e
A FRAMEWORK FOR S

PRACTICAL PARALLEL FAST
MATRIX MULTIPLICATION

Parallel performance of Strassen on <N,N,N>

arXiv: 1409.2908 25

9 ——

g 20¢ Y

P ®

o ’

é) 157 ==Y —%-MKL, 6 cores

O -©-MKL, 24 cores

Q 10! -+-DFS, 6 cores

5 -%-BFS, 6 cores

L -=-HYBRID, 6 cores

w5 DFS, 24 cores
-A-BFS, 24 cores

. -O-HYBRID, 24 cores

0 5000 10000 15000
Dimension (N)

Austin Benson (arbenson@stanford.edu), ICME, Stanford
Grey Ballard, Sandia National Laboratories
BLIS Retreat, September 26, 2014

Fast matrix multiplication:
bridging theory and practice

- There are a number of Strassen-like algorithms for matrix
multiplication that have only been “discovered” recently.
[Smirnov13], [Benson&Ballard14]

- We show that they can achieve higher performance with
respect to MKL (sequential and sometimes in parallel).

- We use code generation to do extensive prototyping. There
are several practical issues, and there is plenty of room for
improvement (lots of expertise at UT to help here!)

| | | |
2 2.37 2.81 3
[Williams12] [Strassen79]

Strassen’s algorithm

{011 012} _ {An A12} | [311 BlZ}

Co1 Cao Ag1 Aza| |Ba21 Bao
S1=A11 + Ay 11 = Bi11 + Bao M.=S,.-T.
SQZAQl——AQQ T2:Bll 1§T§7
Ss = Aqq I3 = B — Bao
S4 = Az Ty=DBor —Bu o, o vme - w400
Sy =Ai1 + A1 15 = B2 Cro = M3 + Ms
Cor = My + M,

S6 — A21 — A11 T6 — Bll Ll Bl2
So = A19 — Aoe 17 = B2 + Bao

Cao = My — Mo + Mz + Mg

Key ingredients of Strassen’s algorithm

- 1. Block partitioning of matrices (<2, 2, 2>)

- 2. Seven linear combinations of sub-blocks of A
- 3. Seven linear combinations of sub-blocks of B
- 4. Seven matrix multiplies to form M, (recursive)
- 5. Linear combinations of M, to form C;

Key ingredients of fast matmul algorithms

- 1. Block partitioning of matrices (<M, K, N>)

- 2. R linear combinations of sub-blocks of A

- 3. R linear combinations of sub-blocks of B

- 4. R matrix multiplies to form M. (recursive)
R < MKN - faster than classical

- 5. Linear combinations of M, to form C;

R
“Outer product” fast algorithm

Ca1 Caz Cag (g Agr Aga| |Bin Biz Biz B
Cs1 C32 Csz3 Csy As1 Asg Bo1y DBos Bag Bay

- <4, 2, 4> partitioning
- R =26 multiplies (<4 *2*4 = 32)
- 23% speedup per recursive step (if everything else free)
- Linear combinations of A;: 68 terms
- Linear combinations of B;: 52 terms
- Linear combinations of M,: 69 terms
- Smaller exponent for square matmul. We will show it is practical.

Discovering fast algorithms is a
numerical challenge

- Low-rank tensor decompositions lead to fast algorithms

- Tensors are small, but we need exact decompositions
- NP-hard

- Use alternating least squares with regularization and
rounding tricks [Smirnov13], [Benson&Ballard14]

- We have around 10 fast algorithms for <M, K, N>
decompositions. Also have permutations, e.g., <K, M, N>.

Code generation lets us prototype
algorithms quickly

- We have compact representation of many fast algorithms:
1. dimensions of block partitioning
2. linear combinations of sub-blocks
3. number of matrix multiplications

- We use code generation to rapidly prototype fast algorithms

- Our approach: test all algorithms on a bunch of different
problem sizes and look for patterns

Practical issues

- Best way to do matrix additions? (in paper)

- Can we eliminate redundant linear combinations? (in paper)
- Different problem shapes other than square (this talk)

- When to stop recursion? (this talk)

- How to parallelize? (this talk)

Recursion cutoff. look at gemm curve

Sequential dgemm performance Parallel dgemm performance (24 cores)
25| | | 25| | | |
o
3
P 20w 220
O un' N U)
& -=-Nx800x 800/ &
O 15 -6-N x 800 x N = 15 ,
,'I"b -B-N xN x N O
1O[E ~~peak 10 =
0 1000 2000 3000 0 2000 4000 6000 8000
Dimension (N) Dimension (N)

Basic idea: take another 1 — |

recursive step if the sub-
problems will still operate at T <MK, N>=<4, 2, 3>
high performance —

S N
Sequential performance =1 B

Sequential performance on N x N x N

, | =% MKL
28
% A= -A-STRASSEN
26 2
True peak < S X -X-<3,2,2>
L 24 4 | H&-<3,2,4>
©22 [<42.3>
= -0-<3,4,2>
g20 <3335
W 18 | -0-<4,2,4>
16 'E'<2,3,4>

0 2000 4000 6000 8000
Dimension (N)

Effective GFLOPS for M x K x N multiplies
=1e-9* 2 * MKN / time in seconds

2
Sequential performance =1 B

Approx.
Sequential performance on N x N x N / algs. Sequential performance on N x N x N
28 || % MKL 28 | | \ AAd | [MKL
& ||A-STRASSEN /| g 5 XEUX | -A-STRASSEN
O 26 -%-BINI O == g
i — -X-<4.,4 2>
=24 | X-SCHONHAGE & 24/ | |-%-<4,3,3>
G>) 22! i <4,2,2> G>J 22 i <3,4’3>
"8 207 | _@_<31213> "8 20, — _@_<3,3,6>
o) ~+-<3,3,2> o .
= ~ =L a | <3,6,3>
I 18/ | -0-<5,2,2> w18 -5-<6.3.3>
16 ‘ -EH-<2,5,2> 16 ‘ ‘ ‘ —
0 5000 10000 0 2000 4000 6000 8000
Dimension (N) Dimension (N)

» All algorithms beat MKL on large problems
« Strassen’s algorithm is hard to beat with
exact algorithms

Sequential performance

Sequential performance on N x 1600 x N

28
N —— MKL
% 26 , '*'<4,2,4>
—1 -0-<4.3,3>
L
O 24 | -H-<3,2,3>
g’ <42 3>
s -A-STRASSEN
%22 | -9-BINI
-+-SCHONHAGE
2 ‘ ‘
OO 5000 10000 15000

dimension (N)

« Almost all algorithms beat MKL

« <4, 2,4> and <3, 2, 3> tend to perform the best

¢ 5-10% improvement over MKL

Sequential performance

Sequential performance on N x 2400 x 2400

28 ‘

o 2 7MKL

o e-<4.2 4>

= -0-<4,3,3>

o [1-<3,2,3>

0 <42 3>

5 &1 -A-STRASSEN

i% ¥ -7- BINI
-+-SCHONHAGE

6000 12000 14000 16000 18000
dimension (N)

« Almost all algorithms beat MKL
« <4 3, 3>and <4, 2, 3> tend to perform the best
¢ 5-10% improvement over MKL

Parallelization S7 = A1z — Az
T7 = Bay + Bao
C M, = S--T-
/4\
M1 M2 " M7
/4\
M. M, M.,

DFS Parallelization

M; M,

All threads
Use parallel MKL

+ Easy to implement
+ Load balanced

+ Same memory
footprint as sequential
- Need large base
cases for high
performance

BFS Parallelization So = Ajy — Ao
C T7 = B + Bas
an M, = 5717
M1 M2 " M7
+
m‘\
1 thread 1 thread 1 thread

+ High performance for smaller base cases
- Sometimes harder to load balance: 24 threads, 49 subproblems
- More memory

HYBRID parallelization | 27 =4~ 42
17 = Bo1 + B

C M; =87 - Ty

M’mﬁ\
M1 IVIZ "t M?
| optaskm__

M1 IVIZ "t M?

1 thread 1 thread all threads

+ Better load balancing
- Explicit synchronization or else we can over-subscribe threads

Effective GFLOPS / core

= N

-

Effective GFLOPS / core

Effective GFLOPS / core

N
[$)]

t AR
0 SFIIRER
5 —%MKL, 6 cores
-©-MKL, 24 cores
ot -+-DFS, 6 cores
-%-BFS, 6 cores
--I-HYBRID, 6 cores
5¢ DFS, 24 cores
-A-BFS, 24 cores
-O-HYBRID, 24 cores
0 0 5000 10000 15000
Dimension (N)
Parallel performance of <4,2,4> on <N,2800,N>
25¢ 1
20r]
15}]
107]
5 i
o3 5000 _ 10000 _ 15000 20000
Dimension (N)
Parallel performance of <4,3,3> on <N,3000,3000>
25¢
20r
151
101
5, i
0 0 5000 10000 15000

Dimension (N)

20000

. R
Bandwidth problems

- We rely on the cost of matrix multiplications to be much
more expensive than the cost of matrix additions

- Parallel dgemm on 24 cores: easily get 60-90% of peak

- STREAM benchmark: < 6x speedup in read/write
performance on 24 cores

S7 = Aja2 — Ao
C T7 = Bo1 + Bao

M; =57 -T
/—'\ ! ! '

. S
Parallel performance H-E B

Performance (6 cores) on NxNxN Performance (24 cores) on NxNxN
<28 | — MKL S - —— MKL
° 'A & -A-STRASSEN © 24 | |-A-STRASSEN
- I »‘ \Y | -
o 20 ‘ﬁg‘é‘ﬁ" FHE -x-BINI D 0 | -x-BINI
O24 A i ||-%-SCHONHAGE| & -%- SCHONHAGE
e & S &000 |
TH —ﬁ'ﬁ‘ﬁ <4,2,2> L 4g | <42 2>
G2 GgboEE |1-0-<3,2,3> © -0-<3,2,3>
E 20! | -+-<3,3,2> E 161 | |-+-<3,3,2>
S -6-<5,2,2> S -6-<52 2>
18 \ \ -B-<2,5,2> =14 \ \ -8-<2,5,2>

9000 10000 11000 12000 9000 10000 11000 12000

Dimension (N) Dimension (N)

* 6 cores: similar performance to sequential
« 24 cores: can sometimes beat MKL, but barely

Parallel performance . = I —

Bad MKL
Performance (6 cores) on N x 2800 x N performance Performance (24 cores) on N x 2800 x N
25 ‘ ‘ ‘ 20 ‘ ‘
4 \ 9
—* MKL g —* MKL
S-<4,2,4> =18 | |-%-<4,2,4>
-0-<4,3,3> o -0-<4,3,3>
H-<3,2,3> 9 H-<3,2,3>
14 o 16 i 14
<4,2,3> O <4,2,3>
-A-STRASSEN © -A-STRASSEN
-~ BINI 3 14! 1 |-¥-BINI
-+-SCHONHAGE 2 -+-SCHONHAGE
L
1 g : : : 1& o ; :
10000 15000 20000 10000 15000 00 10000 15000 20000
dimension (N) dimension (N)

* 6 cores: similar performance to sequential
« 24 cores: MKL best for large problems

3
Parallel performance

Performance (6 cores) on N x 3000 x 3000 Performance (24 cores) on N x 3000 x 3000
24 ‘ ‘ ‘ 18 ‘ X
o o
g 2 — MKL g 171 [~ MKL
= “H-<4,2,4> = ~¥-<4,2,4>
D 2 -0-<4,3,3> o 16 | -o-<4.33>
o) H-<3,2.3> o 15 ||-5-<32,3>
G <4,2,3> o <4.23>
) -A-STRASSEN O 44l | |-A-STRASSEN
> 2 > 14
5 -7- BINI 5 -7-BINI
%’ 19 -+-SCHONHAGE %’ 13+ " | |-+-SCHONHAGE
1 ‘ ‘ ‘ 1 = ‘ ‘
1 8000 15000 20000 10000 15000 1 gOOO 18000 20000 22000
dimension (N) dimension (N)

* 6 cores: similar performance to sequential
« 24 cores: MKL usually the best

High-level conclusions

- For square matrix multiplication, Strassen’s algorithm is
hard to beat

- For rectangular matrix multiplication, use a fast algorithm
that “matches the shape”

- Bandwidth limits the performance of shared memory
parallel fast matrix multiplication
—> should be less of an issue in distributed memory

Future work:
- Numerical stability

- Using fast matmul as a kernel for other algorithms in
numerical linear algebra

. S
A FRAMEWORK FOR

PRACTICAL PARALLEL FAST
MATRIX MULTIPLICATION

Parallel performance of Strassen on <N,N,N>

arXiv: 1409.2908 25
9 ——
S 20"
n
o
S 15 —-MKL, 6 cores
& -©-MKL, 24 cores
Q 10! -+-DFS, 6 cores
5 -%-BFS, 6 cores
L -=-HYBRID, 6 cores
W5 A DFS, 24 cores
-A-BFS, 24 cores
. -O-HYBRID, 24 cores

0 5000 10000 15000
Dimension (N)

Austin Benson (arbenson@stanford.edu), ICME, Stanford
Grey Ballard, Sandia National Laboratories
BLIS Retreat, September 26, 2014

- ®
Matrix additions (linear combinations)

S1 82 83 S4 S5 SG S7

2
D Y
S1 = Aq1 + Ao
So = Aoy + Aao
Ay Aqy Ay Ay Sa = Ay
Sy = Aao
uP i I 9 S5 — All + A12
airwise S — Ay — Ay

S’T — A12 — A22

Matrix additions (linear combinations)

Sy
S1 = A + Ao
So = Ao + Aoo
S3 = Ay
Sy = Aao
“ |) S = A1 + Ao
Write once Se = Ao — Aqq

S’? — A12 _ A22

- ®
Matrix additions (linear combinations)

S1 = Aq1 + Ao

. . So = Aoy + Ao

Ao Aoy 53 = An

Sy = Aao

Entry-wise Sy = A1 + Ao
updates

Se¢ = Aa1 — A1

S7 = A13 — Aag

. O — .

“Streaming”

Common subexpression elimination (CSE)
- Example in <4, 2, 4> algorithm (R = 26 multiples):

T4 Tos
T11 = Bay — (Bi12 + Bayo)
Ths = Bog + B1o + Boo

B12 B22 B23 B24

Four additions, six reads, two writes

Common subexpression elimination (CSE)

- Example in <4, 2, 4> algorithm (R = 26 multiples):

T11 T25 Y = Blg + BQQ
T11 = Baa — Y
Y \ Io5 = Bog +Y
By, B,, Bys B,

Three additions, six reads, three writes
- Net increase in communication!

. B
CSE does not really help

<4,2,3>, one recursive step <4,2 4>, one recursive step
26| 26|
n %)
o o
S 24
o SRS~ Write—once 5
© 22| -E- Write—once+CSE|| 0 22
5 —B>- Streaming =
L, | |<-Streaming+CSE | L |
0200 | pairwise i 20
-%- Pairwise+CSE 8
12%00 4000 6000 8000 0 5000 10000
Dimension (N) Dimension (N)

Effective GFLOPS for M x K x N multiplies

=1e-9 * 2 * MKN / time in seconds

