster than classical

- 5. Linear combinations of M, to form C;



R
“Outer product” fast algorithm
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- <4, 2, 4> partitioning
- R =26 multiplies (<4 *2*4 = 32)
- 23% speedup per recursive step (if everything else free)
- Linear combinations of A;: 68 terms
- Linear combinations of B;: 52 terms
- Linear combinations of M,: 69 terms
- Smaller exponent for square matmul. We will show it is practical.



Discovering fast algorithms is a
numerical challenge

- Low-rank tensor decompositions lead to fast algorithms

- Tensors are small, but we need exact decompositions
- NP-hard

- Use alternating least squares with regularization and
rounding tricks [Smirnov13], [Benson&Ballard14]

- We have around 10 fast algorithms for <M, K, N>
decompositions. Also have permutations, e.g., <K, M, N>.



Code generation lets us prototype
algorithms quickly

- We have compact representation of many fast algorithms:
1. dimensions of block partitioning
2. linear combinations of sub-blocks
3. number of matrix multiplications

- We use code generation to rapidly prototype fast algorithms

- Our approach: test all algorithms on a bunch of different
problem sizes and look for patterns



Practical issues

- Best way to do matrix additions? (in paper)

- Can we eliminate redundant linear combinations? (in paper)
- Different problem shapes other than square (this talk)

- When to stop recursion? (this talk)

- How to parallelize? (this talk)




Recursion cutoff. look at gemm curve
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» All algorithms beat MKL on large problems
« Strassen’s algorithm is hard to beat with
exact algorithms



Sequential performance

Sequential performance on N x 1600 x N
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Sequential performance

Sequential performance on N x 2400 x 2400

28 ‘

o 2 7MKL

o e-<4.2 4>

= -0-<4,3,3>

o [1-<3,2,3>

0 <42 3>

5 &1 -A-STRASSEN

i% ¥ -7- BINI
-+-SCHONHAGE

6000 12000 14000 16000 18000
dimension (N)

« Almost all algorithms beat MKL
« <4 3, 3>and <4, 2, 3> tend to perform the best
¢ 5-10% improvement over MKL



Parallelization S7 = A1z — Az
T7 = Bay + Bao
C M, = S--T-
/4\
M1 M2 " M7
/4\
M. M, M.,




DFS Parallelization

M; M,

All threads
Use parallel MKL

+ Easy to implement
+ Load balanced

+ Same memory
footprint as sequential
- Need large base
cases for high
performance



BFS Parallelization So = Ajy — Ao
C T7 = B + Bas
an M, = 5717
M1 M2 " M7
+
m‘\
1 thread 1 thread 1 thread

+ High performance for smaller base cases
- Sometimes harder to load balance: 24 threads, 49 subproblems
- More memory



HYBRID parallelization | 27 =4~ 42
17 = Bo1 + B

C M; =87 - Ty
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1 thread 1 thread all threads

+ Better load balancing
- Explicit synchronization or else we can over-subscribe threads



Effective GFLOPS / core
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. R
Bandwidth problems

- We rely on the cost of matrix multiplications to be much
more expensive than the cost of matrix additions

- Parallel dgemm on 24 cores: easily get 60-90% of peak

- STREAM benchmark: < 6x speedup in read/write
performance on 24 cores

S7 = Aja2 — Ao
C T7 = Bo1 + Bao

M; =57 -T
/—'\ ! ! '
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* 6 cores: similar performance to sequential
« 24 cores: can sometimes beat MKL, but barely



Parallel performance . = I —

Bad MKL
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* 6 cores: similar performance to sequential
« 24 cores: MKL best for large problems
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Parallel performance
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* 6 cores: similar performance to sequential
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High-level conclusions

- For square matrix multiplication, Strassen’s algorithm is
hard to beat

- For rectangular matrix multiplication, use a fast algorithm
that “matches the shape”

- Bandwidth limits the performance of shared memory
parallel fast matrix multiplication
—> should be less of an issue in distributed memory

Future work:
- Numerical stability

- Using fast matmul as a kernel for other algorithms in
numerical linear algebra
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Matrix additions (linear combinations)

S1 82 83 S4 S5 SG S7

2
D Y
S1 = Aq1 + Ao
So = Aoy + Aao
Ay Aqy Ay Ay Sa = Ay
Sy = Aao
uP i I 9 S5 — All + A12
airwise S — Ay — Ay

S’T — A12 — A22



Matrix additions (linear combinations)

Sy
S1 = A + Ao
So = Ao + Aoo
S3 = Ay
Sy = Aao
“ | ) S = A1 + Ao
Write once Se = Ao — Aqq

S’? — A12 _ A22
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Matrix additions (linear combinations)

S1 = Aq1 + Ao

. . So = Aoy + Ao

Ao Aoy 53 = An

Sy = Aao

Entry-wise Sy = A1 + Ao
updates

Se¢ = Aa1 — A1

S7 = A13 — Aag

. O — .

“Streaming”



Common subexpression elimination (CSE)
- Example in <4, 2, 4> algorithm (R = 26 multiples):

T4 Tos
T11 = Bay — (Bi12 + Bayo)
Ths = Bog + B1o + Boo

B12 B22 B23 B24

Four additions, six reads, two writes



Common subexpression elimination (CSE)

- Example in <4, 2, 4> algorithm (R = 26 multiples):

T11 T25 Y = Blg + BQQ
T11 = Baa — Y
Y \ Io5 = Bog +Y
By, B,, Bys B,

Three additions, six reads, three writes
- Net increase in communication!
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CSE does not really help

<4,2,3>, one recursive step <4,2 4>, one recursive step
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