
 0 5000 10000 15000
0

5

10

15

20

25

Dimension (N)

E
ff
e
ct

iv
e

G
F

L
O

P
S

/
co

re

Parallel performance of Strassen on <N,N,N>

MKL, 6 cores
MKL, 24 cores
DFS, 6 cores
BFS, 6 cores
HYBRID, 6 cores
DFS, 24 cores
BFS, 24 cores
HYBRID, 24 cores

A FRAMEWORK FOR
PRACTICAL PARALLEL FAST
MATRIX MULTIPLICATION

Austin Benson (arbenson@stanford.edu), ICME, Stanford

Grey Ballard, Sandia National Laboratories

BLIS Retreat, September 26, 2014

arXiv: 1409.2908

1

SAND2014-18309PE

Fast matrix multiplication:
bridging theory and practice

• There are a number of Strassen-like algorithms for matrix
multiplication that have only been “discovered” recently.
[Smirnov13], [Benson&Ballard14]

• We show that they can achieve higher performance with
respect to MKL (sequential and sometimes in parallel).

• We use code generation to do extensive prototyping. There
are several practical issues, and there is plenty of room for
improvement (lots of expertise at UT to help here!)

2

32 2.81
[Strassen79]

2.37
[Williams12]

xxx xx xx x

Strassen’s algorithm

3

Key ingredients of Strassen’s algorithm

• 1. Block partitioning of matrices (<2, 2, 2>)

• 2. Seven linear combinations of sub-blocks of A

• 3. Seven linear combinations of sub-blocks of B

• 4. Seven matrix multiplies to form Mr (recursive)

• 5. Linear combinations of Mr to form Cij

4

Key ingredients of fast matmul algorithms

• 1. Block partitioning of matrices (<M, K, N>)

• 2. R linear combinations of sub-blocks of A

• 3. R linear combinations of sub-blocks of B

• 4. R matrix multiplies to form Mr (recursive)

R < MKN  faster than classical

• 5. Linear combinations of Mr to form Cij

5

“Outer product” fast algorithm

• <4, 2, 4> partitioning

• R = 26 multiplies (< 4 * 2 * 4 = 32)
 23% speedup per recursive step (if everything else free)

• Linear combinations of Aij: 68 terms

• Linear combinations of Bij: 52 terms

• Linear combinations of Mr: 69 terms

• Smaller exponent for square matmul. We will show it is practical.

6

Discovering fast algorithms is a
numerical challenge

• Low-rank tensor decompositions lead to fast algorithms

• Tensors are small, but we need exact decompositions
 NP-hard

• Use alternating least squares with regularization and
rounding tricks [Smirnov13], [Benson&Ballard14]

• We have around 10 fast algorithms for <M, K, N>
decompositions. Also have permutations, e.g., <K, M, N>.

7

Code generation lets us prototype
algorithms quickly

• We have compact representation of many fast algorithms:
1. dimensions of block partitioning
2. linear combinations of sub-blocks
3. number of matrix multiplications

• We use code generation to rapidly prototype fast algorithms

• Our approach: test all algorithms on a bunch of different
problem sizes and look for patterns

8

Practical issues

• Best way to do matrix additions? (in paper)

• Can we eliminate redundant linear combinations? (in paper)

• Different problem shapes other than square (this talk)

• When to stop recursion? (this talk)

• How to parallelize? (this talk)

9

=

0 1000 2000 3000
10

15

20

25

Dimension (N)

G
F

L
O

P
S

Sequential dgemm performance

N x 800 x 800
N x 800 x N
N x N x N
peak

0 2000 4000 6000 8000
10

15

20

25

Dimension (N)
G

F
L
O

P
S

/
c
o

re

Parallel dgemm performance (24 cores)

Recursion cutoff: look at gemm curve

Basic idea: take another
recursive step if the sub-
problems will still operate at
high performance

10

<M, K, N> = <4, 2, 3>

Sequential performance

0 2000 4000 6000 8000
16

18

20

22

24

26

28

Dimension (N)

E
ff
e
c
tiv

e
G

F
L
O

P
S

Sequential performance on N x N x N

MKL
STRASSEN
<3,2,2>
<3,2,4>
<4,2,3>
<3,4,2>
<3,3,3>
<4,2,4>
<2,3,4>

=

11

Effective GFLOPS for M x K x N multiplies
= 1e-9 * 2 * MKN / time in seconds

True peak

Sequential performance

0 5000 10000
16

18

20

22

24

26

28

Dimension (N)

E
ff
e
c
ti
ve

G
F

L
O

P
S

Sequential performance on N x N x N

MKL
STRASSEN
BINI
SCHONHAGE
<4,2,2>
<3,2,3>
<3,3,2>
<5,2,2>
<2,5,2>

0 2000 4000 6000 8000
16

18

20

22

24

26

28

Dimension (N)

E
ff

e
c
ti
v
e

G
F

L
O

P
S

Sequential performance on N x N x N

MKL
STRASSEN
<4,4,2>
<4,3,3>
<3,4,3>
<3,3,6>
<3,6,3>
<6,3,3>

• All algorithms beat MKL on large problems
• Strassen’s algorithm is hard to beat with

exact algorithms

Approx.
algs.

=

12

Sequential performance =

• Almost all algorithms beat MKL
• <4, 2, 4> and <3, 2, 3> tend to perform the best
• 5-10% improvement over MKL

0 5000 10000 15000
20

22

24

26

28

dimension (N)

E
ff

e
ct

iv
e

G
F

L
O

P
S

Sequential performance on N x 1600 x N

MKL
<4,2,4>
<4,3,3>
<3,2,3>
<4,2,3>
STRASSEN
BINI
SCHONHAGE

13

Sequential performance =

10000 12000 14000 16000 18000
22

23

24

25

26

27

28

dimension (N)

E
ff

e
ct

iv
e

G
F

L
O

P
S

Sequential performance on N x 2400 x 2400

MKL
<4,2,4>
<4,3,3>
<3,2,3>
<4,2,3>
STRASSEN
BINI
SCHONHAGE

• Almost all algorithms beat MKL
• <4, 3, 3> and <4, 2, 3> tend to perform the best
• 5-10% improvement over MKL

14

Parallelization

C

M1 M7

+

M2 …

M1 M7

+

M2 …

M1 M7

+

M2 …

15

DFS Parallelization

C

M1 M7

+

M2 …

M1 M7

+

M2 …

All threads

Use parallel MKL

+ Easy to implement
+ Load balanced
+ Same memory
footprint as sequential
- Need large base
cases for high
performance

16

BFS Parallelization

C

M1 M7

+

M2 …

M1 M7

+

M2 …

omp taskwait

omp taskwait

1 thread

+ High performance for smaller base cases
- Sometimes harder to load balance: 24 threads, 49 subproblems
- More memory

1 thread 1 thread

17

HYBRID parallelization

C

M1 M7

+

M2 …

M1 M7

+

M2 …

omp taskwait

omp taskwait

1 thread 1 thread all threads

+ Better load balancing
- Explicit synchronization or else we can over-subscribe threads

18

 0 5000 10000 15000 20000
0

5

10

15

20

25

Dimension (N)

E
ff

e
ct

iv
e

G
F

L
O

P
S

/
co

re

Parallel performance of <4,2,4> on <N,2800,N>

 0 5000 10000 15000
0

5

10

15

20

25

Dimension (N)

E
ff
e
c
tiv

e
G

F
L
O

P
S

/
c
o
re

Parallel performance of Strassen on <N,N,N>

MKL, 6 cores
MKL, 24 cores
DFS, 6 cores
BFS, 6 cores
HYBRID, 6 cores
DFS, 24 cores
BFS, 24 cores
HYBRID, 24 cores

 0 5000 10000 15000 20000
0

5

10

15

20

25

Dimension (N)

E
ff

e
c
ti
v
e

G
F

L
O

P
S

/
c
o
re

Parallel performance of <4,3,3> on <N,3000,3000>

=

=

=

19

Bandwidth problems
• We rely on the cost of matrix multiplications to be much

more expensive than the cost of matrix additions

• Parallel dgemm on 24 cores: easily get 60-90% of peak

• STREAM benchmark: < 6x speedup in read/write
performance on 24 cores

C

M1 M7

+

M2 …

20

Parallel performance =

 9000 10000 11000 12000
14

16

18

20

22

Dimension (N)

E
ff
e

ct
iv

e
G

F
L
O

P
S

/
co

re

Performance (24 cores) on N x N x N

MKL
STRASSEN
BINI
SCHONHAGE
<4,2,2>
<3,2,3>
<3,3,2>
<5,2,2>
<2,5,2>

• 6 cores: similar performance to sequential
• 24 cores: can sometimes beat MKL, but barely

21

Parallel performance =

10000 15000 20000 10000 15000
18

19

20

21

22

23

24

25

dimension (N)

E
ff

e
c
ti
v
e

G
F

L
O

P
S

/
c
o

re

Performance (6 cores) on N x 2800 x N

MKL
<4,2,4>
<4,3,3>
<3,2,3>
<4,2,3>
STRASSEN
BINI
SCHONHAGE

 5000 10000 15000 20000
12

14

16

18

20

dimension (N)

E
ff

e
c
ti
v
e

G
F

L
O

P
S

/
c
o

re

Performance (24 cores) on N x 2800 x N

MKL
<4,2,4>
<4,3,3>
<3,2,3>
<4,2,3>
STRASSEN
BINI
SCHONHAGE

Bad MKL
performance

• 6 cores: similar performance to sequential
• 24 cores: MKL best for large problems

22

Parallel performance =

10000 15000 20000 10000 15000
18

19

20

21

22

23

24

dimension (N)

E
ff
e

c
ti
ve

G
F

L
O

P
S

/
c
o
re

Performance (6 cores) on N x 3000 x 3000

MKL
<4,2,4>
<4,3,3>
<3,2,3>
<4,2,3>
STRASSEN
BINI
SCHONHAGE

16000 18000 20000 22000
12

13

14

15

16

17

18

dimension (N)
E

ff
e

c
ti
ve

G
F

L
O

P
S

/
c
o
re

Performance (24 cores) on N x 3000 x 3000

MKL
<4,2,4>
<4,3,3>
<3,2,3>
<4,2,3>
STRASSEN
BINI
SCHONHAGE

• 6 cores: similar performance to sequential
• 24 cores: MKL usually the best

23

High-level conclusions

• For square matrix multiplication, Strassen’s algorithm is
hard to beat

• For rectangular matrix multiplication, use a fast algorithm
that “matches the shape”

• Bandwidth limits the performance of shared memory
parallel fast matrix multiplication
 should be less of an issue in distributed memory

Future work:

• Numerical stability

• Using fast matmul as a kernel for other algorithms in
numerical linear algebra

24

 0 5000 10000 15000
0

5

10

15

20

25

Dimension (N)

E
ff
e
ct

iv
e

G
F

L
O

P
S

/
co

re

Parallel performance of Strassen on <N,N,N>

MKL, 6 cores
MKL, 24 cores
DFS, 6 cores
BFS, 6 cores
HYBRID, 6 cores
DFS, 24 cores
BFS, 24 cores
HYBRID, 24 cores

A FRAMEWORK FOR
PRACTICAL PARALLEL FAST
MATRIX MULTIPLICATION

Austin Benson (arbenson@stanford.edu), ICME, Stanford

Grey Ballard, Sandia National Laboratories

BLIS Retreat, September 26, 2014

arXiv: 1409.2908

25

Matrix additions (linear combinations)

A11 A12 A21 A22

S1 S2
S7S6S5S4S3

“Pairwise”

2x
DAXPY

2x
DAXPY

26

Matrix additions (linear combinations)

A11 A12 A21 A22

S1 S2
S7S6S5S4S3

“Write once”

custom
“DAXPY”

custom
“DAXPY”

27

Matrix additions (linear combinations)

A11 A12 A21 A22

S1 S2
S7S6S5S4S3

“Streaming”

Entry-wise
updates

28

Common subexpression elimination (CSE)

• Example in <4, 2, 4> algorithm (R = 26 multiples):

B24B12 B22 B23

T11 T25

Four additions, six reads, two writes

29

Common subexpression elimination (CSE)

• Example in <4, 2, 4> algorithm (R = 26 multiples):

B24B12 B22 B23

T11 T25

Y

Three additions, six reads, three writes
 Net increase in communication!

30

CSE does not really help

Effective GFLOPS for M x K x N multiplies

= 1e-9 * 2 * MKN / time in seconds

31

