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Fast matrix multiplication:
bridging theory and practice

• There are a number of Strassen-like algorithms for matrix 
multiplication that have only been “discovered” recently. 
[Smirnov13], [Benson&Ballard14]

• We show that they can achieve higher performance with 
respect to MKL (sequential and sometimes in parallel).

• We use code generation to do extensive prototyping.  There 
are several practical issues, and there is plenty of room for 
improvement (lots of expertise at UT to help here!)
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Strassen’s algorithm
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Key ingredients of Strassen’s algorithm

• 1. Block partitioning of matrices (<2, 2, 2>)

• 2. Seven linear combinations of sub-blocks of A

• 3. Seven linear combinations of sub-blocks of B

• 4. Seven matrix multiplies to form Mr (recursive)

• 5. Linear combinations of Mr to form Cij

4



Key ingredients of fast matmul algorithms

• 1. Block partitioning of matrices (<M, K, N>)

• 2. R linear combinations of sub-blocks of A              

• 3. R linear combinations of sub-blocks of B

• 4. R matrix multiplies to form Mr (recursive)

R < MKN  faster than classical

• 5. Linear combinations of Mr to form Cij
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“Outer product” fast algorithm

• <4, 2, 4> partitioning

• R = 26 multiplies (< 4 * 2 * 4 = 32)
 23% speedup per recursive step (if everything else free)

• Linear combinations of Aij:  68 terms

• Linear combinations of Bij:  52 terms

• Linear combinations of Mr:  69 terms 

• Smaller exponent for square matmul. We will show it is practical.
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Discovering fast algorithms is a
numerical challenge

• Low-rank tensor decompositions lead to fast algorithms

• Tensors are small, but we need exact decompositions 
 NP-hard

• Use alternating least squares with regularization and 
rounding tricks [Smirnov13], [Benson&Ballard14]

• We have around 10 fast algorithms for <M, K, N> 
decompositions.  Also have permutations, e.g., <K, M, N>.

7



Code generation lets us prototype 
algorithms quickly

• We have compact representation of many fast algorithms:
1. dimensions of block partitioning
2. linear combinations of sub-blocks
3. number of matrix multiplications

• We use code generation to rapidly prototype fast algorithms

• Our approach: test all algorithms on a bunch of different 
problem sizes and look for patterns
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Practical issues

• Best way to do matrix additions?  (in paper)

• Can we eliminate redundant linear combinations? (in paper)

• Different problem shapes other than square (this talk)

• When to stop recursion? (this talk)

• How to parallelize? (this talk)
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Sequential performance
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Effective GFLOPS for M x K x N multiplies
= 1e-9 * 2 * MKN / time in seconds 
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Sequential performance
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Sequential performance =

• Almost all algorithms beat MKL
• <4, 2, 4> and <3, 2, 3> tend to perform the best 
• 5-10% improvement over MKL
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Sequential performance =
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• Almost all algorithms beat MKL
• <4, 3, 3> and <4, 2, 3> tend to perform the best 
• 5-10% improvement over MKL
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Parallelization
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DFS Parallelization

C
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+
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M1 M7

+

M2 … 

All threads

Use parallel MKL

+ Easy to implement
+ Load balanced
+ Same memory 
footprint as sequential
- Need large base        
cases for high 
performance

16



BFS Parallelization
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omp taskwait

omp taskwait

1 thread

+  High performance for smaller base cases
- Sometimes harder to load balance: 24 threads, 49 subproblems
- More memory

1 thread 1 thread
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HYBRID parallelization
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omp taskwait

omp taskwait

1 thread 1 thread all threads

+  Better load balancing
- Explicit synchronization or else we can over-subscribe threads
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Bandwidth problems
• We rely on the cost of matrix multiplications to be much 

more expensive than the cost of matrix additions

• Parallel dgemm on 24 cores: easily get 60-90% of peak

• STREAM benchmark: < 6x speedup in read/write 
performance on 24 cores
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Parallel performance =
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• 6 cores: similar performance to sequential
• 24 cores: can sometimes beat MKL, but barely
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Parallel performance =
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Bad MKL
performance

• 6 cores: similar performance to sequential
• 24 cores: MKL best for large problems
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Parallel performance =
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• 6 cores: similar performance to sequential
• 24 cores: MKL usually the best
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High-level conclusions

• For square matrix multiplication, Strassen’s algorithm is 
hard to beat

• For rectangular matrix multiplication, use a fast algorithm 
that “matches the shape”

• Bandwidth limits the performance of shared memory 
parallel fast matrix multiplication
 should be less of an issue in distributed memory

Future work:

• Numerical stability

• Using fast matmul as a kernel for other algorithms in 
numerical linear algebra
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Matrix additions (linear combinations)

A11 A12 A21 A22

S1 S2
S7S6S5S4S3

“Pairwise”

2x
DAXPY

2x
DAXPY
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Matrix additions (linear combinations)

A11 A12 A21 A22

S1 S2
S7S6S5S4S3

“Write once”

custom
“DAXPY”

custom
“DAXPY”

27



Matrix additions (linear combinations)

A11 A12 A21 A22

S1 S2
S7S6S5S4S3

“Streaming”

Entry-wise 
updates
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Common subexpression elimination (CSE)

• Example in <4, 2, 4> algorithm (R = 26 multiples):

B24B12 B22 B23

T11 T25

Four additions, six reads, two writes
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Common subexpression elimination (CSE)

• Example in <4, 2, 4> algorithm (R = 26 multiples):

B24B12 B22 B23

T11 T25

Y

Three additions, six reads, three writes
 Net increase in communication!
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CSE does not really help

Effective GFLOPS for M x K x N multiplies

= 1e-9 * 2 * MKN / time in seconds 
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